JPS63176817A - Fluid bearing - Google Patents

Fluid bearing

Info

Publication number
JPS63176817A
JPS63176817A JP634887A JP634887A JPS63176817A JP S63176817 A JPS63176817 A JP S63176817A JP 634887 A JP634887 A JP 634887A JP 634887 A JP634887 A JP 634887A JP S63176817 A JPS63176817 A JP S63176817A
Authority
JP
Japan
Prior art keywords
shaft
bearing
porous body
bearing surface
porous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP634887A
Other languages
Japanese (ja)
Inventor
Koichi Matsushita
松下 光一
Hiroyuki Suzuki
博之 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP634887A priority Critical patent/JPS63176817A/en
Publication of JPS63176817A publication Critical patent/JPS63176817A/en
Pending legal-status Critical Current

Links

Landscapes

  • Magnetic Bearings And Hydrostatic Bearings (AREA)

Abstract

PURPOSE:To avoid any defection of bearing end surfaces so as to prevent biting thereof by forming taper surfaces which enlarge outward on the end portions of the bearing surface of a porous body and connecting said taper surfaces to the bearing surface in arc forms. CONSTITUTION:A porous body 3 formed with cylindrical porous ceramics is fixedly fitted to a housing 2, and a shaft 1 rotates in it. When pressurized gas is supplied from an air supply hole 4 by an air supply pump 4a in this structure, the gas passes the porous body 3 from an air supply chamber 5 and blows out from the opening pore of a bearing surface 3a and then forms a gaseous film in a microclearance 6 so as to maintain the shaft 1. Taper surfaces 7 are formed on the inner surface end portions of the porous body 3, and the boundary portions 8 between respective taper surfaces 7 and the bearing surface 3a are connected together in form of circular arcs with the radius of r, and thereby even though the shaft 1 in its rotating state inclines a little bit, it can not be brought into contact with the end portions.

Description

【発明の詳細な説明】 〔発明の属する技術分野〕 本発明は流体軸受、特に軸受部材に多孔質体を用いた多
孔質流体気体・軸受の改良に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field to which the Invention Pertains] The present invention relates to a fluid bearing, and particularly to an improvement in a porous fluid gas bearing using a porous material as a bearing member.

〔従来技術〕[Prior art]

加圧気体を多孔質体を通して軸受面と軸の間の微小間隙
に噴出させ気体膜を形成し軸を非接触で支持する多孔質
静圧気体軸受は、軸の回転中に加圧気体の供給停止ある
いは加圧気体の供給圧力の低下などにより気体膜による
軸の支持力が失われた時、加圧気体の圧力の低下を検知
して軸の回転を停止させるような機構のもとで使用され
る。
Porous hydrostatic gas bearings eject pressurized gas through a porous material into a minute gap between the bearing surface and the shaft to form a gas film that supports the shaft without contact. Used with a mechanism that detects the drop in pressure of pressurized gas and stops rotation of the shaft when the supporting force of the shaft due to the gas film is lost due to stoppage or a drop in the supply pressure of pressurized gas. be done.

しかし、軸と軸につながる回転体に慣性があるために加
圧気体の圧力低下を検知しても軸の回転を瞬時に停止す
ることができない。特に軸受へ供給される加圧気体の圧
力が急速に降下した場合には、軸受が支持力を失ってか
ら軸の回転が停止するまで軸が軸受面と接触した状態で
回転する。
However, since the shaft and the rotating body connected to the shaft have inertia, the rotation of the shaft cannot be stopped instantaneously even if a drop in the pressure of the pressurized gas is detected. In particular, when the pressure of the pressurized gas supplied to the bearing drops rapidly, the shaft rotates in contact with the bearing surface until the shaft stops rotating after the bearing loses its supporting force.

