JPS6317745B2 - - Google Patents
Info
- Publication number
- JPS6317745B2 JPS6317745B2 JP56047956A JP4795681A JPS6317745B2 JP S6317745 B2 JPS6317745 B2 JP S6317745B2 JP 56047956 A JP56047956 A JP 56047956A JP 4795681 A JP4795681 A JP 4795681A JP S6317745 B2 JPS6317745 B2 JP S6317745B2
- Authority
- JP
- Japan
- Prior art keywords
- speed
- elevator
- deceleration
- command
- voltage
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 238000009408 flooring Methods 0.000 claims description 12
- 238000010586 diagram Methods 0.000 description 11
- 230000006698 induction Effects 0.000 description 6
- 208000019901 Anxiety disease Diseases 0.000 description 4
- 230000036506 anxiety Effects 0.000 description 4
- 239000003990 capacitor Substances 0.000 description 4
- 238000001514 detection method Methods 0.000 description 3
- 101710170230 Antimicrobial peptide 1 Proteins 0.000 description 2
- 101100161875 Arabidopsis thaliana ACR2 gene Proteins 0.000 description 2
- 101100495264 Arabidopsis thaliana CDC25 gene Proteins 0.000 description 2
- 101000619805 Homo sapiens Peroxiredoxin-5, mitochondrial Proteins 0.000 description 2
- 102100022078 Peroxiredoxin-5, mitochondrial Human genes 0.000 description 2
- 101100380266 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) ARR2 gene Proteins 0.000 description 2
- 101150004068 acrB gene Proteins 0.000 description 2
- 238000013459 approach Methods 0.000 description 2
- 230000033228 biological regulation Effects 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 238000004804 winding Methods 0.000 description 2
- 101710170231 Antimicrobial peptide 2 Proteins 0.000 description 1
- 206010017577 Gait disturbance Diseases 0.000 description 1
- 101710102937 Solute carrier family 22 member 16 Proteins 0.000 description 1
- 239000013256 coordination polymer Substances 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
Landscapes
- Elevator Control (AREA)
Description
【発明の詳細な説明】
この発明は交流エレベータの再床合せ装置の改
良に関するもので、特に速度発電機として交流発
電機を用いる場合に有効なものである。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an improvement of a re-flooring device for an AC elevator, and is particularly effective when an AC generator is used as a speed generator.
エレベータ、特に高揚程のエレベータにおいて
は、かご床と乗場床とが一致している状態で停止
中、乗客の乗降があるとかごを懸吊しているロー
プの伸縮により、かご床と乗場床とに段差が生じ
る。この段差が大きくなると乗降客のつまずきの
原因となつたり、車椅子利用者の利用に支障をき
たすことになるため、一般にこのような問題の生
じる可能性のあるエレベータにおいては、段差が
所定値を越えるとこれを検出し、かご床と乗場床
とが一致するように自動的に再床合せ運転が行な
われる。 In an elevator, especially a high-lift elevator, when the car is stopped and the car floor is in line with the landing floor, when a passenger gets on or off the car, the rope suspending the car expands and contracts, causing the car floor to overlap the landing floor. There will be a difference in level. If the height difference becomes large, it can cause stumbling for passengers getting on and off the train, or impede the use of wheelchair users.Generally, in elevators where such problems may occur, the height difference exceeds a specified value. This is detected, and a re-alignment operation is automatically performed so that the car floor and the landing floor match.
ところで、この再床合せ運転はエレベータ利用
者に不安感を与えないため、また危険防止のた
め、通常極めて低い速度でしかも速度帰還制御に
より行なわれている。ここで交流エレベータにお
ける従来の再床合せ装置の代表的な例を第1図及
び第2図により説明する。 By the way, this re-flooring operation is normally performed at an extremely low speed and under speed feedback control in order not to cause anxiety to elevator users and to prevent danger. Here, a typical example of a conventional floor re-aligning device for an AC elevator will be explained with reference to FIGS. 1 and 2.
