JPS6317765B2 - - Google Patents

Info

Publication number
JPS6317765B2
JPS6317765B2 JP56033835A JP3383581A JPS6317765B2 JP S6317765 B2 JPS6317765 B2 JP S6317765B2 JP 56033835 A JP56033835 A JP 56033835A JP 3383581 A JP3383581 A JP 3383581A JP S6317765 B2 JPS6317765 B2 JP S6317765B2
Authority
JP
Japan
Prior art keywords
reaction
stage
slurry
section
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56033835A
Other languages
Japanese (ja)
Other versions
JPS57149824A (en
Inventor
Masamitsu Morofuji
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tosoh Corp filed Critical Tosoh Corp
Priority to JP3383581A priority Critical patent/JPS57149824A/en
Priority to BE0/207481A priority patent/BE892379A/en
Priority to GB8206894A priority patent/GB2096121B/en
Priority to DE19823208624 priority patent/DE3208624A1/en
Publication of JPS57149824A publication Critical patent/JPS57149824A/en
Publication of JPS6317765B2 publication Critical patent/JPS6317765B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01DCOMPOUNDS OF ALKALI METALS, i.e. LITHIUM, SODIUM, POTASSIUM, RUBIDIUM, CAESIUM, OR FRANCIUM
    • C01D7/00Carbonates of sodium, potassium or alkali metals in general
    • C01D7/18Preparation by the ammonia-soda process
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/24Stationary reactors without moving elements inside
    • B01J19/2415Tubular reactors
    • B01J19/242Tubular reactors in series
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00051Controlling the temperature
    • B01J2219/00074Controlling the temperature by indirect heating or cooling employing heat exchange fluids
    • B01J2219/00105Controlling the temperature by indirect heating or cooling employing heat exchange fluids part or all of the reactants being heated or cooled outside the reactor while recycling
    • B01J2219/0011Controlling the temperature by indirect heating or cooling employing heat exchange fluids part or all of the reactants being heated or cooled outside the reactor while recycling involving reactant liquids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00162Controlling or regulating processes controlling the pressure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00182Controlling or regulating processes controlling the level of reactants in the reactor vessel

Description

【発明の詳細な説明】 本発明は、粒子径大なる重炭酸ソーダ結晶が得
られ、炭酸ガスの吸収効率が高く、かつ、運転操
作が容易で、長期間連続運転が可能な重炭酸ソー
ダの製造装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an apparatus for producing soda bicarbonate that can obtain sodium bicarbonate crystals with a large particle size, has high carbon dioxide gas absorption efficiency, is easy to operate, and can be operated continuously for a long period of time. It is.

これまで、アンモニア法あるいは塩安ソーダ法
におけるアンモニアかん水、塩安分離母液を炭酸
ガス含有ガスと向流的に接触せしめて重炭酸ソー
ダを製造する装置として、一般にソルベー塔と称
される反応塔が用いられている。また、苛性ソー
ダより重炭酸ソーダを製造する場合も、これに類
似する反応塔が採用されている。
Until now, a reaction column generally called a Solvay column has been used as a device for producing sodium bicarbonate by bringing ammonia brine or ammonium chloride separated mother liquor into countercurrent contact with a carbon dioxide gas-containing gas in the ammonia process or the ammonium chloride/soda process. ing. A similar reaction tower is also used to produce bicarbonate of soda from caustic soda.

これらの反応塔は、鋳鉄製のリングを複数個重
ね、各リング間にベル(陣笠ともいう)とカラー
(パセツトともいう)が対となつた開放型仕切棚
が多数挿入されている。
These reaction towers have a plurality of cast iron rings stacked one on top of the other, and a number of open partition shelves each having a pair of bells (also called jinkasa) and collars (also called passets) are inserted between each ring.