多孔質体に多孔性セラミックスを使用した軸受では、軸
受面硬度が高くなるために軸と軸受面が接触しても軸の
硬度を高くしてあれば、かじりつきを起こしにくい。ま
た多孔質体に多孔性グラファイトを用いた時には、軸受
面の硬度が高いことに加え自己潤滑作用をもつことから
一層かじりつきは起こりにく(なる。このように多孔性
セラミックス又は多孔性グラファイトは、この種の静圧
気体軸受の軸受部材としてすぐれた性質をもつ。
In bearings that use porous ceramics for the porous body, the hardness of the bearing surface is high, so even if the shaft and bearing surface come into contact, galling is less likely to occur if the hardness of the shaft is high. Furthermore, when porous graphite is used as the porous body, galling is even less likely to occur due to the high hardness of the bearing surface and its self-lubricating effect. In this way, porous ceramics or porous graphite It has excellent properties as a bearing member for this type of hydrostatic gas bearing.

しかし、このような多孔性材料は硬度が高い反面、材質
的にもろ(局部的な応力集中に弱い。軸と軸受面が少し
傾いて接触した時に軸受面端部のみで接触がおこり、為
に応力の集中が起こってしまうので軸受面端部で欠損が
発生しやす(、そしてこの欠損した破片が軸受隙間に入
り込み、かじりつきを起こしてしまうという欠点があっ
た。
However, although such porous materials have high hardness, they are fragile (vulnerable to local stress concentration). Since stress concentration occurs, it is easy for defects to occur at the end of the bearing surface (and the defect is that these defective pieces enter the bearing gap and cause galling).

〔発明が解決しようとしている問題点〕本発明の目的は
、このような多孔質体の欠点を解消して軸と軸受面が接
触しても軸受端面の欠損を回避し、かじりつきを生じる
可能性を排除した多孔質静圧気体軸受を提供することで
ある。
[Problems to be Solved by the Invention] The purpose of the present invention is to eliminate such drawbacks of porous bodies, avoid damage to the bearing end surface even when the shaft and bearing surface come into contact, and eliminate the possibility of galling. An object of the present invention is to provide a porous hydrostatic gas bearing that eliminates the above problems.

〔問題点を解決するための手段〕 この目的は本発明の後述する実施例に従って多孔質体の
軸受面の端部に外方に向って拡大するようにテーパー面
を形成し、さらに軸受面とテーパー面が弧状で連続する
ように形成することにより、軸が軸受面に接触したとき
に軸受面に局部的な応力集中が生じないようにすること
によって達成される。
[Means for Solving the Problems] This purpose is to form a tapered surface expanding outward at the end of the bearing surface of a porous body according to an embodiment of the present invention to be described later, and further to form a tapered surface so as to expand outward. This is achieved by forming the tapered surface in an arcuate and continuous manner so that local stress concentration does not occur on the bearing surface when the shaft contacts the bearing surface.

すなわち、本発明の一実施例の多孔質静圧気体軸受は、
給気手段と給気孔を介して連絡している中空の給気室を
内面に設けたハウジングと、前記の給気質を閉じて軸受
面を形成するように前記のハウジングの内面に設けた多
孔質体とを備え、この多孔質体の軸受面は軸受面とR形
状で連続して外方に拡大するようにテーパー面を形成し
た端部を有している。
That is, the porous hydrostatic gas bearing according to one embodiment of the present invention has the following characteristics:
A housing having a hollow air supply chamber on its inner surface that communicates with the air supply means through an air supply hole, and a porous member provided on the inner surface of the housing so as to close the air supply and form a bearing surface. The bearing surface of this porous body has an end portion formed with a tapered surface so as to continuously expand outward in an R-shape with the bearing surface.

