JPS6143276B2 - - Google Patents

Info

Publication number
JPS6143276B2
JPS6143276B2 JP52084369A JP8436977A JPS6143276B2 JP S6143276 B2 JPS6143276 B2 JP S6143276B2 JP 52084369 A JP52084369 A JP 52084369A JP 8436977 A JP8436977 A JP 8436977A JP S6143276 B2 JPS6143276 B2 JP S6143276B2
Authority
JP
Japan
Prior art keywords
speed
elevator
load
induction motor
constant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP52084369A
Other languages
Japanese (ja)
Other versions
JPS5420550A (en
Inventor
Shunsuke Kobashi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitec Co Ltd
Original Assignee
Fujitec Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitec Co Ltd filed Critical Fujitec Co Ltd
Priority to JP8436977A priority Critical patent/JPS5420550A/en
Publication of JPS5420550A publication Critical patent/JPS5420550A/en
Publication of JPS6143276B2 publication Critical patent/JPS6143276B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Elevator Control (AREA)

Description

【発明の詳細な説明】 本発明は、誘導モータを速度制御する交流帰還
制御方式エレベータの着床精度の改善に関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to improving the landing accuracy of an AC feedback control type elevator that controls the speed of an induction motor.

交流帰還制御方式エレベータにおいて、駆動ト
ルクを誘導モータの一次電圧制御で、又制動トル
クを直流発電制動で発生して速度制御を行なうも
のがある。
Some AC feedback control type elevators perform speed control by generating driving torque by controlling the primary voltage of an induction motor and generating braking torque by DC generation braking.

第1図は上記方式によるエレベータの起動から
停止までの速度の変化を示したもので、横軸は時
間、縦軸は速度を表わし、Xは加速走行、Yは等
速走行、Zは減速走行を示す。
Figure 1 shows the change in speed of the elevator from startup to stop using the above method, where the horizontal axis represents time and the vertical axis represents speed, where X is acceleration, Y is constant speed, and Z is deceleration. shows.

一般に、等速走行Y時、誘導モータに交流全電
圧を印加するものは荷重が変化すると速度帰還が
ないため、等速速度の変動が極めて大きい。又、
等速走行Y時に速度制御を採用した場合も速度偏
差を増幅する速度調節器を比例要素で構成するも
のは、制御系の制約により、やはり等速速度に大
きな変動を生じ、大きな着床位置偏差につなが
る。
Generally, when a motor is running at a constant speed Y, when a full AC voltage is applied to the induction motor, there is no speed feedback when the load changes, so the fluctuations in the constant speed are extremely large. or,
Even when speed control is adopted during uniform running Y, speed regulators that amplify speed deviations are configured with proportional elements, but due to control system constraints, large fluctuations in uniform speed still occur, resulting in large landing position deviations. Leads to.

本発明は、上記の点に鑑みなされたもので、交
流帰還制御方式エレベータの速度制御系に位相遅
れ補償を行なつて等速速度の変動を小さくし、着
床精度を改善するものである。以下、図面により
本発明を詳細に説明する。
The present invention has been made in view of the above points, and is intended to compensate for phase lag in the speed control system of an AC feedback control elevator to reduce fluctuations in constant velocity and improve landing accuracy. Hereinafter, the present invention will be explained in detail with reference to the drawings.

第2図に2巻線を持つ誘導モータを駆動、制動
制御する制御装置の一従来例を示す。
FIG. 2 shows a conventional example of a control device for driving and braking an induction motor having two windings.

