JPS6124340B2 - - Google Patents

Info

Publication number
JPS6124340B2
JPS6124340B2 JP9912582A JP9912582A JPS6124340B2 JP S6124340 B2 JPS6124340 B2 JP S6124340B2 JP 9912582 A JP9912582 A JP 9912582A JP 9912582 A JP9912582 A JP 9912582A JP S6124340 B2 JPS6124340 B2 JP S6124340B2
Authority
JP
Japan
Prior art keywords
core
glass
glass tube
rod
clad
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP9912582A
Other languages
Japanese (ja)
Other versions
JPS58217443A (en
Inventor
Kazunori Senda
Hiroo Matsuda
Gotaro Tanaka
Kunio Fujiwara
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Sumitomo Electric Industries Ltd
Original Assignee
Nippon Telegraph and Telephone Corp
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp, Sumitomo Electric Industries Ltd filed Critical Nippon Telegraph and Telephone Corp
Priority to JP9912582A priority Critical patent/JPS58217443A/en
Publication of JPS58217443A publication Critical patent/JPS58217443A/en
Publication of JPS6124340B2 publication Critical patent/JPS6124340B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/02Manufacture of glass fibres or filaments by drawing or extruding, e.g. direct drawing of molten glass from nozzles; Cooling fins therefor
    • C03B37/025Manufacture of glass fibres or filaments by drawing or extruding, e.g. direct drawing of molten glass from nozzles; Cooling fins therefor from reheated softened tubes, rods, fibres or filaments, e.g. drawing fibres from preforms
    • C03B37/027Fibres composed of different sorts of glass, e.g. glass optical fibres
    • C03B37/02754Solid fibres drawn from hollow preforms
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/01205Manufacture of preforms for drawing fibres or filaments starting from tubes, rods, fibres or filaments
    • C03B37/01211Manufacture of preforms for drawing fibres or filaments starting from tubes, rods, fibres or filaments by inserting one or more rods or tubes into a tube
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2205/00Fibre drawing or extruding details
    • C03B2205/12Drawing solid optical fibre directly from a hollow preform
    • C03B2205/14Drawing solid optical fibre directly from a hollow preform comprising collapse of an outer tube onto an inner central solid preform rod
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2205/00Fibre drawing or extruding details
    • C03B2205/12Drawing solid optical fibre directly from a hollow preform
    • C03B2205/16Drawing solid optical fibre directly from a hollow preform the drawn fibre consisting of circularly symmetric core and clad

