JPS6317779B2 - - Google Patents

Info

Publication number
JPS6317779B2
JPS6317779B2 JP5283179A JP5283179A JPS6317779B2 JP S6317779 B2 JPS6317779 B2 JP S6317779B2 JP 5283179 A JP5283179 A JP 5283179A JP 5283179 A JP5283179 A JP 5283179A JP S6317779 B2 JPS6317779 B2 JP S6317779B2
Authority
JP
Japan
Prior art keywords
quartz glass
glass tube
optical fiber
cladding
core material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP5283179A
Other languages
Japanese (ja)
Other versions
JPS55144440A (en
Inventor
Toshiro Kagami
Hideo Koide
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Coorstek KK
Original Assignee
Toshiba Ceramics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Ceramics Co Ltd filed Critical Toshiba Ceramics Co Ltd
Priority to JP5283179A priority Critical patent/JPS55144440A/en
Publication of JPS55144440A publication Critical patent/JPS55144440A/en
Publication of JPS6317779B2 publication Critical patent/JPS6317779B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/01205Manufacture of preforms for drawing fibres or filaments starting from tubes, rods, fibres or filaments
    • C03B37/01211Manufacture of preforms for drawing fibres or filaments starting from tubes, rods, fibres or filaments by inserting one or more rods or tubes into a tube

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Glass Melting And Manufacturing (AREA)
  • Manufacture, Treatment Of Glass Fibers (AREA)

Description

【発明の詳細な説明】 本発明は光通信に利用される光フアイバーの製
造時に用いられる石英ガラス管に関し、詳しくは
光フアイバーのクラツド素材、ホルダー素材に用
いられる石英ガラス管の改良に係る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a quartz glass tube used in the production of optical fibers used in optical communications, and more particularly to improvements in quartz glass tubes used as cladding materials and holder materials for optical fibers.

周知の如く、この種の光フアイバーは中心に光
を伝送させるコアがあり、この周囲に光を反射し
てコアから光が外部に漏れるのを防止する該コア
より屈折率の低いクラツドを形成した構造になつ
ている。必要に応じて、クラツドを保護するため
に、クラツドの更に周囲にホルダー(支持材)を
設けた光フアイバーがある。
As is well known, this type of optical fiber has a core at the center that transmits light, and a cladding with a refractive index lower than that of the core that reflects light and prevents light from leaking to the outside. It's structured. If necessary, the optical fiber is provided with a holder (support material) further around the cladding to protect the cladding.

上述した光フアイバーを製造するには、まず所
望径の石英ガラス製コア素材を該素材の径と略同
等の内径を有するクラツド素材としての石英ガラ
ス管に挿入、密接させ、必要に応じて該石英ガラ
ス管をホルダー素材としての石英ガラス管に挿
入、密接した後、一端を封じ、他端からコア素材
とクラツド素材間(もしくはクラツド素材とホル
ダー素材間)の間隙中の空気を真空ポンプで抜き
ながら、酸水素バーナで一端から順次加熱してそ
れらを密着させてコア素材とクラツド素材(必要
に応じてコア素材、クラツド素材及びホルダー素
材)からなる1〜2cm径の元棒を製作する。その
後、この元棒を線引機で100〜200μmのフアイバ
ーに線引きして光フアイバーを造る。
To manufacture the above-mentioned optical fiber, first, a quartz glass core material of a desired diameter is inserted into a quartz glass tube as a cladding material having an inner diameter approximately equal to the diameter of the core material, and the quartz glass core material is brought into close contact with the quartz glass core material as needed. After inserting the glass tube into the quartz glass tube that serves as the holder material and bringing them into close contact, one end is sealed, and the air in the gap between the core material and the cladding material (or between the cladding material and the holder material) is removed from the other end using a vacuum pump. A base rod with a diameter of 1 to 2 cm is made of a core material and a cladding material (core material, cladding material, and holder material as necessary) by heating them sequentially from one end with an oxyhydrogen burner and bringing them into close contact. After that, this original rod is drawn into a 100-200 μm fiber using a drawing machine to create an optical fiber.

ところで、従来、光フアイバーの元棒製造に用
いられるクラツド素材、ホルダー素材としては通
常の石英ガラス管が使用されている。しかしなが
ら、これらの素材により元棒を製造すると、コア
素材(或いはクラツド素材)に対する密着が不充
分となり、はなはだしい場合にはそれら素材間に
微泡が入つた元棒となる。その結果、この元棒を
線引きすると、得られた光フアイバーの光特性が
劣化するばかりか、線引中に切断する虞れがあ
る。
Incidentally, conventionally, ordinary quartz glass tubes have been used as cladding materials and holder materials used in the manufacture of optical fiber base rods. However, if the base rod is manufactured from these materials, the adhesion to the core material (or cladding material) will be insufficient, and in severe cases, the base rod will have microbubbles between these materials. As a result, when this original rod is drawn, not only the optical properties of the obtained optical fiber deteriorate, but also there is a risk of the fiber being cut during drawing.