アンモニアかん水等は、反応塔の上部に供給さ
れ、該塔内を下降するに従つて、反応塔下部より
導入される炭酸ガス含有ガスと反応して重炭酸ソ
ーダの結晶を析出する(この反応に供されるアン
モニアかん水または塩安分離母液中に重炭酸ソー
ダ結晶の懸濁したものを以下スラリーと称す)。
また、この時発生する反応熱により、塔下部方向
へ移行する程、次第に温度上昇する。このスラリ
ーの温度上昇は、重炭酸ソーダ結晶の成長には良
好な条件となるが、炭酸ガスの吸収効率の面では
好ましくなく、このため、反応塔下部に温度制御
用の多数の冷却管を内蔵し、スラリーを冷却して
いる。
Ammonia brine, etc. is supplied to the upper part of the reaction tower, and as it descends in the tower, it reacts with the carbon dioxide-containing gas introduced from the lower part of the reaction tower to precipitate sodium bicarbonate crystals. A suspension of sodium bicarbonate crystals in ammonia brine or ammonium salt separated mother liquor is hereinafter referred to as slurry).
Furthermore, due to the reaction heat generated at this time, the temperature gradually increases as it moves toward the lower part of the column. This increase in temperature of the slurry is a good condition for the growth of sodium bicarbonate crystals, but it is not favorable in terms of carbon dioxide absorption efficiency. Cooling the slurry.

しかしながら、このような構造を有する反応塔
においては、反応塔内に設置されたベル、カラ
ー、該塔内壁面および冷却管の外表面に、重炭酸
ソーダ結晶が激しくスケーリングし、しまいには
塔内を閉塞し、長期間の連続運転が不可能とな
る。このため、通常これらの反応塔を数基、例え
ば5基を一組として、4基運転1基洗浄として交
互に切り換えつつ運転を行なつているのが現状で
ある。これらの塔に採用されている開放型の仕切
棚では仕切効果が充分ではなく、開放部を通じて
上下の反応段に存在する液体及びガスが上下方向
に移動し、すなわち逆混合現象が生じ、固体は沈
降して逐次、次段に落下し固体の保持がむずかし
い。従つて、約30対もの仕切棚を設置してガス吸
収効率及びスラリー濃度の維持をはかつているが
充分ではない。またこれらの反応塔で得られる重
炭酸ソーダ結晶の平均径は約100μと極めて小さ
いという欠点がある。このため、重炭酸ソーダ結
晶を過分離する場合、過ケークへの付着液量
が多く過ケークに含まれる食塩などの不純物除
去に、多量の洗浄水を必要とし、洗浄水への溶解
損失により重炭酸ソーダの収率が低下する。さら
に、その後の〓焼工程で多量のエネルギーを消費
する等の難点が存在する。また、特公昭51−
31239によれば、複数段の反応部を有し、各反応
部毎に炭酸ガスのガスリフト作用により液を循環
せしめつつ反応させるようにした重炭酸ソーダの
製造装置が提案されている。該提案に示されてい
る装置では、各反応段間に斗状体と称する開放
型の仕切棚が採用されているが、この仕切棚にお
いても従来のソルベー塔におけるベル、カラー対
の仕切棚と同様に開放部を通じて、液の逆混合お
よび結晶の短絡が生じ、各反応段のスラリー濃度
がかなり低下することは免れない。
However, in a reaction tower having such a structure, sodium bicarbonate crystals scale severely on the bell and collar installed in the reaction tower, on the inner wall surface of the tower, and on the outer surface of the cooling pipe, eventually clogging the inside of the tower. Therefore, long-term continuous operation becomes impossible. For this reason, the current situation is that several of these reaction towers, for example, five reactors, are set up in a set and are operated while being alternately switched such that four reactors are operated and one reactor is washed. The open partition racks used in these towers do not have a sufficient partitioning effect, and the liquid and gas present in the upper and lower reaction stages move vertically through the openings, resulting in a back-mixing phenomenon, and the solids are It is difficult to retain solids as they settle and fall to the next stage one after another. Therefore, approximately 30 pairs of partition shelves have been installed to maintain gas absorption efficiency and slurry concentration, but this is not sufficient. Another disadvantage is that the average diameter of the sodium bicarbonate crystals obtained in these reaction towers is extremely small, about 100 μm. Therefore, when over-separating sodium bicarbonate crystals, a large amount of liquid adheres to the overcake, and a large amount of washing water is required to remove impurities such as salt contained in the overcake. rate decreases. Furthermore, there are drawbacks such as the consumption of a large amount of energy in the subsequent firing process. In addition, special public service 51-
No. 31239 proposes an apparatus for producing soda bicarbonate, which has a plurality of stages of reaction sections, and in each reaction section, the liquid is circulated and reacted by the gas lift action of carbon dioxide gas. In the apparatus shown in the proposal, an open partition shelf called a dowel is used between each reaction stage, but this partition shelf is also different from the bell and collar pair partition shelves in the conventional Solvay tower. Similarly, through the openings, liquid back-mixing and crystal short-circuiting occur, and the slurry concentration in each reaction stage is inevitably reduced considerably.

