JPS63176489A - Electrode for electrolysis - Google Patents

Electrode for electrolysis

Info

Publication number
JPS63176489A
JPS63176489A JP62006139A JP613987A JPS63176489A JP S63176489 A JPS63176489 A JP S63176489A JP 62006139 A JP62006139 A JP 62006139A JP 613987 A JP613987 A JP 613987A JP S63176489 A JPS63176489 A JP S63176489A
Authority
JP
Japan
Prior art keywords
layer
electrolysis
electrode
metal
passivated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62006139A
Other languages
Japanese (ja)
Inventor
Toshiro Igarashi
五十嵐 寿郎
Kazuhide Miyazaki
宮崎 和英
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Mining and Smelting Co Ltd
Original Assignee
Mitsui Mining and Smelting Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Mining and Smelting Co Ltd filed Critical Mitsui Mining and Smelting Co Ltd
Priority to JP62006139A priority Critical patent/JPS63176489A/en
Priority to GR871281A priority patent/GR871281B/en
Publication of JPS63176489A publication Critical patent/JPS63176489A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electrodes For Compound Or Non-Metal Manufacture (AREA)

Abstract

PURPOSE:To prolong the service life of an electrode for electrolysis and to enhance productivity and profitability by providing a coated layer and a packed bed consisting of metal which is not passivated and insoluble in an electrolyte and different with metal to be passivated to holes provided on the surface of a base material consisting of the metal to be passivated. CONSTITUTION:In an electrode used in the case of collecting metal or the like by electrolysis, holes are provided on the surface of a base material 1 consisting of metal or alloy which is passivated in the case of polarizing it in an electrolytic soln. At least one part or all parts of the inner surfaces of the holes provided to the base material 1 are covered with a first layer 2 consisting of one kind of metal, alloy, a compd. or a mixture thereof which is not passivated in the case of polarizing it in the electrolytic soln. and is insoluble therein. Then a second layer 3 consisting of metal, alloy or the like compd. which is different from them is applied on the first layer 2 and packed. Thereby the first and second layers 2, 3 do not fall in the case of peeling and collecting an electrolytic layer 4 and the electrical performance of the electrode is maintained over a long period.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は電解用電極に関し、詳しくは不動態化する金属
等からなる基体の表面に孔を設けて、この孔に不動態化
しない、電解液に不溶性の金属等からなる異なった2層
を設けることにより、電気分解による金属等の採取にお
ける電極を長寿命化させ、ひいては生産性、経済性等を
顕著に向上させた電解用電極に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to an electrode for electrolysis, and more specifically, the present invention relates to an electrode for electrolysis, and more specifically, pores are provided on the surface of a substrate made of a metal or the like to be passivated, and the pores are filled with an electrode for electrolysis that is not passivated. The present invention relates to an electrode for electrolysis, which has two different layers made of metals etc. insoluble in liquid, thereby extending the life of the electrode for collecting metals etc. by electrolysis, and thereby significantly improving productivity, economic efficiency, etc.

[従来技術とその問題点] 従来、二酸化マンガンを始めとして、スズ、亜鉛、銅、
ニッケル等が電解により採取されている。
[Prior art and its problems] Conventionally, manganese dioxide, tin, zinc, copper,
Nickel etc. are extracted by electrolysis.

この電解に用いられる電極としては、例えば、二酸化マ
ンガンのアノードとしては、鉛合金や黒鉛等の炭素材料
が用いられていたが、不純物の存在や機械的強度等の観
点から、チタンにほぼ代替されている。しかし、チタン
は電解の進行とともに不動態化現象を起こすため、電流
密度を高くできないという制約がある。従って、従来は
電流密度を約50〜60A / ffl程度と低く抑え
て、不動態化現象を最小限にする方法がとられていた。
For the electrodes used in this electrolysis, for example, carbon materials such as lead alloys and graphite have been used as anodes for manganese dioxide, but due to the presence of impurities and mechanical strength, titanium has almost been replaced. ing. However, since titanium undergoes a passivation phenomenon as electrolysis progresses, there is a restriction that the current density cannot be increased. Therefore, the conventional method has been to keep the current density as low as about 50 to 60 A/ffl to minimize the passivation phenomenon.

このように、二酸化マンガンの電解[取は、亜鉛、銅、
ニッケル、スズ、アンチモン等の様な他の金属の電解採
取と比較して、電流密度が1/8〜1/10であるため
、電極単位面積当りの生産量が極めて小さく、この点が
電解の高速化およびコストダウンにとって避けることの
できない問題点となっていた。
In this way, electrolysis of manganese dioxide [takes zinc, copper,
Compared to electrowinning of other metals such as nickel, tin, antimony, etc., the current density is 1/8 to 1/10, so the production amount per unit area of the electrode is extremely small, and this point is the main reason for electrolysis. This has become an unavoidable problem for increasing speed and reducing costs.