第1図は再床合せ装置の構成を示すブロツク図
で、図中IMは駆動用巻線と制動用巻線とを有す
るエレベータ巻上用の三相誘導電動機、TGは三
相誘導電動機IMに直結されエレベータの速度に
比例した信号を出力する速度発電機、R1aは再
床合せ運転開始時に付勢し減速開始時に消勢する
リレー(図示しない)の常開接点、PGは再床合
せの速度指令信号を発する速度指令発生器、
ASRは速度指令発生器PGからの速度指令信号と
速度発電機TGからのエレベータの実速度信号と
を比較しその偏差を増幅する速度調節器である。
またACR1は駆動用の電流調節器、AMP1は移
相器とサイリスタ回路とからなる駆動用の電流増
幅器、CT1は駆動用の電流検出器であり、これ
らにより図示の如く駆動電流調節ループを形成し
ている。ACR2、AMP2、CT2は同じくそれ
ぞれ制動用の電流調節器、電流増幅器、電流検出
器で制動電流調節ループを形成している。 Figure 1 is a block diagram showing the configuration of the re-flooring device. In the figure, IM is a three-phase induction motor for hoisting an elevator, which has a driving winding and a braking winding, and TG is a three-phase induction motor IM. A speed generator is directly connected and outputs a signal proportional to the speed of the elevator. R1a is a normally open contact of a relay (not shown) that is energized at the start of re-alignment operation and de-energized at the start of deceleration. PG is the speed of re-alignment. a speed command generator that issues a command signal;
ASR is a speed regulator that compares the speed command signal from the speed command generator PG and the actual elevator speed signal from the speed generator TG and amplifies the difference.
Further, ACR1 is a driving current regulator, AMP1 is a driving current amplifier consisting of a phase shifter and a thyristor circuit, and CT1 is a driving current detector, and these form a driving current adjustment loop as shown in the figure. ing. Similarly, ACR2, AMP2, and CT2 each form a braking current adjustment loop with a braking current regulator, current amplifier, and current detector.
第2図は速度指令発生器PGより発せられる再
床合せの速度指令信号とエレベータの実速度との
関係を示す図である。図中実線で示すCは速度指
令信号で時刻t1において接点R1aが閉じると立
上り、減速開始時点t2にて接点R1aが開くと
徐々に減少し、一定時限後の停止時点t3で零に復
帰しブレーキが締結される。a及びbはそれぞれ
後述する軽負荷時、重負荷時のエレベータの実速
度信号である。 FIG. 2 is a diagram showing the relationship between the speed command signal for re-flooring issued by the speed command generator PG and the actual speed of the elevator. C shown by a solid line in the figure is a speed command signal that rises when contact R1a closes at time t1 , gradually decreases when contact R1a opens at deceleration start time t2 , and reaches zero at stop time t3 after a certain period of time. It returns and the brake is engaged. a and b are actual speed signals of the elevator during light load and heavy load, respectively, which will be described later.
以上の構成において、いまエレベータが停止中
に乗客の乗降によりかご床と乗場床とに所定値を
越える段差が生じると、これが適当な検出装置
(図示しない)によつて検出され、接点R1aが
閉じ再床合せ運転が開始される。そして速度指令
信号とエレベータの実速度信号との偏差を速度調
節器ASRにて比較増幅し、その出力電圧すなわ
ち電流指令に応じて駆動電流調節ループ或は制動
電流調節ループにより駆動トルク或いは制動トル
クを調節しながら時刻t1からt3までの全範囲に亘
つて速度帰還制御を行ない、時刻t3にてエレベー
タが正規の着床位置に到着するとブレーキを締結
し、再床合せ運転を終了する。 In the above configuration, if a level difference exceeding a predetermined value occurs between the car floor and the landing floor due to a passenger getting on and off while the elevator is currently stopped, this is detected by an appropriate detection device (not shown), and contact R1a is closed. Re-floor leveling operation is started. Then, the deviation between the speed command signal and the actual speed signal of the elevator is compared and amplified by the speed regulator ASR, and the drive torque or braking torque is adjusted by the drive current regulation loop or the braking current regulation loop according to the output voltage, that is, the current command. Speed feedback control is performed over the entire range from time t 1 to t 3 while making adjustments, and when the elevator reaches the proper landing position at time t 3 , the brake is engaged and the re-floor alignment operation is completed.
