JPS63177012A - Surface area measuring apparatus - Google Patents

Surface area measuring apparatus

Info

Publication number
JPS63177012A
JPS63177012A JP942287A JP942287A JPS63177012A JP S63177012 A JPS63177012 A JP S63177012A JP 942287 A JP942287 A JP 942287A JP 942287 A JP942287 A JP 942287A JP S63177012 A JPS63177012 A JP S63177012A
Authority
JP
Japan
Prior art keywords
gas
sample
main body
specimen
surface area
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP942287A
Other languages
Japanese (ja)
Inventor
Naohiro Nojiri
野尻 直弘
Kinji Yaguchi
矢口 金二
Yurio Ichiki
一岐 百合雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
OOKURA RIKAGAKU KENKYUSHO KK
Mitsubishi Petrochemical Co Ltd
Original Assignee
OOKURA RIKAGAKU KENKYUSHO KK
Mitsubishi Petrochemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by OOKURA RIKAGAKU KENKYUSHO KK, Mitsubishi Petrochemical Co Ltd filed Critical OOKURA RIKAGAKU KENKYUSHO KK
Priority to JP942287A priority Critical patent/JPS63177012A/en
Publication of JPS63177012A publication Critical patent/JPS63177012A/en
Pending legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices With Unspecified Measuring Means (AREA)

Abstract

PURPOSE:To enhance not only the efficiency of measuring work but also measuring accuracy, by providing an apparatus main body, a control apparatus and an order/ operation apparatus to continuously and automatically perform each process of a surface area measuring method and processing a plurality of specimens in parallel. CONSTITUTION:Gas supply sources 6, 7 for supplying the pretreating adsorbing and desorbing gas of a specimen and the transport gas thereof, a gas flow rate control system 5 for mixing said gases in a definite ratio to transport the same and gas flow passage selecting cocks 10a-10d for selectively performing the opening and closing of the gas flow passages to specimen pipes 9 (9a-9h) are provided to an apparatus main body. Further, an electric furnace 13 for heating the specimen pipes 9 a liquid nitrogen receiver 14, a water receiver 15, a heat conductive detector 26 for detecting the amount of the gas adsorbed by or desorbed from the specimen and an adsorbing/ desorbing amount calibration system 23 for calibrating the amount of the adsorbed or desorbed gas are provided. All of the processes of the specimen due to a surface area measuring method are automatically and collectively performed inclusive of the pretreatment of the specimen and a large number of specimens are measured by parallel operation and a measuring time is shortened and the working quantity of a measuring person is reduced and working content can be simplified.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、BET比表面積測定法を適用し、自動的に試
料の表面積を測定し得る表面積測定装置に関するもので
ある。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a surface area measuring device that can automatically measure the surface area of a sample by applying the BET specific surface area measuring method.

(従来の技術) 従来より触媒等の試料の表面積を測定する方法として[
3ET比表面積測定法はよく知られており、またこの測
定法を適用して試料の表面積を測定するために、各種の
装置が市販されている。
(Prior art) As a conventional method for measuring the surface area of samples such as catalysts, [
The 3ET specific surface area measurement method is well known, and various devices are commercially available for measuring the surface area of a sample by applying this measurement method.

しかし上記装置は、BET比表面積測定法により、試料
の表面積を測定する各過程、即ら■試料の秤崩■試料の
前処理■試料へ吸着または試料から脱着したガス胎の測
定■左記ガス量の検定■試料の精秤■試料表面積の搾出
という各過程を完全に自動的に行うもの1はなかった。
However, the above-mentioned device uses the BET specific surface area measurement method to measure the surface area of a sample in each process, namely: - Sample weighing - Sample pretreatment - Measurement of gas particles adsorbed to or desorbed from the sample - Volume of the gases listed on the left. There has never been a method that completely automatically performs the following processes: - Verification - Precise weighing of the sample - Squeezing out the surface area of the sample.

(発明が解決しようとする問題点) 従来は上記のように試料の表面積を測定する各過程にお
いて、多数の試料を完全に自動的に処理するものではな
かったために測定に長時量を要し、また測定作業者の作
業量も多く、作業内容ちはん雑であるという問題点があ
った。
(Problems to be Solved by the Invention) Conventionally, in each process of measuring the surface area of a sample as described above, a large number of samples were not completely automatically processed, so the measurement required a long amount of time. In addition, there were problems in that the amount of work required by the measuring operator was large and the work was quite sloppy.