従つて、該提案の方法では、結晶の粒子径およ
びガス吸収効率の点で必ずしも満足すべき結果が
得られるとは限らない。さらに、各反応段上部の
ガス部と上段反応液との圧力バランスにより各反
応段の液面を制御せねばならず、運転操作が複雑
となるものと考えられる。
Therefore, the proposed method does not necessarily provide satisfactory results in terms of crystal particle size and gas absorption efficiency. Furthermore, the liquid level in each reaction stage must be controlled by the pressure balance between the gas section at the upper part of each reaction stage and the upper reaction liquid, which may complicate the operation.

本発明者は、これらの欠点を改善すべく、鋭意
研究の結果、粒子径大なる重炭酸ソーダ結晶が得
られ、炭酸ガスの吸収効率が高く、かつ、運転操
作が容易で、長期間連続運転が可能な重炭酸ソー
ダの製造装置を完成したものである。
In order to improve these drawbacks, the inventor of the present invention conducted intensive research and obtained bicarbonate of soda crystals with large particle size, high carbon dioxide absorption efficiency, easy operation, and long-term continuous operation. This is a completed device for producing bicarbonate of soda.

すなわち、本発明は中心部に円錐形状の突起部
を有する密閉型の仕切棚にて区割し、各々その内
部の断面中心部にガイド筒を設置して、反応部を
形成するように構成した複数反応段からなり、か
つ、各段反応部上部から各々の下段の反応部に
(ただし、最下段反応部はスラリー受槽に)生成
重炭酸ソーダを含むアンモニアかん水または塩安
分離母液を移行させるためのスラリー流出管を、
そして最上段反応段を除く各段反応段上部の気相
部から各々の上段の反応部下部および最下段の反
応部下部に炭酸ガス含有ガスを移行するためのガ
ス流入管を設置して、各段反応部においてアンモ
ニアかん水または塩安分離母液と炭酸ガスを向流
的に接触、反応するようにした重炭酸ソーダの製
造装置にある。
That is, in the present invention, the cells are divided into closed partition shelves having a conical protrusion in the center, and a guide tube is installed at the center of the cross section inside each shelf to form a reaction section. Slurry consisting of multiple reaction stages and for transferring ammonia brine or ammonium chloride separated mother liquor containing produced sodium bicarbonate from the upper part of each stage reaction part to each lower reaction part (however, the lowest stage reaction part is in a slurry receiving tank). Outflow pipe,
Then, gas inflow pipes are installed to transfer carbon dioxide-containing gas from the gas phase section at the top of each reaction stage except for the top reaction stage to the bottom of each upper reaction section and the bottom reaction section. The present invention is an apparatus for producing soda bicarbonate in which ammonia brine or ammonium chloride separated mother liquor and carbon dioxide gas are contacted and reacted countercurrently in a stage reaction section.