特に、従来のチタン板7ノードを用いた電解操業におい
ては、不動態化するぎりぎりの電流密度で電解を行って
いたため、摺電圧が常に上昇傾向にあることは避けられ
ず、必要に応じてアノードの研磨や逆電解などを行って
チタン表面の不動態化膜を除去する必要があり、繁雑な
操業を行っていた。
In particular, in conventional electrolysis operations using 7-node titanium plates, electrolysis was carried out at a current density that was at the limit of passivation, so it was inevitable that the sliding voltage would always tend to rise, and the anode It was necessary to remove the passivation film on the titanium surface by polishing and reverse electrolysis, making the operation complicated.

このように、二酸化マンガンの電解採取工程において電
流密度を大きくできないということは、生産性の観点か
ら極めて不利なことであった。
As described above, the inability to increase the current density in the electrowinning process of manganese dioxide is extremely disadvantageous from the viewpoint of productivity.

しかるに、近年、この^電流密度での不動態化現象を抑
止する目的での研究が行われるようになってきた。チタ
ン板に耐食性のある白金等のメッキを施したり、白金族
酸化物である酸化ルテニウム等をコーティングする方法
もその一例である。
However, in recent years, research has been conducted for the purpose of suppressing this passivation phenomenon at current density. Examples include plating a titanium plate with corrosion-resistant platinum or the like or coating it with a platinum group oxide such as ruthenium oxide.

また、耐久性に劣るという上記方法の欠点を解消するた
めに、チタン板に白金や白金族酸化物等よりなる第1層
をコーティングした後、さらにその表面を過酸他船や二
酸化マンガン等よりなる第2層で被覆する方法など、第
1層を保護し耐久性を持たせようとする電極の研究文献
等も報告されている。
In addition, in order to eliminate the disadvantage of the above method of poor durability, after coating a titanium plate with a first layer made of platinum or platinum group oxide, the surface is further coated with peracid, manganese dioxide, etc. There have also been reports of research literature on electrodes that attempt to protect the first layer and make it more durable, such as a method of covering the first layer with a second layer.

しかしながら、これらの電極は表面の被覆層が衝撃力に
極めて脆く、使用中にクラック等の原因で第2層が第1
層より崩落し、そのため基体と接している第1層の基体
からの剥離、溶出を早めることになり、電極として長期
間の使用に耐えることができない。
However, the surface coating layer of these electrodes is extremely brittle against impact forces, and due to cracks etc. during use, the second layer may become weaker than the first layer.
The layer collapses, and as a result, the first layer in contact with the substrate accelerates peeling and elution from the substrate, and cannot withstand long-term use as an electrode.

例えば二酸化マンガンの電解製造においては、アノード
に目的物が電着するので、この電着二酸化マンガンを1
回毎にアノードより剥ぎ取る必要があり、そのたびに上
記した白金メッキ膜や酸化物膜が電着二酸化マンガンと
共にチタン板表面より剥離してしまい、短期間のうちに
表面層が消滅すると同時に基体が不動態化を起こし、電
解不能の状態となる。また電解槽より頻繁にカソードの
出し入れを行う亜鉛電解採取の場合にも、その出し入れ
のたびにカソードがアノードに接触したり、ぶつかり合
ったりするために、7ノ一ド表面層の崩壊を来す。
For example, in the electrolytic production of manganese dioxide, the target substance is electrodeposited on the anode, so the electrodeposited manganese dioxide is
It is necessary to strip the anode every time, and each time the platinum plating film and oxide film described above are peeled off from the surface of the titanium plate along with the electrodeposited manganese dioxide, and the surface layer disappears within a short period of time, and at the same time the substrate causes passivation and becomes incapable of electrolysis. Furthermore, in the case of zinc electrowinning, where the cathode is frequently taken in and taken out of the electrolytic tank, the cathode comes into contact with or collides with the anode each time it is taken out and taken out of the electrolytic tank, resulting in the collapse of the 7-node surface layer. .

かかる理由のために、上記電極は未だ実用化の段階まで
に至らず、これらの問題点の解決が電解の高速化、生産
性向上等にとって焦眉の急務であった。
For these reasons, the above-mentioned electrodes have not yet reached the stage of practical use, and solving these problems is an urgent need for speeding up electrolysis and improving productivity.