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacture, Treatment Of Glass Fibers (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は寸法精度の秀れた長尺フアイバを生産
性良く得る光フアイバの製造方法に関する。 従来、光フアイバの製造法としては、、第1
図に示す、コア用ガラス棒1をクラツドガラス管
2中に入れたものを、予め加熱溶着することなく
直ちに加熱炉3中に入れて線引きする方法および
、第2図に示す、コア用ガラス棒1をクラツド
ガラス管2中に入れて加熱溶着してコラツプス4
とした後、加熱炉3中で線引きする方法が知られ
ている。また、クラツドガラスとしては耐候性、
機械的強度に秀れたSiO2ガラスが用いられ、コ
ア用ガラスとしては、光の吸収損失の少ない
GeO2などを添加したガラスが用いられている。 しかしながら、これら従来法には次のような問
題があつた。すなわちの方法は、工程が短か
く、大型コア棒、クラツド管を作つて長尺フアイ
バを得ることができるものの、フアイバのコア寸
法精度が良くなく、特にSiO2クラツドド−プト
SiO2コアガラスなどで、コアとクラツドの屈折
率差の大きな、いわゆる高NAフアイバのように
コアガラス、クラツドガラスの粘性差が大きい
と、コアの真円度が不良になつて、だ円になり易
く、また線引時のコア材のズリ上りによりコア径
が設定値より小さくなる場合がある。一方、の
方法はクラツドとなるべく厚肉のガラス管を、コ
ア材の周囲に一見、加熱溶着する工程が、ガラス
管の加熱による収縮が遅いため極めて難かしいも
ので、非能率である。 本発明はこれら従来法の欠点を改良してコア寸
法精度の秀れた長尺フアイバを生産性良く得る方
法を提供するもので、第3図に示すように、コア
用のGeO2含有石英ガラス母材棒1を、その肉厚
が該コア用ガラス母材棒の外径の5〜15%である
第1の石英ガラス管(第1クラツド)2に入れ
て加熱溶着による一体化を行ない、この構成体4
を第2の石英ガラス管(第2クラド)2に挿入
し、加熱溶着を行うことなく直ちに加熱炉3中に
入れて線引きする、すなわちロツドイン線引する
ことを特徴とする光フアイバの製造方法に関する
ものである。 本発明において第1のガラス管の肉厚について
は、コアガラスの外径寸法に対し、第4図の斜線
部5に示す範囲、すなわち5〜15%を選ぶのが適
当である。この領域より小さいと、コラプス工程
における加熱時にコア材が十分加熱されない前に
第1ガラス管の変形が生じ、コアと第1ガラス管
の密着度が不良となつたり、第1ガラス管の局部
的に不均一な変形が生じ易くなる。また、この領
域より大きいと、本発明の効果は小さくなる。第
1ガラス管の内径としては、コアガラスの外径よ
り0.5〜1mm程度大きな寸法を選ぶことが好まし
い。また、第2のガラス管については、得ようと
するフアイバのコア径/クラツド径比により異な
り、第1のガラス管を上記に示した様に決めてか
ら、所定のコア径/クラツド径比となる様に第2
のガラス管の肉厚を選べばよい。このとき、内径
としては、第1のガラス管をコラプスした後の構
成体4の外径より約0.5〜1.0mm程度大きく選ぶの
が適当である。コアガラスの材料としては、
GeO2をドープしたSiO2ガラスが気相反応により
比較的簡単に合成でき、また、通常の可視〜近赤
外領域の波長では光の吸収ピークがなく、伝送特
性上良好なガラスが得られるため好ましい。クラ
ツド材料としては、SiO2ガラスが強度、耐候性
等良好であり、また容易に入手できるため好んで
用いられる。コア材として、GeO2濃度を上げた
高NAフアイバを構成させる時、本発明はより効
果を発揮する。 本発明方法で、薄肉の第1ガラス管をコアガラ
スにコラツプスすることは容易であり、またこの
構成体を第2のガラス管と組合せてロツドイン線
引するときには、コアガラスの粘性がクラツドガ
ラスより相当小さくとも、第1のガラス管の溶着
のためにコアの変形、ズレ上りなどが抑えられる
ので、コア寸法精度の秀れた長尺フアイバを生産
性良く得ることができる。 実施例 コア用ガラス棒として、GeO2をコアの中央部
で約30重量%含有したセミステツプ状のSiO2
GeO2ガラスを準備した。また第1、第2のガラ
ス管として石英ガラス管を準備した。これらの外
径、断面積を第1表に示す。
The present invention relates to a method for manufacturing optical fibers that can produce long fibers with excellent dimensional accuracy with high productivity. Conventionally, the first method for manufacturing optical fibers is
A method of drawing a core glass rod 1 placed in a clad glass tube 2 as shown in the figure and immediately placing it in a heating furnace 3 without heating and welding it in advance; Put it into the clad glass tube 2, heat weld it, and collapse it 4.
A method is known in which the wire is drawn in a heating furnace 3 after the wire is heated. In addition, as clad glass, it is weather resistant,
SiO 2 glass, which has excellent mechanical strength, is used as the core glass because it has low light absorption loss.
Glass doped with GeO 2 etc. is used. However, these conventional methods have the following problems. In other words, although the process is short and long fibers can be obtained by making large core rods and clad tubes, the dimensional accuracy of the fiber core is not good, especially for SiO 2 clad doped tubes.
If there is a large difference in viscosity between the core glass and cladding glass, such as in a so-called high-NA fiber with a large difference in refractive index between the core and cladding, such as SiO 2 core glass, the roundness of the core becomes poor and becomes an ellipse. Moreover, the core diameter may become smaller than the set value due to shearing of the core material during drawing. On the other hand, the process of heating and welding a thick-walled glass tube to form the cladding around the core material is extremely difficult and inefficient because the glass tube shrinks slowly due to heating. The present invention improves the drawbacks of these conventional methods and provides a method for obtaining long fibers with excellent core dimensional accuracy with high productivity.As shown in FIG . The base material rod 1 is placed in a first quartz glass tube (first clad) 21 whose wall thickness is 5 to 15% of the outer diameter of the glass base material rod for the core, and is integrated by heat welding. , this construct 4
A method for manufacturing an optical fiber characterized by inserting it into a second quartz glass tube (second cladding) 22 and immediately putting it into a heating furnace 3 and drawing it without performing heat welding, that is, rod-in drawing. It is related to. In the present invention, the thickness of the first glass tube is appropriately selected to be within the range shown by the shaded area 5 in FIG. 4, that is, 5 to 15% of the outer diameter of the core glass. If it is smaller than this range, the first glass tube will deform before the core material is not sufficiently heated during heating in the collapse process, resulting in poor adhesion between the core and the first glass tube, or localized damage to the first glass tube. Non-uniform deformation is likely to occur. Moreover, if it is larger than this range, the effect of the present invention will be reduced. The inner diameter of the first glass tube is preferably selected to be about 0.5 to 1 mm larger than the outer diameter of the core glass. Regarding the second glass tube, it depends on the core diameter/cladding diameter ratio of the fiber to be obtained, and after determining the first glass tube as shown above, it is necessary to set the predetermined core diameter/cladding diameter ratio The second
All you have to do is choose the wall thickness of the glass tube. At this time, it is appropriate to select the inner diameter to be about 0.5 to 1.0 mm larger than the outer diameter of the structure 4 after collapsing the first glass tube. The core glass material is
SiO 2 glass doped with GeO 2 can be synthesized relatively easily by gas-phase reaction, and there is no light absorption peak at wavelengths in the normal visible to near-infrared region, resulting in a glass with good transmission characteristics. preferable. As the cladding material, SiO 2 glass is preferably used because it has good strength, weather resistance, etc., and is easily available. The present invention is more effective when a high NA fiber with increased GeO 2 concentration is used as the core material. With the method of the invention, it is easy to collapse a thin-walled first glass tube onto a core glass, and when this structure is combined with a second glass tube for rod-in drawing, the viscosity of the core glass is considerably greater than that of the clad glass. Even if it is small, deformation and misalignment of the core are suppressed due to welding of the first glass tube, so a long fiber with excellent core dimensional accuracy can be obtained with high productivity. Example As a glass rod for the core, a semi-step-shaped SiO 2 − containing about 30% by weight of GeO 2 in the center of the core was used.
Prepared GeO2 glass. Furthermore, quartz glass tubes were prepared as the first and second glass tubes. Table 1 shows their outer diameters and cross-sectional areas.