第1図は本発明の実施例の多孔質静圧気体軸受の基本的
な構造を示す断面図で、lは回転軸、2はハウジング、
3は円筒条の多孔性セラミックスからなる多孔質体であ
り、ハウジング2の内面に嵌着されている。4は給気孔
、4aは給気ポンプ、5はハウジング2と多孔質体3の
間に形成された中空の給気室、6は多孔質体3の軸受面
3aと軸1との間の微小間隙である。軸受面3aは支持
状態で軸lの表面と平行になるよう形成されている。
FIG. 1 is a sectional view showing the basic structure of a porous hydrostatic gas bearing according to an embodiment of the present invention, where l is a rotating shaft, 2 is a housing,
3 is a cylindrical porous body made of porous ceramics, which is fitted into the inner surface of the housing 2 . 4 is an air supply hole, 4a is an air supply pump, 5 is a hollow air supply chamber formed between the housing 2 and the porous body 3, and 6 is a small hole between the bearing surface 3a of the porous body 3 and the shaft 1. It is a gap. The bearing surface 3a is formed so as to be parallel to the surface of the shaft l in a supported state.

この構造で給気ポンプ4aにより給気孔4から加圧気体
を供給すると、給気室5から多孔質体3を通り軸受面3
aの開気孔から噴出し、微小間隙6に気体膜を形成し、
軸1を支持しながら加圧気体は排出される。
With this structure, when pressurized gas is supplied from the air supply hole 4 by the air supply pump 4a, it passes from the air supply chamber 5 through the porous body 3 to the bearing surface 3.
It is ejected from the open pores of a, forming a gas film in the micro gap 6,
The pressurized gas is discharged while supporting the shaft 1.

第2図は第1図の多孔質静圧気体軸受端部に本発明を実
施した状態を示す部分拡大図である。7はテーパー面、
8はテーパー面7と軸受面3aの境界部分で、中心○が
多孔質体内部にある半径rの円弧形状に形成されており
軸受面3aとテーパー面7を滑らかに結ぶ。多孔質体3
の端面3bには気体の洩れで防止するための処置が施さ
れている。端部の軸受すき間が奥の方より大きくなるよ
う構成されているので軸と軸受面が少し傾いて接触して
も、端部では接触せず境界8で接触する。
FIG. 2 is a partially enlarged view showing the state in which the present invention is implemented at the end of the porous hydrostatic gas bearing shown in FIG. 7 is a tapered surface,
Reference numeral 8 denotes a boundary between the tapered surface 7 and the bearing surface 3a, which is formed into an arc shape with a radius r and whose center is inside the porous body, and smoothly connects the bearing surface 3a and the tapered surface 7. porous body 3
The end face 3b of is provided with measures to prevent gas leakage. Since the bearing clearance at the end is larger than that at the back, even if the shaft and the bearing surface contact each other at a slight inclination, they will not contact at the end but at the boundary 8.

従って境界8に大きな応力がかかりやすいが、端部とは
異なり、軸受の外側方向にも多孔質があり、境界8は軸
受の外側方向からも支持されている事になるので欠損が
おこりにくい。即ち、軸1と軸受面3aが接触した時、
軸受面3aの端部の円弧形状の境界部分8とテーパー面
7が応力集中を効果的に回避して多孔質体3の応力集中
による欠損を防止する。境界8が一部欠けても、その欠
けた部分はテーパー面7により外部と連通ずるので空気
溜りになりに<<、溜った空気の弾性で軸1が振動する
ことがない。又テーパー面7と軸受面3aとの境界を円
弧形状にした事により、境界部と軸表面との接触面積が
広がり境界部の摩耗や軸の欠損等が発生しにくくなって
いる。
Therefore, a large stress is likely to be applied to the boundary 8, but unlike the end portion, the bearing is also porous toward the outside, and the boundary 8 is also supported from the outside of the bearing, making it difficult for breakage to occur. That is, when the shaft 1 and the bearing surface 3a come into contact,
The arc-shaped boundary portion 8 and the tapered surface 7 at the end of the bearing surface 3a effectively avoid stress concentration, thereby preventing damage to the porous body 3 due to stress concentration. Even if a part of the boundary 8 is chipped, the chipped part communicates with the outside through the tapered surface 7, so that it becomes an air pocket and the shaft 1 does not vibrate due to the elasticity of the collected air. Further, by making the boundary between the tapered surface 7 and the bearing surface 3a into an arc shape, the contact area between the boundary and the shaft surface is expanded, and wear of the boundary and damage to the shaft are less likely to occur.