このようなことから、最近、コア素材と密着性
をコントロールするために内周面にリング状或い
はラセン状の凹凸を設けた石英ガラス管からなる
クラツド素材等が用いられている。しかしなが
ら、このようなクラツド素材にあつても、元棒製
造時においてもコア素材に充分密着しなかつた
り、それらの間に微泡が残存したりする。特に、
その石英ガラス管が真円でなく多少楕円となる
と、コア素材への密着不良、微泡の残存が顕在化
する。
For this reason, recently, clad materials made of quartz glass tubes with ring-shaped or spiral-shaped irregularities on the inner peripheral surface have been used to control the adhesion to the core material. However, even with such a clad material, even during the production of the base rod, it may not adhere sufficiently to the core material, or microbubbles may remain between them. especially,
If the quartz glass tube is not a perfect circle but somewhat oval, poor adhesion to the core material and residual microbubbles will become apparent.

これに対し、本発明者は上記欠点を解消するた
めに鋭意研究を重ねた結果、クラツド素材又はホ
ルダー素材として所定深さの線状の溝を表面の長
さ方向に形成した石英ガラス管を用いることによ
つて、このクラツド素材にコア素材を挿入(或い
はこれらをホルダー素材に挿入)した後、一端を
封じ、他端から吸引しながら加熱した場合、上記
クラツド素材、ホルダー素材の表面(特に内周
面)の改良によりコア素材、クラツド素材間(或
いはクラツド素材、ホルダー素材間)の密着性が
良好となり、しかもそれらの間に微泡が残存しな
い元棒を製造できる光フアイバー用石英ガラス管
を見い出した。したがつて、本発明の石英ガラス
管を用いて製造された元棒を線引きすることによ
つて、線引き中での切断を招くことなく光伝送特
性の優れた光フアイバーを得ることができる。
On the other hand, as a result of extensive research in order to eliminate the above-mentioned drawbacks, the present inventor used a quartz glass tube with linear grooves of a predetermined depth formed in the length direction of the surface as the cladding material or holder material. In some cases, after inserting the core material into the cladding material (or inserting them into the holder material), if one end is sealed and heated while suction is applied from the other end, the surface of the cladding material and holder material (especially the inner part) may be damaged. We have developed a quartz glass tube for optical fibers that has improved adhesion between the core material and cladding material (or between the cladding material and holder material) by improving the circumferential surface), and can produce a base rod with no microbubbles remaining between them. I found it. Therefore, by drawing a base rod manufactured using the quartz glass tube of the present invention, an optical fiber with excellent light transmission characteristics can be obtained without causing breakage during drawing.

すなわち、本発明の光フアイバー用石英ガラス
管は石英ガラス製コア素材を挿入する石英ガラス
管の内表面を弗酸でエツチングして深さ0.1μm〜
5μmのガス吸入用線状の溝を石英ガラス管の内
表面長手方向に形成してなるものである。
That is, in the quartz glass tube for optical fiber of the present invention, the inner surface of the quartz glass tube into which the quartz glass core material is inserted is etched with hydrofluoric acid to a depth of 0.1 μm or more.
A linear groove of 5 μm for gas suction is formed in the longitudinal direction of the inner surface of a quartz glass tube.

本発明における線状の溝は表面の長手方向に連
続的に形成されていても、不連続的に形成されて
いてもよい。この線状の溝が形成される表面とは
石英ガラス管をクラツド素材に用いる場合は内側
面のみ、或いは内、外側面であり、一方ホルダー
素材に用いる場合は、内側面のみである。
The linear grooves in the present invention may be formed continuously or discontinuously in the longitudinal direction of the surface. The surface on which these linear grooves are formed is only the inner surface, or the inner and outer surfaces, when the quartz glass tube is used as the clad material, and only the inner surface when it is used as the holder material.