【表】 コア棒を第1ガラス管内に挿入した状態で第1
ガラス管をガラス旋盤にセツトし、ガラス管を回
転しながら片端を酸水素バーナにて加熱し、第1
ガラス管の内部を0.5気圧程度に減圧しながら、
バーナを片方から他方へ移動させることで、コア
棒と第1ガラス管を溶着一体化した。この操作で
得られたコア−第1クラツド構成体を、第2ガラ
ス管にセツトし、線引炉で外径140μmに線引し
た(線引時には、1mmH2O程度に減圧してい
る。)得られたフアイバのコア形精度は100μm±
0.1μm程度の極めて良好な寸法を有するフアイ
バが得られた。
[Table] With the core rod inserted into the first glass tube,
Set the glass tube in a glass lathe, and heat one end with an oxyhydrogen burner while rotating the glass tube.
While reducing the pressure inside the glass tube to about 0.5 atmospheres,
By moving the burner from one side to the other, the core rod and the first glass tube were welded and integrated. The core-first clad structure obtained by this operation was set in a second glass tube and drawn in a drawing furnace to an outer diameter of 140 μm (during drawing, the pressure was reduced to about 1 mmH 2 O). The core shape accuracy of the obtained fiber is 100μm±
Fibers with very good dimensions of the order of 0.1 μm were obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1〜第3図は、コア用ガラス棒とクラツド管
とを組合せて光フアイバを製造する方法を示す図
であり、第1図、第2図が従来法に関し、第3図
が本発明方法に関するものである。第4図は本発
明方法で用いられる第1ガラス管の肉厚の最適領
域5、および特定のコア/クラツド比における、
クラツド全体の厚み6,7を示すグラフである。
1 to 3 are diagrams showing a method of manufacturing an optical fiber by combining a core glass rod and a cladding tube. FIGS. 1 and 2 relate to the conventional method, and FIG. It is related to. FIG. 4 shows an optimum region 5 of the wall thickness of the first glass tube used in the method of the present invention and a specific core/clad ratio.
It is a graph showing the thicknesses 6 and 7 of the entire cladding.