[発明の目的] 本発明の目的は、このような従来技術の欠点を克服し、
電極の電気的性能を維持しつつ長寿命化させ、ひいては
生産性、経済性等の向上に寄与する電解用電極を提供す
ることにある。
[Object of the invention] The object of the present invention is to overcome the drawbacks of the prior art,
The object of the present invention is to provide an electrode for electrolysis that has a longer lifespan while maintaining the electrical performance of the electrode, and that contributes to improvements in productivity, economic efficiency, etc.

[問題点を解決するための手段および作用j本発明者ら
は、上記の問題を解決するため鋭意研究を重ねた結果、
電解液中で分極させたときに不動態化するバルブメタル
(弁金属)等からなる基体の表面を穿孔し、得られた孔
内表面に電解液中で分極させたときに不動態化せず、か
つ電解液に不溶性の金属、合金またはこれらの化合物の
1種からなる第1層を固定し、ざらに該孔内を第1層と
異なる電解液に不溶性の金属、合金またはこれらの化合
物の少なくとも1種からなる第2層で被覆、充填した電
極が、上記目的を達成できることを知見して、本発明に
至ったものである。
[Means and effects for solving the problem j As a result of extensive research by the present inventors in order to solve the above problem,
The surface of a base made of valve metal, etc., which becomes passivated when polarized in an electrolytic solution, is perforated, and the inner surface of the hole obtained does not become passivated when polarized in an electrolytic solution. , a first layer made of a metal, alloy, or one of these compounds insoluble in an electrolytic solution is fixed, and a metal, alloy, or one of these compounds insoluble in an electrolytic solution different from the first layer is roughly filled in the pores. The present invention was developed based on the finding that an electrode coated and filled with a second layer consisting of at least one type can achieve the above object.

すなわち本発明は、a)電解液中で分極させたときに不
動態化する金属または合金の少なくとも1種であり、そ
の表面に孔を有する基体と、b)該基体全表面のうち少
なくとも孔内の表面の一部または全部に設けられる、電
解液中で分極させたときに不動態化せず、かつ電解液に
不溶性の金属、合金、化合物またはこれらの混合物の1
種からなる第1層と、 C)該第1層が施された基体の全表面のうち少なくとも
孔内の一部または全部に孔を被覆、充填するように設け
られる、電解液中で分極させたときに不動態化せず、か
つ電解液に不溶性の第1層と異なる金属、合金、化合物
またはこれらの混合物の少なくとも1種からなる第2層
とを有することを特徴とする電解用電極である。
In other words, the present invention provides a) a base made of at least one metal or alloy that becomes passivated when polarized in an electrolytic solution, and having pores on its surface; and b) at least pores of the entire surface of the base A metal, alloy, compound, or a mixture thereof that does not become passivated when polarized in an electrolyte and is insoluble in the electrolyte, provided on a part or all of the surface of the
C) a first layer consisting of a seed, and C) polarized in an electrolytic solution provided so as to cover and fill at least some or all of the pores of the entire surface of the substrate on which the first layer is applied. An electrode for electrolysis, characterized in that it has a first layer that does not passivate and is insoluble in an electrolytic solution, and a second layer that is made of at least one kind of different metal, alloy, compound, or mixture thereof. be.

本発明において、基体として用いられる電解液中で分極
させたときに絶縁性被膜を形成する、いわゆる不動態化
する金属、合金または化合物とは、電解液に対して充分
な耐食性を有するもので、具体的にはチタン、ニオブ、
タンタル、ジルコニウム等のいわゆるバルブメタルや鉛
またはこれらの合金、化合物が挙げられる。これらの金
属等は複数を用いて基体としてもよい。この基体の形状
としては、平板、有孔平板、格子状板等の任意の形状の
ものが適用される。
In the present invention, the so-called passivating metal, alloy, or compound that forms an insulating film when polarized in an electrolytic solution used as a base is one that has sufficient corrosion resistance against the electrolytic solution, Specifically, titanium, niobium,
Examples include so-called valve metals such as tantalum and zirconium, lead, and alloys and compounds thereof. A plurality of these metals may be used as a base. As for the shape of this base body, any shape such as a flat plate, a flat plate with holes, a lattice-like plate, etc. is applicable.