ところで一般に交流エレベータにおいては上記
の速度発電機TGとして経済性.保守の容易性等
の点から交流発電機が用いられ整流回路を介して
速度信号を帰還する構成としている。この場合、
通常の運転速度では問題ないが、再床合せ運転の
ように極めて低い速度で運転を行なうと、交流発
電機の出力電圧に含まれるリツプル分が多くなる
ことや、或いはまた上記整流回路の整流素子によ
る電圧降下に起因する非線形特性のために速度の
検出精度が非常に悪化する。このため、再床合せ
運転においては第2図に示すように速度指令に対
するエレベータの実速度の追従性は通常運転時に
比べて非常に悪くなり、この結果ブレーキの締結
時点であるt3においては軽負荷の場合にはまだ充
分に減速しきつていない状態でブレーキを締結す
ることになり、また重負荷の場合には一旦速度が
零になり、直流制動トルクと負荷トルクがつり合
う速度すなわち反対方向の速度に向つて動き始め
た後ブレーキを締結することになる。このため、
従来の装置では負荷の状態によつては乗心地が悪
いだけでなく乗客に不安感を与えるという不具合
を有するものであつた。 By the way, in general, the speed generator TG mentioned above is economical in AC elevators. For ease of maintenance, an alternating current generator is used and the speed signal is fed back through a rectifier circuit. in this case,
There is no problem at normal operating speeds, but when operating at extremely low speeds such as re-balancing, the ripples included in the output voltage of the alternator may increase, or the rectifier elements of the rectifier circuit described above may increase. Due to the nonlinear characteristics caused by the voltage drop due to For this reason, during re-flooring operation, as shown in Figure 2, the followability of the elevator's actual speed to the speed command is much worse than during normal operation, and as a result, at t3 , which is the time when the brakes are applied, the elevator's actual speed is much worse. In the case of a heavy load, the brakes will be applied before the deceleration has reached a sufficient level, and in the case of a heavy load, the speed will once reach zero, and then the speed will reach a speed at which the DC braking torque and the load torque are balanced, that is, in the opposite direction. After the vehicle starts moving toward speed, the brakes will be applied. For this reason,
Conventional devices have the disadvantage of not only providing poor ride comfort but also giving passengers a sense of anxiety depending on the load condition.
この場合、上記不具合を改良する方法としては
減速開始時点t2からブレーキ締結時点t3までの時
間を負荷状態によつて可変とするか、或いは減速
時の速度指令パターンを同様に負荷によつて変更
することが考えられるが、これらはいずれも負荷
状態を検出する手段が必要となり、装置が複雑高
価となつて実用的ではない。 In this case, a method to improve the above problem is to make the time from deceleration start time t 2 to brake engagement time t 3 variable depending on the load condition, or to change the speed command pattern during deceleration depending on the load. Although it is conceivable to change it, all of these require a means to detect the load state, which makes the device complicated and expensive, making it impractical.
本発明は上記の点に鑑みなされたもので、エレ
ベータのかごの負荷状態にかかわらず、乗客に不
快感や不安感を伴うことのない再床合せ装置を負
荷検出装置の不要な安価な装置構成で実現しよう
とするものである。 The present invention has been made in view of the above points, and is an inexpensive device configuration that does not require a load detection device and provides a floor re-alignment device that does not cause discomfort or anxiety to passengers regardless of the load state of the elevator car. This is what we are trying to achieve.