Claims (1)

【特許請求の範囲】[Claims] 1 コア用GeO2含有石英ガラス母材棒を、その
肉厚が該コア用ガラス母材棒の5〜15%である第
1の石英ガラス管に挿入し、このものを加熱溶着
して一体化し、この一体化構成体を第2の石英ガ
ラス管に挿入してロツドイン線引することを特徴
とする光フアイバの製造方法。
1. Insert the GeO 2 -containing quartz glass base material rod for the core into a first quartz glass tube whose wall thickness is 5 to 15% of that of the glass base material rod for the core, and heat-weld and integrate the two. . A method of manufacturing an optical fiber, which comprises inserting this integrated structure into a second quartz glass tube and drawing the rod-in.
JP9912582A 1982-06-11 1982-06-11 Manufacture of optical fiber Granted JPS58217443A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9912582A JPS58217443A (en) 1982-06-11 1982-06-11 Manufacture of optical fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9912582A JPS58217443A (en) 1982-06-11 1982-06-11 Manufacture of optical fiber

Publications (2)

Publication Number Publication Date
JPS58217443A JPS58217443A (en) 1983-12-17
JPS6124340B2 true JPS6124340B2 (en) 1986-06-10

Family

ID=14239037

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9912582A Granted JPS58217443A (en) 1982-06-11 1982-06-11 Manufacture of optical fiber

Country Status (1)

Country Link
JP (1) JPS58217443A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60151244A (en) * 1984-01-19 1985-08-09 Shin Etsu Chem Co Ltd Manufacture of base material for optical fiber
JPH0825767B2 (en) * 1990-05-25 1996-03-13 ホーヤ株式会社 Glass fiber manufacturing method
JP7024546B2 (en) 2018-03-27 2022-02-24 住友電気工業株式会社 Manufacturing method of multi-core optical fiber

Also Published As

Publication number Publication date
JPS58217443A (en) 1983-12-17

Similar Documents

Publication Publication Date Title
US6460378B1 (en) Collapsing a multitube assembly and subsequent optical fiber drawing in the same furnace
KR900002047B1 (en) Preparation method of preform for optical fibers
CN101973700A (en) Optical fiber preform with overclad tubes
JP5249954B2 (en) Reduction of fiber optic cane / preform deformation during consolidation
JPS61201633A (en) Production of multicore optical fiber
JP2002179434A (en) Method for manufacturing optical fiber preform, optical fiber preform and optical fiber
JPS6124340B2 (en)
JPS6212626A (en) Production of optical fiber of constant polarized electromagnetic radiation
DE2932196A1 (en) Long optical waveguide fibres - made by drawing very long blank obtd. by butt welding several short blanks together
JPS60122744A (en) Manufacture of simple-mode fiber
JPS6150887B2 (en)
JPS6051083B2 (en) Optical transmitter for infrared transmission
JPS60108334A (en) Manufacture of base material for optical fiber having retained plane of polarization
JPS6259545A (en) Production of optical fiber preform
JPS6212625A (en) Production of optical fiber of constant polarized electromagnetic radiation
JPS5915090B2 (en) Manufacturing method of fiber base material for optical communication
JPS59456B2 (en) Manufacturing method of optical glass fiber
JP2827476B2 (en) Manufacturing method of preform for polarization maintaining optical fiber
JPH01160841A (en) Production of optical fiber
JPS63170235A (en) Production of base material for drawing optical fiber
JP2001247324A (en) Method for producing preform for optical fiber and the resultant preform
JPH0130768B2 (en)
JPS5969437A (en) Manufacture of optical fiber retaining plane of polarization
JPS6011244A (en) Manufacture of optical fiber
JPS58213643A (en) Preparation of parent material for optical fiber