境界部のみを円弧形状とし、テーパー面7は一定のテー
パー角としているので製作時に加工が容易である。
Since only the boundary portion has an arc shape and the tapered surface 7 has a constant taper angle, processing is easy during manufacturing.

以上ラジアル軸受について本発明の詳細な説明したが、
スラスト軸受の軸受面端部に本発明を実施しても同様の
効果を奏する。又、多孔質側ではなく軸受端部に面する
軸表面に隙間が広がるようテーパー面を形成し境界部を
円弧形状としてもよい。
Although the present invention has been described in detail regarding radial bearings above,
Even if the present invention is applied to the end portion of the bearing surface of a thrust bearing, similar effects can be obtained. Alternatively, a tapered surface may be formed on the shaft surface facing the end of the bearing instead of the porous side so as to widen the gap, and the boundary portion may be formed into an arc shape.

〔効 果〕〔effect〕

以上から明らかなように本発明により多孔質静圧気体軸
受の軸と軸受面との不測の接触による軸受端面の欠損の
発生を回避し、かじりつきを生じる可能性を排除するこ
とができるが、更に本発明の効果として次のものがある
As is clear from the above, the present invention can avoid the occurrence of damage to the bearing end face due to unexpected contact between the shaft of the porous hydrostatic gas bearing and the bearing surface, and eliminate the possibility of galling. The effects of the present invention include the following.

(1)軸受間隙が小さくても軸受大端部がテーパー状に
拡がっているため軸の軸受穴への組み込みが容易になる
(1) Even if the bearing gap is small, the large end of the bearing is tapered, making it easy to assemble the shaft into the bearing hole.

(2)軸の回転中の急な負荷変動等により軸と軸受とが
接触した場合であっても、軸表面のキズの発生、軸受端
面への応力集中が回避される。多孔質体に多孔性グラフ
ァイトを用いた場合には、多孔性グラファイトか自己潤
滑作用をもつが、この作用は本発明に局所への応力集中
排除効果とあいまってかじりつき防止効果を増大する。
(2) Even if the shaft and the bearing come into contact due to sudden changes in load during rotation of the shaft, scratches on the shaft surface and stress concentration on the bearing end face are avoided. When porous graphite is used as the porous body, the porous graphite has a self-lubricating effect, and this effect, together with the effect of eliminating local stress concentration in the present invention, increases the galling prevention effect.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例の多孔質静圧気体軸受の全体構
造を示す断面図、第2図は同要部拡大図である。 1は軸、2はハウジング、3は多孔質体、7はテーパー
面、8は境界部分。
FIG. 1 is a sectional view showing the overall structure of a porous hydrostatic gas bearing according to an embodiment of the present invention, and FIG. 2 is an enlarged view of the essential parts thereof. 1 is a shaft, 2 is a housing, 3 is a porous body, 7 is a tapered surface, and 8 is a boundary portion.

Claims (4)