以下図に基づいて本発明を詳細に説明する。第
3図は本発明による再床合せ装置の一実施例を示
すブロツク図である。図中R2aは再床合せ運転
の減速時に付勢し、停止時に消勢するリレー(図
示しない)の常開接点、R2bは同じくその常閉
接点、LVは減速開始時点における速度調節器
ASRの出力を所定電圧だけ変更した出力、すな
わち減速開始時点における速度帰還制御による電
動機電流指令値を一定値だけ制動側へ変更し以後
その値の出力を発生する指令電圧変更装置であ
る。なお第1図と同一部分については同一符号に
より示している。以上の構成において再床合せ運
転は第1図の場合と同様に開始されるが本発明の
特徴とするところは第1に減速時に接点R2bを
開くことによつて速度帰還ループを切り離し、減
速中は開ループ制御とすることにある。すなわち
接点R2bが開くと同時に接点R2aが閉じ減速
中は指令電圧変更装置LVの出力電圧に応じて三
相誘導電動機の制御が行なわれるのであるが、第
2の特徴とするところはこの指令電圧変更装置
LVの出力電圧を、負荷の状態にかかわらず減速
時点t2での速度調節器ASRの出力電圧を第4図に
示す如く所定電圧VEだけ変更した値、すなわち
一定値だけ制動側へ変更した値とすることであ
る。第4図は第3図のA点における電圧の変化を
減速時について示したもので同図aは軽負荷の場
合を、同図bは重負荷の場合を示している。 The present invention will be explained in detail below based on the drawings. FIG. 3 is a block diagram showing one embodiment of the re-flooring apparatus according to the present invention. In the figure, R2a is a normally open contact of a relay (not shown) that is energized during deceleration during re-floor alignment operation and deenergized when stopped, R2b is also its normally closed contact, and LV is a speed regulator at the start of deceleration.
This is a command voltage changing device that changes the output of the ASR by a predetermined voltage, that is, the motor current command value by speed feedback control at the start of deceleration, by a certain value toward the braking side, and thereafter generates an output of that value. Note that the same parts as in FIG. 1 are indicated by the same reference numerals. In the above configuration, the re-leveling operation is started in the same way as in the case of FIG. The key is to use open-loop control. In other words, at the same time that contact R2b opens, contact R2a closes and during deceleration, the three-phase induction motor is controlled according to the output voltage of the command voltage changing device LV.The second feature is that this command voltage change Device
Regardless of the load condition, the output voltage of the speed regulator ASR at deceleration time t 2 is changed by a predetermined voltage VE as shown in Figure 4, that is, the value is changed to the braking side by a constant value. That is to say. FIG. 4 shows the change in voltage at point A in FIG. 3 during deceleration, and FIG. 4a shows the case with a light load, and FIG. 4b shows the case with a heavy load.
次に出力電圧すなわち電流指令を減速時に負荷
の状態にかかわらず所定電圧VEだけ制動側へ変
更する理由について述べる。一般に誘導電動機の
発生トルクTはスリツプ一定の時、電動機の1次
電流Iに対してT∝I2なる関係にあり、これを駆
動側及び制動側について図示すると第5図の如く
になる。第5図においてa1は軽負荷時における
減速開始時点t2直前の制動トルク相当点を、b1
は重負荷時における減速開始時点t2直前の駆動ト
ルク相当点を示したもので、第2図の減速開始時
点t2での軽負荷時及び重負荷時それぞれの速度偏
差に基づく電流指令に対応する点である。ここで
第4図a,bに示す如く減速開始時点t2におい
て、電流指令を所定電圧VEだけ制動側へ変更す
ると、第5図において軽負荷時には制動トルクが
a1からa2へと電流指令の移行分だけ移行し、
同様に重負荷時には駆動トルクがb1からb2へ
と移行する。これは通常の制御系では電流制御系
の応答が早く、従つて上記電流指令の移行分だけ
電動機の1次電流もほぼ一定の量で移行するから
である。同図から明らかなように電流指令を所定
電圧だけ制動側へ変更すると重負荷の場合より軽
負荷の場合の方がトルク変化の大きいことがわか
る。従つて再床合せ運転の減速時に負荷の状態に
かかわらず電流指令を所定電圧だけ制動側へ変更
すると減速度は重負荷時の場合には小さく軽負荷
時の場合には大きくなり、所定電圧VEとブレー
キ締結時点t3を適切に選定することにより、第6
図で示す如く減速開始時点t2より一定時間後の時
刻t3にてブレーキを締結しても前述のような不具
合を生ずることなく円滑に停止させることができ
る。第6図においてC′は速度指令、a′は軽負荷時
のエレベータの実速度、b′は重負荷時のエレベー
タの実速度を示す。 Next, we will discuss the reason why the output voltage, that is, the current command, is changed to the braking side by a predetermined voltage VE during deceleration regardless of the load state. Generally, when the slip is constant, the torque T generated by an induction motor has a relationship of T∝I 2 with respect to the primary current I of the motor, and this is illustrated for the drive side and the brake side as shown in FIG. 5. In Fig. 5, a1 is the point corresponding to the braking torque immediately before deceleration start time t2 under light load, and b1