(問題点を解決するための手段) 本発明は上記問題点を解決するために、上記表面積測定
法の各過程を連続して自動的に行い、かつ複数の試料を
並行処理し得るようにし、測定作業の能率化、測定精度
の向上を計ったものであり、試料の前処理用、吸着・脱
着用ガス及び輸送用ガスを供給する両ガス供給源と、両
ガスを一定比に混合し、輸送するガス流(至)制御系と
、複数の試料管へのガス流路のrW)閉を選択的に行う
ガス流路選択機構と、複数の試料管を設置する試料管設
置部と、試料管を加熱、冷却及び加温する加熱炉、液体
窒素受器及び水受器と、それらを回転かつ独立に上下動
する駆動系と、試料に吸着または試料からIB2着した
ガス量を検出する熱伝導度検出器と、吸着または脱着し
たガス量を較正する吸着・脱wI開校正系とを具備した
装置本体と、装置本体の制W装置と、装置本体への制御
指令及び装置本体から転送される測定データの演算を行
う指令、8Ilin装置とより構成されてなる表面積測
定1A置を提供するものである。
(Means for Solving the Problems) In order to solve the above problems, the present invention continuously and automatically performs each process of the surface area measurement method, and enables parallel processing of a plurality of samples. This system aims to streamline measurement work and improve measurement accuracy, and includes two gas supply sources that supply gas for sample pretreatment, adsorption/desorption gas, and transportation gas, and a system that mixes both gases at a fixed ratio. A gas flow control system to be transported, a gas flow path selection mechanism that selectively closes gas flow paths to multiple sample tubes, a sample tube installation section that installs multiple sample tubes, and a sample tube installation section that installs multiple sample tubes; A heating furnace that heats, cools, and warms the tube, a liquid nitrogen receiver and a water receiver, a drive system that rotates them and moves them up and down independently, and a heat source that detects the amount of gas adsorbed to or attached to the sample. A device body equipped with a conductivity detector, an adsorption/desorption wI open calibration system that calibrates the amount of adsorbed or desorbed gas, a W control device in the device body, and control commands to the device body and information transferred from the device body. This provides a surface area measuring device 1A consisting of an 8Ilin device and instructions for calculating measurement data.

〈実施例) 本発明の実施例として、試料管を8本設置し得る構成の
表面積測定装置について説明する。
<Example> As an example of the present invention, a surface area measuring device having a configuration in which eight sample tubes can be installed will be described.

第1図は本発明の一実施例の表面積測定装置の概略構成
図であり、本測定装置1は第1図に示すように、大別し
て装置本体2、制御装置3及び指令、演算装置4より構
成される。
FIG. 1 is a schematic configuration diagram of a surface area measuring device according to an embodiment of the present invention. As shown in FIG. configured.

装置本体2の構成について以下説明する。The configuration of the device main body 2 will be explained below.

第2図は装置本体の系統図である。FIG. 2 is a system diagram of the main body of the device.

ガス流ffl i、II御系5は、ヘリウムガス供給源
6及び窒素ガス供給源7より供給される。輸送用として
のヘリウムガス及び前処理用、吸着・脱着用としての窒
素ガスの流量をマスフローコント1コーラ8により制御
し、所定の混合比を有プ゛る混合ガスとして、各試料管
9a〜9hに輸送するものである。
The gas flow ffl i, II control system 5 is supplied from a helium gas source 6 and a nitrogen gas source 7. The flow rates of helium gas for transportation and nitrogen gas for pretreatment and adsorption/desorption are controlled by mass flow controller 1 cola 8, and each sample tube 9a to 9h is mixed as a mixed gas with a predetermined mixing ratio. It is intended to be transported to

ガス流f!1選択用コック10a〜10dは、各試料管
9a〜9h、!:専!11により供給されており、ガス
流量制御系より輸送されてくる混合ガスが指定された試
料管に流入するように、ガス流路を選択的に開閉するも
のである。
Gas flow f! 1 selection cocks 10a to 10d correspond to each sample tube 9a to 9h,! : Dedicated! 11, and selectively opens and closes the gas flow path so that the mixed gas transported from the gas flow rate control system flows into a designated sample tube.

各試料管98〜9hは第1図に示すように、装置本体2
の試料管設置部12に設置されるようになっている。
As shown in FIG.
It is designed to be installed in the sample tube installation section 12 of .