Eは速度指令、1はエレベータの実際速度を検
出する帰還回路、2は速度指令と帰還回路1の出
力の差を増幅する増幅度Kの速度調節器、3は速
度調節器2の出力に応じてサイリスタ等で構成さ
れる電力増幅装置SCR1を制御する移相器、4
は同様にしてサイリスタ等で構成される電力増幅
装置SCR2を制御する移相器、Hは誘導モータ
の駆動用巻線、Lは制動用巻線、TGはモータ回
転数を検出する回転計発電機である。速度指令E
よりも帰還回路1の出力が小さい場合、速度調節
器2は正電圧を出力し、移相器3が動作する。移
相器3はその入力に応じて電力増幅装置SCR1
の点弧角を制御し、駆動用3相交流が駆動用巻線
Hに流れ、駆動力が得られる。反対に速度指令よ
りもエレベータ実際速度が大きい場合、速度調節
器2は負電圧を出力し、移相器4が動作する。移
相器4はその入力に応じて電力増幅装置SCR2
の点弧角を制御し、制動用直流が制動用巻線Lに
流れ発電制動力が得られる。
E is a speed command, 1 is a feedback circuit that detects the actual speed of the elevator, 2 is a speed regulator with an amplification degree K that amplifies the difference between the speed command and the output of the feedback circuit 1, and 3 is according to the output of the speed regulator 2. a phase shifter 4 for controlling the power amplifier SCR1 composed of a thyristor and the like;
is a phase shifter that similarly controls the power amplifier SCR2, which is composed of a thyristor, etc., H is a drive winding of the induction motor, L is a brake winding, and TG is a tachometer generator that detects the motor rotation speed. It is. Speed command E
When the output of the feedback circuit 1 is smaller than , the speed regulator 2 outputs a positive voltage and the phase shifter 3 operates. Phase shifter 3 outputs power amplifier SCR1 according to its input.
The firing angle of is controlled, and the driving three-phase alternating current flows through the driving winding H to obtain driving force. Conversely, when the actual elevator speed is greater than the speed command, the speed regulator 2 outputs a negative voltage and the phase shifter 4 operates. Phase shifter 4 outputs power amplifier SCR2 according to its input.
The braking direct current flows to the braking winding L to obtain a generated braking force.

第3図は、本発明の制御装置の構成の一実施例
である。5は位相遅れ特性を持つ速度調節器であ
り、その他は第2図と同一である。
FIG. 3 shows an embodiment of the configuration of the control device of the present invention. Reference numeral 5 denotes a speed regulator having phase delay characteristics, and the other parts are the same as in FIG.

第4図は制御系の一巡伝達関数の周波数応答曲
線を示しており、横軸に角周波数の対数を、縦軸
にゲインをとつている。点線は第2図の従来の制
御装置の特性であり、実線が本発明のものであ
る。
FIG. 4 shows a frequency response curve of the open loop transfer function of the control system, with the horizontal axis representing the logarithm of the angular frequency and the vertical axis representing the gain. The dotted line is the characteristic of the conventional control device shown in FIG. 2, and the solid line is the characteristic of the present invention.

速度調節器5の位相遅れ特性は一般に
K′1+ST/1+STの形でかかれ(K′は増幅度
、T1、T2は 時定数、Sはラプラス演算子、T1>T2)、低周波
数領域、即ち角周波数が1/T1と1/T2の間の
部分でゲインが高められる。
The phase delay characteristic of the speed regulator 5 is generally
It is written in the form K'1 + ST 2 /1 + ST 1 (K' is the amplification degree, T 1 and T 2 are the time constants, S is the Laplace operator, T 1 > T 2 ), and in the low frequency region, that is, the angular frequency is 1/ The gain is increased between T 1 and 1/T 2 .

一方、1/T2より大きい部分では1/T1
1/T2間よりもゆるやかな一定の特性を持ちか
つ1/T2と遮断角周波数ωcがある程度離れて
いれば、制御系の安定性は影響をあまり受けな
い。即ち、安定性を損なうことなく定常偏差即
ち、等速走行時の設定値(速度指令E)と実際値
(エレベータ速度)の偏差を小さくできる。
On the other hand, if the part larger than 1/T 2 has a constant characteristic that is gentler than that between 1/T 1 and 1/T 2 , and the cutoff angular frequency ωc is a certain distance from 1/T 2 , the control system will be stable. Gender is not affected much. That is, the steady-state deviation, that is, the deviation between the set value (speed command E) and the actual value (elevator speed) during constant speed travel can be reduced without impairing stability.