以下、本発明を図面に基づいて説明する。 Hereinafter, the present invention will be explained based on the drawings.

第1図は本発明の一例を示す多段式反応塔であ
る。第1図において1a,1b,1cは反応塔本
体1の各反応段で、1aが最上段反応段、1cが
最下段反応段に相当する。本例では3段からなる
が、この段数は3段に限ることなく適宜の段数を
設けて用いることができる。
FIG. 1 shows a multistage reaction tower showing an example of the present invention. In FIG. 1, 1a, 1b, and 1c are reaction stages of the reaction column main body 1, where 1a corresponds to the uppermost reaction stage and 1c corresponds to the lowermost reaction stage. In this example, there are three stages, but the number of stages is not limited to three, and any suitable number of stages can be used.

各反応段1a,1b,1cは、中心部に円錐形
状の突起部3a,3b,3cを有する密閉型の仕
切棚4a,4b,4cにてそれぞれ完全に区割さ
れ、各々その内部の断面中心部にガイド筒2a,
2b,2cが各仕切棚4a,4b,4cと適宜の
間隔を保持して取付けられて各反応部5a,5
b,5cを形成するように構成されている。
Each reaction stage 1a, 1b, 1c is completely divided by a closed type partition shelf 4a, 4b, 4c having a conical protrusion 3a, 3b, 3c in the center, and the center of each internal cross-section A guide cylinder 2a is provided in the part,
2b, 2c are attached to each partition shelf 4a, 4b, 4c with appropriate spacing, and each reaction section 5a, 5
b, 5c.

反応段1a,1b上部と各々の下段に相当する
反応段1b,1cとの間には各上段反応部上部か
ら各下段反応部内にスラリーを移行せしめるため
のスラリ流出管6a,6bが連結され、反応段1
c上部にはスラリー受槽12にスラリーを移行さ
せるためのスラリ流出管6cが連結されている。
また、反応段1b,1cの各反応部5b,5cの
上部の気相部7b,7cから各々の上段反応部5
a,5b下部のガイド筒2a,2bの外側に炭酸
ガス含有ガスを移行せしめるためのガス流入管8
a,8bが設置されている。
Slurry outflow pipes 6a, 6b are connected between the upper parts of the reaction stages 1a, 1b and the reaction stages 1b, 1c corresponding to the lower stages, respectively, for transferring the slurry from the upper parts of the upper reaction parts to the lower reaction parts. Reaction stage 1
A slurry outflow pipe 6c for transferring slurry to the slurry receiving tank 12 is connected to the upper part c.
Further, from the upper gas phase portions 7b, 7c of the reaction portions 5b, 5c of the reaction stages 1b, 1c, each upper reaction portion 5
Gas inflow pipe 8 for transferring carbon dioxide-containing gas to the outside of the guide tubes 2a, 2b at the bottom of a, 5b
a and 8b are installed.

9は最上段反応1aに設けられたアンモニアか
ん水あるいは塩安分離母液の供給口であり、12
は重炭酸ソーダスラリー受槽、13はスラリーの
排出口である。10は最下段反応段1cの下部に
設けられた炭酸ガス含有ガスの供給口、8cはそ
れより反応部5c下部のガイド筒2cの外側に炭
酸ガス含有ガスを供給するためのガス流入管であ
る。11は反応段1aの頂部に設けられた未反応
の炭酸ガスを含む排ガスの出口である。
9 is a supply port for ammonia brine or ammonium salt separation mother liquor provided in the uppermost stage reaction 1a;
1 is a bicarbonate soda slurry receiving tank, and 13 is a slurry discharge port. 10 is a supply port for carbon dioxide-containing gas provided at the bottom of the lowest reaction stage 1c, and 8c is a gas inflow pipe for supplying carbon dioxide-containing gas to the outside of the guide tube 2c at the bottom of the reaction section 5c. . Reference numeral 11 denotes an outlet for exhaust gas containing unreacted carbon dioxide, which is provided at the top of the reaction stage 1a.