試料管設置部12の下方には、電気炉13、液体窒素受
器14、水受器15が4!置体16上に載置されている
Below the sample tube installation part 12, there are four electric furnaces 13, liquid nitrogen receivers 14, and water receivers 15! It is placed on the stand 16.

液体窒素受器14は導管17を介して液体窒素供給源1
8に結合され、液体窒素供給源18より液体窒素を自動
的に補給されるようになっている。
The liquid nitrogen receiver 14 is connected to the liquid nitrogen supply source 1 via a conduit 17.
8 so that liquid nitrogen is automatically supplied from a liquid nitrogen supply source 18.

また電気炉13の温度及び液体窒素受器14の液体窒素
の液位は指令、演算装W14によりそれぞれの指定位に
制御されている。
Further, the temperature of the electric furnace 13 and the liquid level of liquid nitrogen in the liquid nitrogen receiver 14 are controlled to respective designated positions by a command and arithmetic unit W14.

さらに載置体16は駆動モータ19により回転可能であ
り、また電気炉13、液体窒素受器14、水受器15は
各々独立に、それぞれの駆動系20.21.22によっ
て上下動可能となっている。
Furthermore, the mounting body 16 can be rotated by a drive motor 19, and the electric furnace 13, liquid nitrogen receiver 14, and water receiver 15 can each be moved up and down independently by their respective drive systems 20, 21, and 22. ing.

吸着・脱着量較正系23は試料へ吸着または試料より脱
着した窒素ガス量を較正するものであり、51吊管24
、ロータリーバルブ25等より構成される。
The adsorption/desorption amount calibration system 23 calibrates the amount of nitrogen gas adsorbed to or desorbed from the sample, and includes a hanging pipe 24
, rotary valve 25, etc.

熱伝導度検出器26は試料へ吸着または試料より脱着し
た窒素ガス量を検出ブるものである熱伝導度検出器26
を用いることによって0゜0’l”/(lの精度で試料
の表面積を測定することが可能である。
The thermal conductivity detector 26 is a thermal conductivity detector 26 that detects the amount of nitrogen gas adsorbed to or desorbed from the sample.
By using , it is possible to measure the surface area of a sample with an accuracy of 0°0'l''/(l.

制御装置3について説明する。The control device 3 will be explained.

第3図は装置本体の制御系を示ず系統図である。FIG. 3 is a system diagram that does not show the control system of the main body of the apparatus.

制御l装置3は装置本体2の各駆動系の制■をを指令、
演算装置4からの制御指令に従って、内蔵されたリレー
27を切替えることによって行うものである。
The control device 3 commands the control of each drive system of the device main body 2,
This is done by switching the built-in relay 27 in accordance with a control command from the arithmetic unit 4.

指令、演惇装置4は第3図に示すように、コンピュータ
28、ディスプレイ29、プリンタ30より構成される
The command and performance device 4 is comprised of a computer 28, a display 29, and a printer 30, as shown in FIG.

コンピュータ28は装置本体2に各位制御指令を発し、
装置本体2から転送されてくる測定データにより8#痺
を行い、試料の表面積の篩出値をディスプレイ29に表
示、またはプリンタ30に出力する。
The computer 28 issues control commands to the device main body 2,
8# numbing is performed using the measurement data transferred from the apparatus main body 2, and the sieving value of the surface area of the sample is displayed on the display 29 or output to the printer 30.

次に、本測定装置による試料の表面積の測定方法につい
て測定過程の順序に従って説明する。
Next, a method for measuring the surface area of a sample using this measuring device will be described in accordance with the order of the measurement process.

まず、各試料管9a〜9hに秤量した試料を挿入し、第
1図に示す試Fl管設置部12に設置する。
First, a weighed sample is inserted into each of the sample tubes 9a to 9h, and the sample tubes are placed in the sample Fl tube installation section 12 shown in FIG.

次に、指令、演n装置4に測定条件を入力し、装置本体
2を始動する。
Next, the measurement conditions are inputted into the instruction and execution device 4, and the device main body 2 is started.

装置本体2では、指令、演算装置4からの始動指令によ
りガス流路選択用コック10aが指定された試料管9a
へのガス流路を開放し、混合ガスはガス流層制御系5よ
り試料管9aに流入する。
In the apparatus main body 2, a sample tube 9a to which a gas flow path selection cock 10a is designated by a command or a start command from the arithmetic unit 4 is installed.
The mixed gas flows from the gas flow layer control system 5 into the sample tube 9a.