従つて、軽荷重上昇、重荷重下降運転(以下下
げ荷と記す)の場合の等速速度と、重荷重上昇、
軽荷重下降運転(以下上げ荷と記す)の場合の等
速速度の差を小さくすることができ、着床精度を
高めることができる。
Therefore, the constant velocity in the case of light load raising and heavy load lowering operation (hereinafter referred to as lowering load), heavy load raising,
It is possible to reduce the difference in constant velocity in the case of light load descending operation (hereinafter referred to as "lifting load"), and it is possible to improve landing accuracy.

尚、一般に誘導モータのトルクゲインの非線形
特性のため減速走行時の速度指令に対するエレベ
ータ速度の応答遅れが荷重及び運転方向により変
化する。
Generally, due to the non-linear characteristics of the torque gain of the induction motor, the response delay of the elevator speed to the speed command during deceleration traveling varies depending on the load and driving direction.

これを第5図により説明する。第5図は駆動電
圧或いは直流制動電流に対する誘導モータの発生
トルクを示す図である。いまエレベータの減速時
点を考えると、上げ荷の場合はa1点で示す駆動ト
ルクが徐々に減少して制動トルク領域に入り、a1
点とa2点との間で制御されて停止するが、この間
は誘導モータ発生トルクゲインが非常に小さい領
域である。従つて上げ荷の減速開始時は制御系の
ゲインが下がる為大きな応答遅れを生じる。一
方、下げ荷の場合はb1点とb2点との間で制御され
るが、既に等速度走行時にb1点で示す制動トルク
が発生している為、減速開始点で誘導モータ発生
トルクゲインが小さくなることはなく、従つて応
答遅れはほとんど生じない。すなわち、上げ荷の
場合は減速開始時の速度は下げ荷の場合より低い
が応答遅れが大きく、一方下げ荷の場合は減速開
始時の速度は上げ荷の場合より高いが応答遅れは
小さくなる。
This will be explained with reference to FIG. FIG. 5 is a diagram showing the torque generated by the induction motor with respect to the drive voltage or DC braking current. Now, considering the point in time when the elevator decelerates, in the case of lifting a load, the driving torque indicated by point a 1 gradually decreases and enters the braking torque region, and a 1
The motor is controlled to stop between point A and point A , but during this period the induction motor generated torque gain is extremely small. Therefore, when the lifting load starts to decelerate, the gain of the control system decreases, resulting in a large response delay. On the other hand, in the case of unloading, the control is performed between points b 1 and b 2 , but since the braking torque shown at point b 1 has already been generated when traveling at a constant speed, the induction motor generated torque at the deceleration start point is The gain never becomes small, so there is almost no response delay. That is, in the case of lifting a load, the speed at the start of deceleration is lower than in the case of lowering a load, but the response delay is larger, while in the case of lowering a load, the speed at the start of deceleration is higher than in the case of lifting a load, but the response delay is smaller.