indicates the point equivalent to the drive torque immediately before deceleration start time t 2 under heavy load, and corresponds to the current command based on the speed deviation at light load and heavy load at deceleration start time t 2 in Figure 2. This is the point. Here, when the current command is changed to the braking side by a predetermined voltage VE at the deceleration start time t2 as shown in Fig. 4 a and b, the braking torque changes from a1 to a2 at light load in Fig. 5, and the current command shifts from a1 to a2. Migrate by
Similarly, when the load is heavy, the driving torque shifts from b1 to b2. This is because, in a normal control system, the response of the current control system is quick, and therefore the primary current of the motor also shifts by a substantially constant amount by the amount of shift in the current command. As is clear from the figure, when the current command is changed to the braking side by a predetermined voltage, the torque change is larger in the case of a light load than in the case of a heavy load. Therefore, if the current command is changed to the braking side by a predetermined voltage regardless of the load condition during deceleration during re-leveling operation, the deceleration will be small for heavy loads and large for light loads, and the predetermined voltage VE By appropriately selecting the brake engagement time t3 , the sixth
As shown in the figure, even if the brake is applied at time t3 , which is a certain period of time after deceleration start time t2 , the vehicle can be stopped smoothly without causing the above-mentioned problems. In FIG. 6, C' is the speed command, a' is the actual speed of the elevator when the load is light, and b' is the actual speed of the elevator when the load is heavy.
次に第4図a,bに示す如くの電流指令を得る
方法を第7図及び第8図により説明する。 Next, a method for obtaining current commands as shown in FIGS. 4a and 4b will be explained with reference to FIGS. 7 and 8.
第7図は上記の電流指令を得るための指令電圧
変更装置LVの一回路例を示す図である。図にお
いてA1〜A3は演算増幅器、r1〜r9は抵
抗、C1及びC2はコンデンサー、VR1は可変
抵抗器、Pは制御用の正極性定電圧電源、Nは同
じく負極性定電圧電源である。またR3aはR1
aと同じく再床合せ運転開始時に付勢し減速開始
時に消勢するリレー(図示しない)の別の常開接
点、R4aはR2aと同じく減速開始時に付勢
し、停止時に消勢するリレー(図示しない)の別
の常開接点、R4bは同じくその常閉接点であ
る。なお第3図と同一のものは同一符号にて示し
ている。第8図は第7図のCP1〜CR3点の電圧
波形の変化の様子を示した図で同図aは軽負荷時
の場合を、同図bは重負荷時の場合を示す。 FIG. 7 is a diagram showing an example of a circuit of the command voltage changing device LV for obtaining the above-mentioned current command. In the figure, A1 to A3 are operational amplifiers, r1 to r9 are resistors, C1 and C2 are capacitors, VR1 is a variable resistor, P is a positive constant voltage power supply for control, and N is a negative constant voltage power supply. Also, R3a is R1
Like a, R4a is another normally open contact of a relay (not shown) that is energized at the start of re-floor alignment operation and deenergized at the start of deceleration; Another normally open contact, R4b, is also its normally closed contact. Components that are the same as those in FIG. 3 are designated by the same reference numerals. FIG. 8 is a diagram showing changes in the voltage waveforms at three points CP1 to CR in FIG. 7, and FIG. 8a shows the case when the load is light, and FIG. 8b shows the case when the load is heavy.