流入した混合ガスはその後、ガス流路選択用コック10
dを通り排出される。
The inflowing mixed gas then passes through the gas flow path selection cock 10.
It is discharged through d.

続いて、載置体16が回転し、電気炉13が試料管9a
の下方に移動、位置し、さらに電気炉13は上方に移動
し、試料管9aをその内部に挿入する。
Subsequently, the mounting body 16 is rotated, and the electric furnace 13 is moved to the sample tube 9a.
The electric furnace 13 is then moved upward and the sample tube 9a is inserted thereinto.

試料管9aは、電気炉13により所定温度で加熱される
The sample tube 9a is heated at a predetermined temperature by the electric furnace 13.

所定時間袋、電気炉13は下方に移動し、試料管98は
電気炉13から排出されて、冷却される。
The bag and the electric furnace 13 are moved downward for a predetermined period of time, and the sample tube 98 is discharged from the electric furnace 13 and cooled.

試料管9aが室温まで冷却されると、ガス流路選択用コ
ック10b、10Cにより試料管9aへのガス流路が開
放され、試Fl管9aと熱伝導度検出器26とを結ぶガ
ス流路が聞かれる。
When the sample tube 9a is cooled to room temperature, the gas flow path to the sample tube 9a is opened by the gas flow path selection cocks 10b and 10C, and the gas flow path connecting the sample Fl tube 9a and the thermal conductivity detector 26 is opened. is asked.

続いて載置体16が回転し、試料管9aの下方に液体窒
素受器14が移動、位置し、さらに液体窒素受114は
上方に移動して試料管9aを挿入し、所定時間冷却する
Subsequently, the mounting body 16 is rotated, and the liquid nitrogen receiver 14 is moved and positioned below the sample tube 9a, and the liquid nitrogen receiver 114 is further moved upward to insert the sample tube 9a and cool it for a predetermined period of time.

この時、熱伝導度検出器26は、試料tg9aに充填さ
れた試料への窒素ガス吸着酋のピーク値を検出する。
At this time, the thermal conductivity detector 26 detects the peak value of nitrogen gas adsorption to the sample filled in the sample tg9a.

この検出(1(+は指令、演粋装M4に転送される。This detection (1 (+ is a command, transferred to performance equipment M4.

所定時間後、液体窒素受器14は下方へ移動し、続いて
載置体16の回転により試料管9aの下方には水受器1
5が位置し、同様に上方に移し試料管9aを挿入し、液
体窒素温度まで冷7J1された試料管9aを加温する。
After a predetermined time, the liquid nitrogen receiver 14 moves downward, and then, due to the rotation of the mounting body 16, the water receiver 1 is placed below the sample tube 9a.
5 is located, the sample tube 9a is similarly moved upward, and the sample tube 9a, which has been cooled 7J1 to the temperature of liquid nitrogen, is heated.

加温により、試料より窒素が脱着し、この時熱伝導度検
出器26は、試料からの窒素脱着艶のピーク値を検出す
る。
Due to the heating, nitrogen is desorbed from the sample, and at this time the thermal conductivity detector 26 detects the peak value of the nitrogen desorption gloss from the sample.

この検出値も同様に指令、演鋒装置4に転送される。This detected value is also transferred to the instruction and focusing device 4 in the same way.

以上の一連の動作が試料管9b〜9hに関し、順次繰返
される。
The above series of operations are sequentially repeated for the sample tubes 9b to 9h.

ここで、試料管9aが液体窒素受器14内に挿入されて
いると同時に、試料管9bl:lt電気炉13内に挿入
されているというように、本測定装置では2つの過程も
同時に行い得る動作形態になつCいるため、測定時間が
大幅に短縮される。
Here, this measuring device can perform two processes at the same time, such as the sample tube 9a being inserted into the liquid nitrogen receiver 14 and the sample tube 9bl:lt being inserted into the electric furnace 13 at the same time. Since the operation mode is changed, the measurement time is significantly shortened.

全ての試料管98〜9hに関して、上記の一連の動作が
終了すると、吸着・脱着吊較正系23から所定量の窒素
ガスが熱伝導度検出器26に輸送され、窒素ガス輸送量
のピーク値が検出される。
When the series of operations described above is completed for all sample tubes 98 to 9h, a predetermined amount of nitrogen gas is transported from the adsorption/desorption suspension calibration system 23 to the thermal conductivity detector 26, and the peak value of the amount of nitrogen gas transported is determined. Detected.

この検出値もまた、指令、演粋装置4に転送される。This detected value is also transferred to the command and control device 4.