この結果、上げ荷と下げ荷のそれぞれにおける
エレベータの減速時の速度は第6図に示すように
なる。第6図aは速度調節器に位相遅れ要素を挿
入しない場合を、第6図bは速度調節器に位相遅
れ要素を挿入した場を示し、Vd1及びVd2は下げ
荷の時の速度、Vu1及びVu2は上げ荷の時の速度
をそれぞれ示している。aの状態では斜線で示し
た面積S1が着床誤差となるが、bの状態では面積
S2とS3とが相殺され、S2とS3との差が着床誤差と
なる。位相遅れ要素は周知のように抵抗とコンデ
ンサとで容易に構成され、これらを可変としてお
けば任意の時定数を得ることができるので、従つ
てこの時定数を調整することによつて面積S2とS3
との差をほぼ零、即ち着床誤差をほぼ零とするこ
とができる。この時の時定数の値は、エレベータ
の定格速度や積載によつて異なるが、およそT1
=1.9秒、T2=0.6秒程度が適当である。また、増
幅度K′を調節することにより等速走行時の偏差
が変化し、面積S2とS3との関係を調節することが
できるので、時定数を固定として増幅度K′によ
り調節するようにしてもよい。なお、これらの値
は計算によつて予め求めずとも、上記のように増
幅度K′或いは抵抗、コンデンサを可変としてお
けば、据付現場でエレベータを実際に運転して試
行錯誤により、負荷の大小による着床誤差がほぼ
零となる値に設定することができる。
As a result, the speeds of the elevator during deceleration when lifting and lowering loads are as shown in FIG. 6. Figure 6a shows the case where no phase delay element is inserted into the speed regulator, and Figure 6b shows the case where the phase delay element is inserted into the speed regulator, where Vd 1 and Vd 2 are the speeds when the load is being lowered, Vu 1 and Vu 2 indicate the speed when lifting the load, respectively. In condition a, the area S 1 shown with diagonal lines is the landing error, but in condition b, the area
S 2 and S 3 cancel each other out, and the difference between S 2 and S 3 becomes the landing error. As is well known, the phase delay element is easily composed of a resistor and a capacitor, and if these are made variable, an arbitrary time constant can be obtained. Therefore, by adjusting this time constant, the area S 2 and S 3
It is possible to make the difference between the two positions almost zero, that is, the landing error can be made almost zero. The value of the time constant at this time varies depending on the rated speed and load of the elevator, but is approximately T 1
= 1.9 seconds and T 2 = about 0.6 seconds are appropriate. In addition, by adjusting the amplification degree K', the deviation during constant speed running can be changed and the relationship between the areas S 2 and S 3 can be adjusted, so the time constant can be fixed and adjusted by the amplification degree K'. You can do it like this. Note that these values do not need to be calculated in advance, but if the amplification factor K', resistor, and capacitor are made variable as described above, the magnitude of the load can be determined by trial and error by actually operating the elevator at the installation site. This can be set to a value such that the landing error caused by

このように、速度調節器に位相遅れ要素を挿入
し、その位相遅れ要素の時定数或いは増幅度
K′を可変とすれば、負荷の大小及び運転方向に
よる等速度の偏差を小さくできるだけでなく、上
記時定数或いは増幅度K′を適切に設定すること
により、上記偏差によつて生じる着床誤差分を、
負荷の大小及び運転方向による応答乱遅れの差に
よつて生じる着床誤差分で相殺することができ、
すなわち負荷の大小に拘わらず着床誤差をほぼ零
とすることができる。
In this way, a phase delay element is inserted into the speed regulator, and the time constant or amplification degree of the phase delay element is
By making K′ variable, not only can deviations in uniform speed due to load size and driving direction be reduced, but also by appropriately setting the above time constant or amplification K′, it is possible to reduce landing errors caused by the above deviations. minute,
This can be offset by the landing error caused by the difference in response disturbance delay depending on the load size and driving direction.
In other words, the landing error can be made almost zero regardless of the magnitude of the load.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はエレベータの速度曲線を示す図、第2
図は従来の制御装置の構成例を示す図、第3図は
本発明の構成の一実施例を示す図、第4図は周波
数応答曲線を示す図、第5図は誘導モータの発生
トルクを示す説明図、第6図は減速時の速度曲線
を示す図である。 1……帰還回路、2……速度調節器、3,4…
…移相器、5……位相遅れ特性を持つ速度調節
器、SCR1,SCR2……サイリスタ等の電力増
幅装置、TG……回転計発電機。
Figure 1 shows the elevator speed curve, Figure 2 shows the speed curve of the elevator.
Figure 3 shows an example of the configuration of a conventional control device, Figure 3 shows an example of the configuration of the present invention, Figure 4 shows a frequency response curve, and Figure 5 shows the torque generated by an induction motor. The explanatory diagram shown in FIG. 6 is a diagram showing a speed curve during deceleration. 1... Feedback circuit, 2... Speed regulator, 3, 4...
...Phase shifter, 5...Speed regulator with phase delay characteristics, SCR1, SCR2...Power amplifier device such as thyristor, TG...Tachometer generator.