第7図の構成において、いま再床合せ運転中で
あるとすると減速開始以前では速度調節器ASR
の出力電圧すなわち電流指令により接点R2bを
介して電動機の制御が行なわれる一方、接点R3
aが閉じているため速度調節器ASRの出力電圧
は指令電圧変更装置LVに入力され、抵抗r1と
コンデンサーC1で構成されるリツプルフイルタ
ーを経た後のCP1点での電圧波形は第8図に示
す如くとなる。この時CP1点より更に抵抗r2
〜r5と可変抵抗器VR1、演算増幅器A1とか
らなるバイアス反転器と、抵抗r6〜r8及び演
算増幅器A2からなる反転器を経たCP2での電
圧波形は第8図に示すように、負荷状態にかかわ
らずCP1点の電圧より可変抵抗器VR1にて決定
される所定のバイアス電圧分VEだけ降下したも
のとなる。また減速開始以前では接点R4bは閉
じているため、速度調節器ASRの出力電圧は抵
抗r9、コンデンサーC2、演算増幅器A3から
なる一次遅れ回路を経て平滑され、CP3の点に
おける電圧波形は第8図に示すようにCP1での
波形とほぼ一致している。次に減速開始時点t2に
達すると接点R3aは開くが、コンデンサーC1
と抵抗r2より決まる放電時定数を十分大きくと
ると、CP1点での電圧波形は減速開始時点t2以
前の状態を保持し、従つてCP2点での電圧波形
も同様に減速開始以前の状態を保持する。一方減
速開始時点t2において接点R4bが開き、接点R
4aが閉じるので抵抗r9以下の一次遅れ回路に
はCP2点の電圧がステツプ状に入力されること
になり、従つてCP3での電圧波形は第8図に示
す如く減速開始直前の電圧から、前記所定の電圧
VEだけ下がつたほぼ一定の電圧に一次遅れで近
づくことになる。そして減速開始時点t2より一定
時限後の停止時点t3で接点R4aが開きCP3点
の電圧は零に一次遅れで近づく。従つてCP3の
点における電圧すなわち指令電圧変更装置LVの
出力電圧は第8図に示す如くなり、第3図のA点
において第4図に示すような電流指令を得ること
ができると同時に一次遅れ回路を通すことにより
電流指令の急激な変化による乗心地の悪化を防ぐ
ことができる。 In the configuration shown in Fig. 7, if we are currently in re-levelling operation, the speed regulator ASR is
The motor is controlled via contact R2b by the output voltage or current command, while contact R3
Since a is closed, the output voltage of the speed regulator ASR is input to the command voltage changing device LV, and the voltage waveform at point CP1 after passing through the ripple filter consisting of resistor r1 and capacitor C1 is shown in Figure 8. It will be as shown. At this time, further resistance r2 from point CP1
As shown in Figure 8, the voltage waveform at CP2 passes through a bias inverter consisting of ~r5, variable resistor VR1, and operational amplifier A1, and an inverter consisting of resistors r6 to r8 and operational amplifier A2. Regardless, the voltage at point CP1 is lowered by a predetermined bias voltage VE determined by variable resistor VR1. Furthermore, since contact R4b is closed before deceleration starts, the output voltage of speed regulator ASR is smoothed through a first-order lag circuit consisting of resistor r9, capacitor C2, and operational amplifier A3, and the voltage waveform at point CP3 is as shown in FIG. As shown in the figure, the waveform almost matches the waveform at CP1. Next, when the deceleration start point t2 is reached, contact R3a opens, but capacitor C1
If the discharge time constant determined by resistor r2 is set sufficiently large, the voltage waveform at point CP1 will maintain the state before deceleration start time t2 , and therefore the voltage waveform at point CP2 will also maintain the state before deceleration start. Hold. On the other hand, at the start of deceleration t2 , contact R4b opens and contact R
4a is closed, the voltage at the CP2 point is input in a stepwise manner to the first-order delay circuit with a resistor r9 or less. Therefore, the voltage waveform at the CP3 changes from the voltage just before the start of deceleration to the voltage just before the start of deceleration, as shown in FIG. predetermined voltage
With a first-order lag, the voltage approaches a nearly constant voltage that has decreased by VE. Then, at the stop time t3 , which is a fixed time period after the deceleration start time t2 , the contact R4a opens and the voltage at the CP3 point approaches zero with a first-order lag. Therefore, the voltage at point CP3, that is, the output voltage of the command voltage changing device LV, becomes as shown in FIG. 8, and the current command as shown in FIG. 4 can be obtained at point A in FIG. By passing the circuit through, it is possible to prevent deterioration of riding comfort due to sudden changes in the current command.