【特許請求の範囲】[Claims] (1)多孔質体の噴出面と該面に対向する面とで形成さ
れる隙間を平行部、弧状部、テーパー部の順に端部に向
って構成したことを特徴とする流体軸受。
(1) A hydrodynamic bearing characterized in that a gap formed between an ejection surface of a porous body and a surface opposing the surface is formed in the order of a parallel portion, an arcuate portion, and a tapered portion toward the end.
(2)前記噴出面が平行部、弧状部、テーパー面の順に
端部に向って構成されていることを特徴とする特許請求
の範囲第1項記載の流体軸受。
(2) The hydrodynamic bearing according to claim 1, wherein the ejection surface includes a parallel portion, an arcuate portion, and a tapered surface in this order toward the end.
(3)前記の多孔質体が多孔性セラミツクスである特許
請求の範囲第1項記載の流体軸受。
(3) The fluid bearing according to claim 1, wherein the porous body is porous ceramics.
(4)前記の多孔質体が多孔性グラフアイトである特許
請求の範囲第1項記載の流体軸受。
(4) The fluid bearing according to claim 1, wherein the porous body is porous graphite.
JP634887A 1987-01-14 1987-01-14 Fluid bearing Pending JPS63176817A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP634887A JPS63176817A (en) 1987-01-14 1987-01-14 Fluid bearing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP634887A JPS63176817A (en) 1987-01-14 1987-01-14 Fluid bearing

Publications (1)

Publication Number Publication Date
JPS63176817A true JPS63176817A (en) 1988-07-21

Family

ID=11635865

Family Applications (1)

Application Number Title Priority Date Filing Date
JP634887A Pending JPS63176817A (en) 1987-01-14 1987-01-14 Fluid bearing

Country Status (1)

Country Link
JP (1) JPS63176817A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0345657A (en) * 1989-07-14 1991-02-27 Nichinou Kagaku Kogyo Kk Manufacture of odorless paprika coloring matter
JPH0348015A (en) * 1989-07-14 1991-03-01 Canon Inc Fluid bearing
US6494620B1 (en) 1999-10-07 2002-12-17 Canon Kabushiki Kaisha Fluid bearing and rotary drive apparatus using the same
JP2016011671A (en) * 2014-06-27 2016-01-21 日本精工株式会社 Driving device, machine tool, and semiconductor manufacturing device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0345657A (en) * 1989-07-14 1991-02-27 Nichinou Kagaku Kogyo Kk Manufacture of odorless paprika coloring matter
JPH0348015A (en) * 1989-07-14 1991-03-01 Canon Inc Fluid bearing
JPH0549711B2 (en) * 1989-07-14 1993-07-27 Nichino Kagaku Kogyo Kk
US6494620B1 (en) 1999-10-07 2002-12-17 Canon Kabushiki Kaisha Fluid bearing and rotary drive apparatus using the same
JP2016011671A (en) * 2014-06-27 2016-01-21 日本精工株式会社 Driving device, machine tool, and semiconductor manufacturing device

Similar Documents

Publication Publication Date Title
JPH11264416A (en) Ball bearing for high rotation speed
US3058785A (en) Gas lubricated bearings
JPS63176817A (en) Fluid bearing
JP3652187B2 (en) Fluid bearing
KR960034783A (en) Dynamic pressure gas bearing structure
JPH0361715A (en) Self-aligning bearing
JP7482000B2 (en) Tilting pad journal bearing and rotating machine equipped with same
JPS62177315A (en) Porous static pressure gas bearing
JPS5838648B2 (en) Porous hydrostatic gas bearing
JP2000145778A (en) Hydrostatic gas beraring device with vacuum sucking mechanism
JPH0343028B2 (en)
JP3123742B2 (en) Hydrostatic gas bearing
JPS5870003A (en) Scroll fluid machine
JP2711584B2 (en) Fluid bearing device
JP3485595B2 (en) Hydrostatic gas bearing spindle
JPH0348015A (en) Fluid bearing
JPS62141309A (en) Porous static pressure gas bearing
JPH04136322U (en) air bearing device
JP2560501Y2 (en) Hydrodynamic bearing
JP3459661B2 (en) Dynamic pressure air bearing
JPS5829292Y2 (en) Kitaisei Atsujikuuke
JP2017009112A (en) Hydrostatic pressure gas bearing device and guide roller for filamentous member using hydrostatic pressure gas bearing device
JPH04266615A (en) Static pressure porous gas bearing
JP2003336595A (en) Seal structure for turbo molecular pump
JP2004230496A (en) Rotary chuck mechanism