このように構成された反応塔において、供給口
9より連続的に導入されるアンモニアかん水また
は塩安分離母液は反応段1aの反応部5aで次段
の反応部5bで分離されて気相部7bからガス流
入管8aを経て導入される炭酸ガスと反応して重
炭酸ソーダ結晶を析出する。
In the reaction tower configured in this way, ammonia brine or ammonium chloride separated mother liquor is continuously introduced from the supply port 9 in the reaction section 5a of the reaction stage 1a, separated in the reaction section 5b of the next stage, and then transferred to the gas phase section 7b. The sodium bicarbonate crystals are precipitated by reacting with the carbon dioxide gas introduced through the gas inlet pipe 8a.

この重炭酸ソーダ結晶スラリーは、反応部5a
より、好ましくは溢流する方法にてスラリー流出
管6aを経て次段1bの反応部5bに導入され
る。
This bicarbonate of soda crystal slurry is transferred to the reaction section 5a.
More preferably, the slurry is introduced into the reaction section 5b of the next stage 1b via the slurry outflow pipe 6a by an overflow method.

該スラリーは、中段反応部5bで同様に次段の
気相部7cからガス流入管8bを経て導入される
炭酸ガスと反応し、さらに、反応段1c、すなわ
ち、最終反応段の反応部5cに移行されて炭酸ガ
ス含有ガス供給口10からガス流入管8bを経て
導入される炭酸ガスとの反応を終え、スラリー流
出管6cより重炭酸ソーダのスラリー受槽12に
導びかれ、スラリー排出口13より取り出され
る。
The slurry reacts in the middle reaction section 5b with carbon dioxide gas introduced from the gas phase section 7c of the next stage via the gas inflow pipe 8b, and further reacts with the carbon dioxide gas introduced into the reaction stage 1c, that is, the reaction section 5c of the final reaction stage. After completing the reaction with the carbon dioxide introduced from the carbon dioxide-containing gas supply port 10 through the gas inflow pipe 8b, the slurry is led to the bicarbonate soda slurry receiving tank 12 through the slurry outflow pipe 6c, and is taken out from the slurry discharge port 13. .

各反応部5a,5b,5cでは導入される炭酸
ガス含有ガスによつてガイド筒2a,2b,2c
内外の流体に比重差が生じ、ガスリフト作用によ
つてガイド筒の外側ではスラリーの上昇流が生
じ、ガイド筒の内側では下降流が生じてスラリー
の循環流動が形成される。
In each reaction section 5a, 5b, 5c, the guide tubes 2a, 2b, 2c are
A difference in specific gravity occurs between the inner and outer fluids, and due to the gas lift action, an upward flow of the slurry is generated on the outside of the guide tube, and a downward flow is generated on the inside of the guide tube, forming a circulating flow of the slurry.

なお、このスラリーの循環は、例えばガイド筒
内上部よりスラリーの一部をポンプにより外部に
抜き出し、再び同じガイド筒内下部に導入する如
き強制循環の方法を補助的に採用することもでき
る。
Note that for this circulation of the slurry, for example, a forced circulation method may be employed in which a part of the slurry is extracted from the upper part of the guide cylinder to the outside by a pump and then introduced again to the lower part of the same guide cylinder.

本発明で特徴的なことは、各反応段の反応部内
に設けたガイド筒2a,2b,2c内を流下した
スラリーが、特殊な形状をした密閉型の仕切棚4
a,4b,4cの円錐形状の突起部3a,3b,
3cに衝突し、該突起部の中心部より放射線状に
分散されて起こる反転上昇流と、ガイド筒2a,
2b,2cの外側で起こる上昇流とによつて、極
めて良好なスラリーの循環流動が形成されること
である。
A characteristic feature of the present invention is that the slurry flowing down inside the guide tubes 2a, 2b, 2c provided in the reaction section of each reaction stage is
a, 4b, 4c conical projections 3a, 3b,
3c and the reverse upward flow that occurs by being dispersed radially from the center of the protrusion, and the guide cylinder 2a,
An extremely good circulation flow of the slurry is formed by the upward flow occurring outside of 2b and 2c.