本発明において表面に形成される線状の溝の深
さを上記範囲に限定した理由はその深さを0.1μm
未満にすると、元棒製造時におけるコア素材に対
する密着性の改良、微泡残存の防止効果が充分達
成できず、かといつて5μmを越えると、吸引に
際しての脱気効果は高まるものの密着性がかえつ
て悪化するからである。
The reason why the depth of the linear grooves formed on the surface in the present invention is limited to the above range is that the depth is 0.1 μm.
If the diameter is less than 5μm, the adhesion to the core material during the production of the base rod cannot be improved or the effect of preventing the residual microbubbles will not be sufficiently achieved, while if it exceeds 5μm, the degassing effect during suction will increase, but the adhesion will be reduced. This is because it gets worse.

なお、本発明の光フアイバー用石英ガラス管を
製造するには、例えば表面に微細な凹凸を有する
マンドレルを挿置したカーボン製モールドを用い
て石英ガラスインゴツトを管引きし元管とした
後、この元管内面を5〜30%の弗酸で5〜50μm
エツチング除去し水洗する方法が採用できる。こ
の方法で得た石英ガラス管は内側面に深さ0.1〜
5μmの線状の溝が長手方向に複数形成され、か
つエツチングにより活性化され高温で他の石英ガ
ラス体に密着し易い性質を有する。
In order to manufacture the quartz glass tube for optical fiber of the present invention, for example, a quartz glass ingot is drawn into a base tube using a carbon mold in which a mandrel having minute irregularities on the surface is inserted. The inner surface of this original tube was coated with 5-50 μm of 5-30% hydrofluoric acid.
A method of removing etching and washing with water can be adopted. The quartz glass tube obtained by this method has a depth of 0.1~
A plurality of 5 μm linear grooves are formed in the longitudinal direction, and it is activated by etching and has the property of easily adhering to other quartz glass bodies at high temperatures.

次に、本発明の実施例を説明する。 Next, examples of the present invention will be described.

実施例 1 表面に微細な凹凸を有するマンドレルを挿置し
たカーボンモールドを用いて合成石石英ガラスイ
ンゴツトを管引きして外径20mm、内径11mm、長さ
1mの管状体を作製し、この内側面を20%の弗酸
で20μmエツチング除去したところ、第1図に示
すように内側面に深さ2μmの多数の線状の溝1
…1が長手方向に形成された石英ガラス管2を得
た。
Example 1 A synthetic quartz glass ingot was drawn into a tube using a carbon mold in which a mandrel with fine irregularities on the surface was inserted to produce a tubular body with an outer diameter of 20 mm, an inner diameter of 11 mm, and a length of 1 m. When the side surface was etched to a depth of 20 μm with 20% hydrofluoric acid, many linear grooves with a depth of 2 μm were found on the inner surface as shown in Figure 1.
... A quartz glass tube 2 in which 1 was formed in the longitudinal direction was obtained.

次いで、上記石英ガラス管2をクラツド素材と
し用い、第2図に示す如くこのクラツド素材2内
に外径10mmの石英ガラス棒からなるコア素材3を
挿入し、一端を封止し、他端にガス吸引管4を取
付け、該吸引管4からコア素材3とクラツド素材
(石英ガラス管)の間の空気を脱気しながら矢印
方向回転させると共に、一端側から酸水素バーナ
5,5で加熱して両素材2,3を密着させ光フア
イバー用元棒6を造つた。この元棒6はコア素材
とクラツド素材が良好に密着していると共に、そ
れらの間への微泡の残存は全く認められなかつ
た。
Next, using the quartz glass tube 2 as a cladding material, a core material 3 made of a quartz glass rod with an outer diameter of 10 mm is inserted into the cladding material 2 as shown in FIG. 2, one end is sealed, and the other end is sealed. A gas suction pipe 4 is attached, and the air between the core material 3 and the cladding material (quartz glass tube) is degassed from the suction pipe 4 while rotating in the direction of the arrow, and heated from one end with oxyhydrogen burners 5. Then, the two materials 2 and 3 were brought into close contact with each other to produce a base rod 6 for optical fiber. In this original rod 6, the core material and the cladding material were in good contact with each other, and no microbubbles were observed to remain between them.

比較例 外径20mm、内径11mm(内径の寸法公差0.2mm)、
長さ1mmで内側面にその周方向に3μmのゆるい
起状を有する石英ガラス管(クラツド素材)に外
径10mmの石英ガラス棒からなるコア素材を挿入し
た。次いで、これらを前記実施例と同様な方法で
脱気、回転しながらコア素材、クラツド素材を密
着させて光フアイバー用元棒を造つた。この元棒
はコア素材とクラツド素材が十分密着していない
個所があるばかりか、それらの間に微泡の残存が
認められた。
Comparative example: Outer diameter 20mm, inner diameter 11mm (inner diameter tolerance 0.2mm),
A core material consisting of a quartz glass rod with an outer diameter of 10 mm was inserted into a quartz glass tube (clad material) with a length of 1 mm and a gentle ridge of 3 μm in the circumferential direction on the inner surface. Next, these were degassed in the same manner as in the previous example, and the core material and cladding material were brought into close contact with each other while rotating to produce a base rod for an optical fiber. In this original bar, not only were there some areas where the core material and cladding material were not in close contact with each other, but it was also observed that microbubbles remained between them.