Claims (1)

【特許請求の範囲】[Claims] 1 エレベータ巻上用誘導モータと該誘導モータ
が発生する駆動、制動トルクを制御するサイリス
タ等で構成される電力増幅装置と、エレベータの
実際速度を検出する帰還回路と、該帰還回路出力
と速度指令の偏差に応じて前記電力増幅装置を制
御する速度調節器とによりエレベータを速度制御
するものにおいて、前記速度調節器に時定数或い
は増幅度の調節可能な位相遅れ要素を挿入し、該
位相遅れ要素の時定数或いは増幅度を、負荷の大
小及び運転方向によるエレベータの等速速度の偏
差によつて生じる着床誤差分と、負荷の大小及び
運転方向による減速以後の応答遅れの差によつて
生じる着床誤差分とがほぼ相殺されるように設定
することを特徴とする交流エレベータ制御装置。
1. A power amplifier device consisting of an induction motor for hoisting the elevator, a thyristor, etc. that controls the driving and braking torque generated by the induction motor, a feedback circuit that detects the actual speed of the elevator, and a feedback circuit output and speed command. and a speed regulator that controls the power amplifying device according to the deviation of the power amplifier, wherein a phase delay element whose time constant or amplification is adjustable is inserted into the speed regulator, and the phase delay element The time constant or degree of amplification is determined by the landing error caused by the deviation of the constant speed of the elevator due to the magnitude of the load and the direction of operation, and the difference between the response delay after deceleration due to the magnitude of the load and the direction of operation. An AC elevator control device characterized in that settings are made so that landing errors are substantially canceled out.
JP8436977A 1977-07-13 1977-07-13 Device for controlling ac elevator cage Granted JPS5420550A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8436977A JPS5420550A (en) 1977-07-13 1977-07-13 Device for controlling ac elevator cage

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8436977A JPS5420550A (en) 1977-07-13 1977-07-13 Device for controlling ac elevator cage

Publications (2)

Publication Number Publication Date
JPS5420550A JPS5420550A (en) 1979-02-16
JPS6143276B2 true JPS6143276B2 (en) 1986-09-26

Family

ID=13828605

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8436977A Granted JPS5420550A (en) 1977-07-13 1977-07-13 Device for controlling ac elevator cage

Country Status (1)

Country Link
JP (1) JPS5420550A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4983817A (en) * 1972-12-21 1974-08-12

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4983817A (en) * 1972-12-21 1974-08-12

Also Published As

Publication number Publication date
JPS5420550A (en) 1979-02-16

Similar Documents

Publication Publication Date Title
US4982816A (en) Speed control system for elevators
US4995478A (en) Start compensation device for elevators
JP3140022B2 (en) Motor constant power control device
JPS6143276B2 (en)
US4235309A (en) Control for starting electric motors
JP3612953B2 (en) Induction motor control device
US3516518A (en) Elevator control system
JPS643791B2 (en)
JPS5820612Y2 (en) elevator elevator
JP2594968B2 (en) Drive control device for induction motor
JP2736056B2 (en) Motor speed control device
JPS6316690Y2 (en)
JPH0750879Y2 (en) AC elevator speed control device
JPS621182Y2 (en)
JPH0585470B2 (en)
JPS6317745B2 (en)
JP4568998B2 (en) Induction motor control device
JPH07291543A (en) Speed controller for electric motor
JP2635759B2 (en) Control device for elevator with reduction gear
JPH0796423B2 (en) Elevator control equipment
JPH07322665A (en) Controller for electric motor
JPH0585471B2 (en)
JPH0583471B2 (en)
JPH0750384Y2 (en) AC elevator landing control device
JPS6151515B2 (en)