以上のように本発明は再床合せ運転の減速時に
速度帰還制御を切り離すとともに、減速開始直前
の速度調節器出力電圧より所定電圧だけ制動側へ
変更した出力、すなわち減速開始時点における速
度帰還制御による電動機電流指令値を一定値だけ
制動側へ変更した出力に基づいて減速時の制御を
行なうようにしたので、交流発電機を用いること
によつて減速時に負荷状態によつて生じる速度の
バラツキがあつても、滑らかな停止を可能とし、
乗客に不安感や不快感を与えることのない再床合
せ装置を、負荷検出装置を設けることなく安価な
構成で提供することができる。 As described above, the present invention disconnects the speed feedback control at the time of deceleration during the re-flooring operation, and also uses the output that is changed to the braking side by a predetermined voltage from the speed regulator output voltage immediately before the start of deceleration, that is, the speed feedback control at the time of the start of deceleration. Since the control during deceleration is performed based on the output obtained by changing the motor current command value by a certain value to the braking side, using an alternator eliminates the variation in speed that occurs depending on the load condition during deceleration. enables smooth stopping even when
A floor re-alignment device that does not give passengers a sense of anxiety or discomfort can be provided with an inexpensive configuration without providing a load detection device.
第1図は従来の再床合せ装置の構成を示すブロ
ツク図、第2図は速度指令信号とエレベータの実
速度との関係を示す図、第3図は本発明による再
床合せ装置の一実施例を示すブロツク図、第4図
は第3図A点の出力電圧の変化を示す図でaは軽
負荷時、bは重負荷時を示す。第5図は三相誘導
電動機のトルクと1次電流の関係を示す図、第6
図は本発明による速度指令信号とエレベータの実
速度との関係を示す図、第7図は指令電圧変更装
置LVの一回路例を示す図、第8図は第7図のCP
1〜CP3点の電圧波形の変化を示す図でaは軽
負荷時をbは重負荷時を示す。
PG…速度指令発生器、ASR…速度調節器、
ACR1,ACR2…電流調節器、AMP1,AMP
2…電流増幅器、CT1,CT2…電流検出器、
IM…三相誘導電動機、TG…速度発電機、LV…
指令電圧変更装置、R1a,R2a,R3a,R
4a…常開接点、R2b,R4b…常閉接点。
FIG. 1 is a block diagram showing the configuration of a conventional floor re-alignment device, FIG. 2 is a diagram showing the relationship between the speed command signal and the actual speed of the elevator, and FIG. 3 is an implementation of the floor re-alignment device according to the present invention. FIG. 4, a block diagram showing an example, is a diagram showing the change in the output voltage at point A in FIG. Figure 5 is a diagram showing the relationship between torque and primary current of a three-phase induction motor, Figure 6
The figure shows the relationship between the speed command signal and the actual speed of the elevator according to the present invention, Figure 7 shows an example of a circuit of the command voltage changing device LV, and Figure 8 shows the CP of Figure 7.
In the diagram showing changes in voltage waveforms at points 1 to CP3, a shows the time of light load and b shows the time of heavy load. PG...speed command generator, ASR...speed regulator,
ACR1, ACR2...Current regulator, AMP1, AMP
2...Current amplifier, CT1, CT2...Current detector,
IM...three-phase induction motor, TG...speed generator, LV...
Command voltage changing device, R1a, R2a, R3a, R
4a... Normally open contact, R2b, R4b... Normally closed contact.