このため、析出する重炭酸ソーダ結晶のスラリ
ーは、各反応部全域にわたつて激しく循環するこ
とになり、炭酸ガス吸収反応によつて発生する過
飽和を充分吸収でき、過飽和は結晶成長に有効に
利用される。また、各反応部の底部ではスラリー
流動が極めて円滑に行なわれるために、デツドス
ペースがなくなり、結晶粒子あるいは結晶塊が反
応部底部に沈積することがない。従つて、各反応
段内の壁面および仕切棚に発生するスケーリング
現象を防ぎ、長期間の連続運転が可能となる。
Therefore, the precipitated slurry of sodium bicarbonate crystals is circulated vigorously throughout each reaction zone, and can sufficiently absorb the supersaturation generated by the carbon dioxide gas absorption reaction, and the supersaturation is effectively used for crystal growth. . Furthermore, since the slurry flows extremely smoothly at the bottom of each reaction section, there is no dead space and no crystal particles or crystal lumps are deposited at the bottom of the reaction section. Therefore, the scaling phenomenon that occurs on the walls and partition shelves in each reaction stage is prevented, and continuous operation for a long period of time becomes possible.

さらに、本発明では、前述の従来用いられた各
反応段の底部より結晶が短絡する開放型の仕切棚
を採用することなく、密閉型の仕切棚を用いるた
め、重炭酸ソーダ結晶の各反応部における滞在時
間を充分長くすることができ、これまでに得るこ
とができなかつた極めて粒子径大なる重炭酸ソー
ダ結晶を得ることが可能となつた。
Furthermore, in the present invention, since the closed type partition shelf is used instead of the previously used open partition shelf in which the crystals are short-circuited from the bottom of each reaction stage, the sodium bicarbonate crystals remain in each reaction section. The time could be made sufficiently long, and it became possible to obtain sodium bicarbonate crystals with an extremely large particle size, which had not been possible before.

本発明におけるガイド筒は、特に形状に制限さ
れることなく、循環を行なうことができる形状で
あればいずれも採用でき、通常は円筒、逆円錐筒
等である。この内、循環効率の面で上端が広く、
下端が狭い逆円錐筒状のガイド筒を用いるのが好
ましい。
The guide cylinder in the present invention is not particularly limited in shape, and can be of any shape as long as it can perform circulation, and is usually a cylinder, an inverted conical cylinder, or the like. Of these, the upper end is wider in terms of circulation efficiency.
It is preferable to use an inverted conical guide tube with a narrow lower end.

さらに、円錐形状の突起部を有する仕切棚の形
状もスラリーが放射線状に分散され、反転上昇流
を形成し得るものであれば全て採用しうる。
Furthermore, any shape of the partition shelf having conical protrusions can be adopted as long as the slurry can be dispersed radially and a reverse upward flow can be formed.

従来のソルベー塔等における如き開放型の仕切
棚によつて反応塔を各反応段に区割した場合に
は、仕切棚を通じて各反応部間で反応液の逆混合
が起こる。これに対して、本発明においては、各
反応段の上部より次段反応段へはスラリー流出管
を通してスラリーを移行させているため、液の逆
混合が起こることはない。殊に、本発明において
より好ましい態様である反応部の気液界面よりス
ラリーを溢流させる方法においては、反応部内の
液とスラリー流出管内の液が不連続となるため
に、液の逆混合は全く起こることがない。
When the reaction column is divided into reaction stages using open partition shelves as in conventional Solvay columns, back-mixing of the reaction liquid occurs between each reaction section through the partition shelves. On the other hand, in the present invention, since the slurry is transferred from the upper part of each reaction stage to the next reaction stage through the slurry outflow pipe, back mixing of the liquids does not occur. In particular, in the method of overflowing the slurry from the gas-liquid interface of the reaction section, which is a more preferred embodiment of the present invention, the liquid in the reaction section and the liquid in the slurry outflow pipe are discontinuous, so back mixing of the liquids is difficult. It never happens.