装置本体2の全ての動作が終了すると、指令、fief
 1g装置4においては装置本体2より転送され、また
測定データ値により演惇も行われ、試料の表面積もn出
される。
When all the operations of the device body 2 are completed, the command, fief
In the 1g device 4, data is transferred from the device main body 2, and calculations are performed based on the measured data values, and the surface area of the sample is also calculated.

表面積の粋出伯はディスプレイ29に表示、またはプリ
ンタ30に出力することができる。
The surface area value can be displayed on the display 29 or output to the printer 30.

以上のようなXi!i置の構成と動作により試料の表面
積を測定する時間は大幅に短縮され、また自動化により
測定作業者の作IAFIIは大幅に軽減され1作業内容
もi純化されることとなった。
Xi like the above! The time required to measure the surface area of a sample is greatly shortened by the configuration and operation of the i-position, and automation also greatly reduces the amount of work performed by the measurement operator, making the content of each task more i-simplified.

さらに、測定の自動化により測定作業者に依存する測定
誤差は消失し、客観的で信頼性の高い測定が可能となっ
た。
Furthermore, measurement automation eliminates measurement errors that depend on the measurement operator, making objective and highly reliable measurements possible.

また、熱伝導度検出器の採用により0.01llI2/
 (Jという非常に高精度の測定も実現できた。
In addition, by adopting a thermal conductivity detector, 0.01llI2/
(We were also able to achieve extremely high precision measurement of J.

(発明の効果) 試料の表面積測定方法の各過程を試料の前処理を含め全
工程を自動的に一括して行い、また多数の試料を並行操
作で測定し得る装置構成としたことにより測定時量を大
幅に短縮し、測定作業者の作業量を大幅に軽減し、作業
内容を非常に単純化した。
(Effects of the invention) All steps of the method for measuring the surface area of a sample, including pretreatment of the sample, are automatically performed all at once, and the device is configured to be able to measure multiple samples in parallel, thereby reducing the time required for measurement. This greatly reduces the amount of work required for measurement workers, and greatly simplifies the work involved.

さらに測定の自動化により測定作業者に依存する測定誤
差は消失し、再現性の高い客観的測定が可能となり、ま
た熱伝導度検出器の採用により高精度の測定も実現され
た。
Furthermore, measurement automation has eliminated measurement errors that depend on the measurement operator, making it possible to perform objective measurements with high reproducibility, and the adoption of a thermal conductivity detector has also made it possible to achieve highly accurate measurements.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明表面積測定装置の概略構成図、第2図は
測定Vt装置本体系統図、第3図は測定装置F1本体の
制御系を示す概念図である。 1・・・本測定装置、2・・・装置本体、3・・・制御
装置、4・・・指令、演算装置、5・・・ガス流量制御
系、6・・・ヘリウムガス供給源、7・・・窒素ガス供
給源、8・・・マスフローコントローラ、93〜9h・
・・試料管、10a〜10d・・・ガス流路選択用コッ
ク、13・・・電気炉、14・・・液体窒素受器、15
・・・水受器、23・・・吸着・脱@聞較正系、26・
・・熱伝導度検出器。
FIG. 1 is a schematic configuration diagram of the surface area measuring device of the present invention, FIG. 2 is a system diagram of the main body of the measurement Vt device, and FIG. 3 is a conceptual diagram showing the control system of the main body of the measuring device F1. DESCRIPTION OF SYMBOLS 1... Main measuring device, 2... Apparatus main body, 3... Control device, 4... Command, calculation device, 5... Gas flow rate control system, 6... Helium gas supply source, 7 ...Nitrogen gas supply source, 8...Mass flow controller, 93~9h・
...Sample tube, 10a-10d...Cock for gas flow path selection, 13...Electric furnace, 14...Liquid nitrogen receiver, 15
...Water receiver, 23...Adsorption/desorption@monitor calibration system, 26.
・Thermal conductivity detector.