しかして、本実施例1及び比較例の元棒を夫夫
線引機により線引して第3図に示すコア7、クラ
ツド8からなる外径120μmの光フアイバー9を
造つた。その結果、本実施例1の場合、元棒線引
中に切断による事故が全くなく、かつ得られた光
フアイバーの光損失は2dB/Kmと極めて良好な特
性を有していた。これに対し、比較例の場合、線
引中に1回切断事故があり、しかも得られた光フ
アイバーの光損失も実施例と同一波長の光で
4dB/Kmと特性の低いものであつた。
The original rods of Example 1 and Comparative Example were then drawn using a wire drawing machine to produce an optical fiber 9 having an outer diameter of 120 μm and consisting of a core 7 and a cladding 8 as shown in FIG. As a result, in the case of Example 1, there were no accidents due to cutting during drawing of the original rod, and the optical fiber obtained had extremely good characteristics with an optical loss of 2 dB/Km. On the other hand, in the case of the comparative example, there was one breakage accident during drawing, and the optical loss of the obtained optical fiber was the same wavelength as that of the example.
The characteristics were low at 4dB/Km.

実施例 2 表面に微細な凹凸を有するマンドレルを挿置し
たカーボンモールドを用いて合成石英ガラスイン
ゴツトを管引きして内径21mm、長さ1mの管状体
を作成し、この内側面を20%の弗酸で30μmエツ
チング除去したところ、内側面に深さ3μmの多
数の線状の溝が長手方向に形成された石英ガラス
管を得た。
Example 2 A synthetic quartz glass ingot was drawn into a tube using a carbon mold in which a mandrel with fine irregularities on the surface was inserted to create a tubular body with an inner diameter of 21 mm and a length of 1 m. When the tube was etched to a depth of 30 μm with hydrofluoric acid, a quartz glass tube was obtained in which a large number of linear grooves with a depth of 3 μm were formed in the longitudinal direction on the inner surface.

次いで、上記石英ガラス管ホルダー素材として
用い、このホルダー素材に前記実施例で得た内径
11mm、外径20mmのクラツド素材を挿入し、さらに
このクラツド素材に内径10mmの石英ガラス棒から
なるコア素材を挿入した後、これらを脱気、回転
しながら加熱してコア素材、クラツド素材、ホル
ダー素材を夫夫密着させて三重構造の光フアイバ
ー用元棒を造つた。その後、この元棒を線引機に
より線引して第4図に示すようにコア7、クラツ
ド8及びホルダー10からなる外径180μmの光
フアイバー9′を造つた。その結果、元棒線引中
切断による事故が全くなく、かつ得られた光フア
イバーの光損失は2dB/Kmと極めて良好な特性を
有していた。
Next, the above-mentioned quartz glass tube is used as the holder material, and the inner diameter obtained in the above example is applied to this holder material.
After inserting a cladding material of 11 mm and an outer diameter of 20mm, and then inserting a core material made of a quartz glass rod with an inner diameter of 10mm into this cladding material, these are degassed and heated while rotating to form the core material, cladding material, and holder. A triple-layered base rod for optical fiber was created by closely adhering the materials. Thereafter, this original rod was drawn using a drawing machine to produce an optical fiber 9' having an outer diameter of 180 μm and consisting of a core 7, a cladding 8, and a holder 10, as shown in FIG. As a result, there were no accidents caused by the original rod being cut during drawing, and the optical fiber obtained had extremely good characteristics, with an optical loss of 2 dB/Km.