Claims (1)
電機として交流発電機を用い、着床後にかご床と
乗場床との段差が所定値を越えたとき、かごを再
起動させ速度指令信号とエレベータの実速度信号
との偏差を速度調節器にて比較増幅し、その比較
増幅した電動機電流指令値に応じて駆動電流調節
ループ或いは制動電流調節ループの何れかを制御
する速度帰還制御により再床合せ運転を行う交流
エレベータの再床合せ装置において、 再床合せ運転の減速開始時点における前記電動
機電流指令値を一定値だけ制動側へ変更し以後そ
の値の出力を発する指令電圧変更装置と、再床合
せ運転の減速時に前記速度調節器から前記指令電
圧変更装置に切り換える回路とを備え、再床合せ
運転の減速中は前記指令電圧変更装置の出力に応
じて開ループ制御を行うようにしたことを特徴と
する交流エレベータの再床合せ装置。[Scope of Claims] 1. An alternating current generator is used as a speed generator to detect the actual speed of the elevator, and when the level difference between the car floor and the landing floor exceeds a predetermined value after landing, the car is restarted. Speed feedback that compares and amplifies the deviation between the speed command signal and the actual speed signal of the elevator using a speed controller, and controls either the drive current adjustment loop or the braking current adjustment loop according to the compared and amplified motor current command value. In a re-flooring device for an AC elevator that performs re-flooring operation under control, the motor current command value at the start of deceleration during re-flooring operation is changed by a certain value to the braking side, and thereafter the command voltage is changed to output that value. and a circuit for switching from the speed regulator to the command voltage changing device during deceleration of the re-flooring operation, and performs open loop control according to the output of the command voltage changing device during the deceleration of the re-flooring operation. A re-floor alignment device for an AC elevator, characterized in that:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP56047956A JPS57160875A (en) | 1981-03-30 | 1981-03-30 | Second floor conforming device for alternating current elevator |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP56047956A JPS57160875A (en) | 1981-03-30 | 1981-03-30 | Second floor conforming device for alternating current elevator |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS57160875A JPS57160875A (en) | 1982-10-04 |
JPS6317745B2 true JPS6317745B2 (en) | 1988-04-14 |
Family
ID=12789799
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP56047956A Granted JPS57160875A (en) | 1981-03-30 | 1981-03-30 | Second floor conforming device for alternating current elevator |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS57160875A (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2605967B2 (en) * | 1993-03-12 | 1997-04-30 | 日本電気株式会社 | Luminescent display lens mounting structure |
-
1981
- 1981-03-30 JP JP56047956A patent/JPS57160875A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS57160875A (en) | 1982-10-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3023335B2 (en) | Elevator emergency operation control device and control method | |
JPH0817599B2 (en) | Elevator speed controller | |
JPS62831B2 (en) | ||
JPS63306176A (en) | Elevator drive with regulator for nonshock starting | |
JPS6317745B2 (en) | ||
US4661757A (en) | Controller for AC elevator | |
US4235309A (en) | Control for starting electric motors | |
JPH07291542A (en) | Speed control device of inverter for elevator | |
CA1040765A (en) | Transportation system with decelerating control | |
US3516518A (en) | Elevator control system | |
JPS5844592B2 (en) | elevator elevator | |
JPH0550435B2 (en) | ||
JPH0731760U (en) | Elevator equipment | |
JPH06189411A (en) | Detecting system for service interruption for ac electric car | |
JPH05155544A (en) | Elevator controller | |
JPS643791B2 (en) | ||
JPH0780645B2 (en) | Hydraulic elevator | |
JP2935583B2 (en) | Speed control device for elevator inverter | |
JPH0750879Y2 (en) | AC elevator speed control device | |
JPS6045105B2 (en) | AC elevator speed control device | |
JPS6143276B2 (en) | ||
KR920001001Y1 (en) | Control device of velocity of a.c. elevator | |
JPH0526953Y2 (en) | ||
US2528126A (en) | Variable voltage motor control system | |
JPS5820612Y2 (en) | elevator elevator |