Claims (1)

【特許請求の範囲】[Claims] 試料の前処理用、吸着・脱着用ガス及び輸送用ガスを供
給する両ガス供給源と、両ガスを一定比に混合し、輸送
するガス流量制御系と、複数の試料管へのガス流路の開
閉を選択的に行うガス流路選択機構と、複数の試料管を
設置する試料管設置部と、試料管を加熱、冷却及び加温
する加熱炉、液体窒素受器及び水受器と、それらを回転
かつ独立に上下動する駆動系と、試料に吸着または試料
から脱着したガス量を検出する熱伝導度検出器と、吸着
または脱着したガス量を較正する吸着・脱着量較正系と
を具備した装置本体と、装置本体の制御装置と、装置本
体への制御指令及び装置本体から転送される測定データ
の演算を行う指令、演算装置とより構成されてなる表面
積測定装置。
Both gas supply sources supply gas for sample pretreatment, adsorption/desorption gas, and transport gas, gas flow control system that mixes both gases at a fixed ratio and transports them, and gas flow paths to multiple sample tubes. a gas flow path selection mechanism that selectively opens and closes the sample tube, a sample tube installation section that installs a plurality of sample tubes, a heating furnace that heats, cools, and warms the sample tubes, a liquid nitrogen receiver, and a water receiver; A drive system that rotates and independently moves them up and down, a thermal conductivity detector that detects the amount of gas adsorbed to or desorbed from the sample, and an adsorption/desorption amount calibration system that calibrates the amount of gas adsorbed or desorbed. A surface area measuring device comprising: a device main body equipped with the device; a control device for the device main body; and a command and arithmetic device for calculating control commands to the device main body and measurement data transferred from the device main body.
JP942287A 1987-01-19 1987-01-19 Surface area measuring apparatus Pending JPS63177012A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP942287A JPS63177012A (en) 1987-01-19 1987-01-19 Surface area measuring apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP942287A JPS63177012A (en) 1987-01-19 1987-01-19 Surface area measuring apparatus

Publications (1)

Publication Number Publication Date
JPS63177012A true JPS63177012A (en) 1988-07-21

Family

ID=11719920

Family Applications (1)

Application Number Title Priority Date Filing Date
JP942287A Pending JPS63177012A (en) 1987-01-19 1987-01-19 Surface area measuring apparatus

Country Status (1)

Country Link
JP (1) JPS63177012A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106996766A (en) * 2017-03-01 2017-08-01 北京农业智能装备技术研究中心 A kind of airplane spray state monitoring apparatus and aircraft spraying medicine working area metering system

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5034592A (en) * 1973-07-30 1975-04-02

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5034592A (en) * 1973-07-30 1975-04-02

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106996766A (en) * 2017-03-01 2017-08-01 北京农业智能装备技术研究中心 A kind of airplane spray state monitoring apparatus and aircraft spraying medicine working area metering system
CN106996766B (en) * 2017-03-01 2019-06-14 北京农业智能装备技术研究中心 A kind of airplane spray state monitoring apparatus and aircraft spraying medicine working area metering system

Similar Documents

Publication Publication Date Title
US6649129B1 (en) Method and apparatus for concentrating a VOC sample
CN110308216B (en) Integrated analysis system for trace permanent impurity gas and water in gas and use method thereof
CN107884306B (en) Adsorption testing method and device
WO2020080404A1 (en) Temperature control analysis device and online analysis system having temperature control analysis device
CN201273896Y (en) Measuring apparatus for coal combustion tendency
CN108918717A (en) A kind of performance of the adsorbent test device
JP3809734B2 (en) Gas measuring device
CN114235941A (en) Direct detection device and method for non-methane total hydrocarbons in ambient air
JP2000187027A (en) Method and device for analyzing trace amount of organic compound
JPS63177012A (en) Surface area measuring apparatus
CN104458974A (en) Pretreatment device and method for determining trace hydrogen phosphide employing gas chromatography method
JPH03110444A (en) Method and device for measuring adsorption performance of solid adsorbent
JPH0755780A (en) High sensitivity measuring apparatus for ultra-trace ingredient in various gas by gas chromatograph
JPH04353743A (en) Method and apparatus for evaluating amount of impurity adsorption
CN207689443U (en) A kind of full-automatic total benzene analyzer
JPH0363566A (en) Analysis indication device of analyzing device
US9600001B2 (en) Devices, systems and methods for purging and loading sorbent tubes
CN215066378U (en) Catalyst dispersity and oxygen storage amount measuring device
US5689073A (en) Verification circuit for a fluid handling analytical instrument
CN221465216U (en) Dynamic specific surface area measuring device
JP2538067Y2 (en) Concentration analyzer
JP3471569B2 (en) Air pollution hazardous substance measuring device
CN118190740A (en) Full-automatic penetration evaluation device and method, and computer device and computer storage medium for executing the method
JP2001165918A (en) Gas chromatograph
WO2021059905A1 (en) Gas analysis method and gas analysis device