以上詳述した如く、本発明によればクラツド素
材又はホルダー素材として所定深さの線状の溝を
表面の長手方向に形成した石英ガラス管を用いる
ことによつて、コア素材に対して良好に密着した
クラツド素材、或いはクラツド素材に対して良好
に密着したホルダ素材を有し、かつそれらの間に
微泡残存がない2重ないし3重構造の元棒を作製
でき、ひいてはこの元棒を線引きすることによ
り、線引き中での切断を招くことなく、光伝送特
性の優れた光フアイバーを製造し得る光フアイバ
ー用石英ガラス管を提供できるものである。
As described in detail above, according to the present invention, by using a quartz glass tube with linear grooves of a predetermined depth formed in the longitudinal direction of the surface as the cladding material or holder material, the quartz glass tube can be easily attached to the core material. It is possible to produce a base rod with a double or triple structure that has a clad material that is in close contact with the clad material or a holder material that is in good contact with the clad material, and there are no residual microbubbles between them, and then this base rod can be drawn. By doing so, it is possible to provide a quartz glass tube for an optical fiber that can produce an optical fiber with excellent light transmission characteristics without causing breakage during drawing.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例1で得た石英ガラス管
の断面図、第2図は第1図の石英ガラス管をクラ
ツド素材として用い、コア素材と共に密着して元
棒を製造する状態を示す断面図、第3図は2重構
造の光フアイバーを示す断面図、第4図は3重構
造の光フアイバーを示す断面図である。 1……線状の溝、2……石英ガラス管(クラツ
ド素材)、3……コア素材、6……元棒、7……
コア、8……クラツド、10……ホルダー、9,
9′……光フアイバー。
Fig. 1 is a cross-sectional view of the quartz glass tube obtained in Example 1 of the present invention, and Fig. 2 shows the state in which the quartz glass tube in Fig. 1 is used as a cladding material and is brought into close contact with the core material to produce a base rod. FIG. 3 is a sectional view showing a double structure optical fiber, and FIG. 4 is a sectional view showing a triple structure optical fiber. 1... Linear groove, 2... Quartz glass tube (clad material), 3... Core material, 6... Original rod, 7...
Core, 8...Clad, 10...Holder, 9,
9'...Optical fiber.

Claims (1)

【特許請求の範囲】[Claims] 1 石英ガラス製コア素材を挿入する石英ガラス
管の内表面を弗酸でエツチングして深さ0.1μm〜
5μmのガス吸入用線状の溝を石英ガラス管の内
表面長手方向に形成したことを特徴とする光フア
イバー用石英ガラス管。
1. Etch the inner surface of the quartz glass tube into which the quartz glass core material is inserted with hydrofluoric acid to a depth of 0.1 μm or more.
A quartz glass tube for optical fiber, characterized in that a linear groove of 5 μm for gas suction is formed in the longitudinal direction of the inner surface of the quartz glass tube.
JP5283179A 1979-04-28 1979-04-28 Silica glass tube for optical fiber Granted JPS55144440A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5283179A JPS55144440A (en) 1979-04-28 1979-04-28 Silica glass tube for optical fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5283179A JPS55144440A (en) 1979-04-28 1979-04-28 Silica glass tube for optical fiber

Publications (2)

Publication Number Publication Date
JPS55144440A JPS55144440A (en) 1980-11-11
JPS6317779B2 true JPS6317779B2 (en) 1988-04-15

Family

ID=12925781

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5283179A Granted JPS55144440A (en) 1979-04-28 1979-04-28 Silica glass tube for optical fiber

Country Status (1)

Country Link
JP (1) JPS55144440A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0630864A3 (en) * 1993-05-24 1995-05-24 Sumitomo Electric Industries Fabrication process of polarization-maintaining optical fiber.

Also Published As

Publication number Publication date
JPS55144440A (en) 1980-11-11

Similar Documents

Publication Publication Date Title
KR920002659B1 (en) Method and apparatus for drawing low loss fiber optic coupler
JP3057331B2 (en) Fiber optic coupler and method of manufacturing the same
EP0213829B1 (en) Fiber optic coupler and method
FI77217C (en) Process for producing a polarization preserving optical fiber
US4902324A (en) Method of reproducibly making fiber optic coupler
US5009692A (en) Method of making fiber optic coupler
CN105633779A (en) Optical fiber end face pumping coupler for optical fiber amplifier and fabrication method of optical fiber end face pumping coupler
US4229197A (en) Method for making multiple optical core fiber
JPH037613B2 (en)
JPS6317779B2 (en)
JPH0971431A (en) Production of silica glass-based multicore optical fiber
JPH0211527B2 (en)
US6546752B2 (en) Method of making optical coupling device
JPS627130B2 (en)
JPS6228098B2 (en)
JPH062599B2 (en) Method for manufacturing base material for optical fiber
JPH11199260A (en) Production of preform of constant polarization optical fiber
JPS6168336A (en) Production of parent material for single polarization optical fiber
JPH0210093B2 (en)
RU2043313C1 (en) Method of making single-node fiber light guide
JP2005247620A (en) Method of manufacturing photonic crystal fiber
JPS6243932B2 (en)
GB2057160A (en) Processes for producing light-conducting glass fibres
JPH0211528B2 (en)
JPS6124340B2 (en)