従つて、本発明においては、極めて少数の密閉
型の仕切棚によつて、これまでのソルベー塔によ
ると同様な仕切効果が達成され、炭酸ガス吸収効
率が極めて高いという利点をも存する。
Therefore, the present invention has the advantage that the same partitioning effect as the conventional Solvay tower can be achieved with a very small number of closed partition shelves, and that the carbon dioxide gas absorption efficiency is extremely high.

また、本発明は反応熱による昇温をコントロー
ルするために、冷却器を用いることもできる。そ
の場合は、例えば反応部より液の一部を外部に抜
き出し冷却後、再び反応部に戻す等の方法が有効
である。
Furthermore, in the present invention, a cooler can be used to control temperature rise due to reaction heat. In that case, it is effective to take a portion of the liquid out of the reaction section, cool it, and then return it to the reaction section.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の重炭酸ソーダ製造用装置の
一例を示す。 付号の説明、1……反応塔本体、1a,1b,
1c……反応段、2a,2b,2c……ガイド
筒、3a,3b,3c……突起部、4a,4b,
4c……仕切棚、5a,5b,5c……反応部、
6a,6b,6c……スラリー流出管、7a,7
b,7c……気相部、8a,8b,8c……ガス
流入管、9……アンモニアかん等の供給口、10
……炭酸ガス含有ガスの供給口、11……排ガス
出口、12……スラリー受槽、13……スラリー
排出口。
FIG. 1 shows an example of an apparatus for producing soda bicarbonate according to the present invention. Explanation of numbering, 1...Reaction tower main body, 1a, 1b,
1c...Reaction stage, 2a, 2b, 2c...Guide tube, 3a, 3b, 3c...Protrusion, 4a, 4b,
4c... Partition shelf, 5a, 5b, 5c... Reaction section,
6a, 6b, 6c... Slurry outflow pipe, 7a, 7
b, 7c... Gas phase part, 8a, 8b, 8c... Gas inflow pipe, 9... Supply port for ammonia can, etc., 10
... Carbon dioxide-containing gas supply port, 11 ... Exhaust gas outlet, 12 ... Slurry receiving tank, 13 ... Slurry discharge port.

Claims (1)

【特許請求の範囲】[Claims] 1 中心部に円錐形状の突起部を有する密閉型の
仕切棚にて区割し、各々その内部の断面中心部に
ガイド筒を設置して反応部を形成するように構成
した複数反応段からなり、かつ、各段反応部上部
から各々の下段の反応部に、ただし、最下段反応
部はスラリー受槽に、生成重炭酸ソーダを含むア
ンモニアかん水または塩安分離母液を移行させる
ためのスラリー流出管を、そして最上段反応段を
除く各段反応段上部の気相部から各々の上段の反
応部下部および最下段の反応部下部に炭酸ガス含
有ガスを移行させるためのガス流入管を設置し
て、各段反応部においてアンモニアかん水または
塩安分離母液と炭酸ガスを向流的に接触、反応す
るようにした重炭酸ソーダの製造装置。
1 Consisting of multiple reaction stages divided by a closed partition shelf with a conical protrusion in the center, each with a guide tube installed at the center of the internal cross section to form a reaction section. , and a slurry outflow pipe for transferring ammonia brine or ammonium chloride separated mother liquor containing produced sodium bicarbonate from the upper part of each stage reaction part to each lower stage reaction part, provided that the lowest stage reaction part is a slurry receiving tank, and Gas inflow pipes are installed to transfer carbon dioxide-containing gas from the gas phase section at the top of each reaction stage, except for the top reaction stage, to the lower part of the upper reaction part and the lower part of the bottom reaction part. A bicarbonate of soda production device in which ammonia brine or ammonium chloride separated mother liquor and carbon dioxide gas are brought into contact and reacted in a countercurrent manner in a reaction section.
JP3383581A 1981-03-11 1981-03-11 Manufacturing apparatus for sodium hydrogencarbonate Granted JPS57149824A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP3383581A JPS57149824A (en) 1981-03-11 1981-03-11 Manufacturing apparatus for sodium hydrogencarbonate
BE0/207481A BE892379A (en) 1981-03-11 1982-03-05 APPARATUS FOR THE MANUFACTURE OF SODIUM BICARBONATE
GB8206894A GB2096121B (en) 1981-03-11 1982-03-09 Apparatus for manufacturing sodium bicarbonate
DE19823208624 DE3208624A1 (en) 1981-03-11 1982-03-10 DEVICE FOR PRODUCING SODIUM BICARBONATE

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3383581A JPS57149824A (en) 1981-03-11 1981-03-11 Manufacturing apparatus for sodium hydrogencarbonate

Publications (2)

Publication Number Publication Date
JPS57149824A JPS57149824A (en) 1982-09-16
JPS6317765B2 true JPS6317765B2 (en) 1988-04-15

Family

ID=12397540

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3383581A Granted JPS57149824A (en) 1981-03-11 1981-03-11 Manufacturing apparatus for sodium hydrogencarbonate

Country Status (4)

Country Link
JP (1) JPS57149824A (en)
BE (1) BE892379A (en)
DE (1) DE3208624A1 (en)
GB (1) GB2096121B (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5132498A (en) * 1974-09-13 1976-03-19 Asahi Glass Co Ltd

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5132498A (en) * 1974-09-13 1976-03-19 Asahi Glass Co Ltd

Also Published As

Publication number Publication date
GB2096121B (en) 1985-05-30
BE892379A (en) 1982-07-01
GB2096121A (en) 1982-10-13
JPS57149824A (en) 1982-09-16
DE3208624C2 (en) 1989-06-29
DE3208624A1 (en) 1982-12-16

Similar Documents

Publication Publication Date Title
CN106552577B (en) A kind of multilayer guide shell bubbling reactor and its application method
RU2004110060A (en) TOWER REACTOR AND ITS APPLICATION FOR CONTINUOUS PRODUCTION OF HIGH-MOLECULAR COMPLEX POLYESTER
US3642452A (en) Multistage reactors
US3976430A (en) Forced circulation cooling crystallizer
CN110732154A (en) internal circulation reaction crystallizer
RU2505524C2 (en) Reactor of paraxylol oxidation for obtaining terephthalic acid
US4851198A (en) Reactor for producing chlorine dioxide
KR910006861B1 (en) Fluidized bed
JPS6317765B2 (en)
CN205253071U (en) Air -lift type circular current reactor
US3551097A (en) Production of sodium bicarbonate using baffled cooling tube compartments in a tower
CN106914030A (en) A kind of multi-stage circulating formula mechanical stirs ammonium sulphate crystallizer and carrying and operating method
CN108744895B (en) Cyclone tube tower
US4160647A (en) Continuous operation extractor
US4217330A (en) Apparatus for production of sodium bicarbonate
CN107497374B (en) Cyclohexane oxidation reactor and using method thereof
CN105457565A (en) Airlift type loop reactor and method for preparing propylene/ethylene carbonate with airlift type loop reactor
CN207738464U (en) One kind removing crystallization from wash type ammonia condensing cooling device
CN206793620U (en) A kind of efficiently crystallization cooling device
CN205549617U (en) A separation evaporimeter for separating toluene oxidation decomposes liquid
SU1699481A1 (en) Film-type heat-and-mass transfer apparatus
CN2389147Y (en) Concentrated nitric acid bleaching tower
SU672740A1 (en) Carbonation column
JP2009041907A (en) Regenerator for absorption water chiller-heater
SU521002A1 (en) Carbonation column