本発明の電極は、この基体表面上に適当な大きさで穿孔
し、1またはそれ以上の孔を設ける。ここでいう適当な
大きさの孔とは、孔に被覆、充填された侵述する第25
が、電着した二酸化マンガン等を剥ぎ取るときの衝撃力
により脱離しないような大きさのものをいう。孔の形状
としては、通常は円筒状が考えられるが、いかなる形状
のものでもよく、例えば電極基体を厚み方向に貫通させ
た孔(貫通孔、第1図(ω参照)でも、片側だけ開かれ
た孔(閉塞孔、第1図(b)参照)でもよく、第1層や
第2層が衝撃により孔から剥離したり、外れたりしない
形状、大きざのものであれば、いかなるものであっても
よい。孔径が一定のとき、閉塞孔においては、孔の数が
多い程電極全体の表面積は大きくとれ、従って低い電解
電圧で高い電流密度がとれることになるが、孔数が多す
ぎると電極基体として充分な強度を維持することが困難
となる場合があるので充分な配慮を要する。
The electrode of the present invention is provided with one or more holes of an appropriate size on the surface of this substrate. The pores of an appropriate size as used herein refer to the 25th infiltration material covered and filled with the pores.
However, the size is such that it will not come off due to the impact force when removing electrodeposited manganese dioxide, etc. The shape of the hole is usually considered to be cylindrical, but it can be of any shape.For example, even a hole that penetrates the electrode base in the thickness direction (through hole, see Figure 1 (ω)) may be open only on one side. It may be a closed hole (see Figure 1 (b)), and any shape or size may be used as long as the first layer or second layer does not peel or come off from the hole due to impact. When the pore size is constant, the larger the number of pores in a closed pore, the larger the overall surface area of the electrode, and therefore a higher current density can be obtained with a lower electrolytic voltage. However, if the pore size is too large, It may be difficult to maintain sufficient strength as an electrode base, so sufficient consideration is required.

以上のごとく孔の大きざ、形状、数等は電極基体として
の機械的強度を損わず、孔内部の第1層および第2層が
外れないようにすることはもちろん、電解電圧などの経
済性の面等から総合的に判断し、適宜選択される。
As mentioned above, the size, shape, number, etc. of the holes are determined not only to ensure that the mechanical strength of the electrode base is not impaired, but also to prevent the first and second layers inside the holes from coming off. Appropriate selection will be made based on a comprehensive judgment based on gender, etc.

本発明の電極においては、この孔を有する基体全表面の
うち、少なくとも孔内表面の一部または全部に、電解液
中で分極させたときに不動態化せず、かつ電解液に不溶
性の金属、合金、化合物またはこれらの混合物の1種か
らなる第1層が設けられる。この第1層を構成する金属
等は、電解液に対し充分な耐食性を有する導電性物質で
あり、具体的には白金、酸化イリジウム、酸化ル□テニ
ウムなどの白金族金属、合金、化合物あるいはこれらの
混合物が挙げられる。
In the electrode of the present invention, out of the entire surface of the substrate having pores, at least a part or all of the inner surface of the pore contains a metal that does not become passivated when polarized in an electrolyte and is insoluble in the electrolyte. , an alloy, a compound or a mixture thereof. The metal constituting this first layer is a conductive substance that has sufficient corrosion resistance against electrolyte, and specifically includes platinum group metals such as platinum, iridium oxide, and ruthenium oxide, alloys, and compounds thereof. A mixture of the following may be mentioned.

さらに、本発明にあっては、この第11i!が施された
基体の全表面のうち少なくとも孔内の一部または全部に
、電解液中で分極させたときに不動態化せず、かつ電解
液に不溶性の第1層と異なる金属等の少なくとも1種か
らなる第2層を被覆、充填する。この第2層を構成する
金属等も第1層と同様に、電解液に対し充分な耐食性を
有するS電性物質であり、具体的には比較的廉価な二酸
化マンガンや過酸化鉛等が好ましく用いられる。この第
2層は複数層で構成してもよい。
Furthermore, in the present invention, this 11i! At least part or all of the inside of the pores of the entire surface of the substrate coated with at least a metal that does not passivate when polarized in the electrolytic solution and is insoluble in the electrolytic solution and is different from the first layer. A second layer consisting of one type is coated and filled. Like the first layer, the metal forming this second layer is also an S-conducting material that has sufficient corrosion resistance against electrolytes, and specifically, relatively inexpensive manganese dioxide, lead peroxide, etc. are preferable. used. This second layer may be composed of multiple layers.

これら第1層および第2層の固定方法としては、焼付法
、電解法、溶着法、圧着法、クラッド法、嵌合法、鋲止
法等が採用される。第1層が固定される箇所としては、
孔内表面のみで充分であり、孔内表面以外の部分に固定
された層は短期間のうちに剥離してしまうので、電極全
表面に固定する必要はない。しかしながら、メッキ法や
焼付法等による固定の場合には、孔内表面だけに部分的
に固定するよりも電極全面にわたって固定した方が、固
定のための経費がむしろ安価となることがあるので、そ
のときの条件によりどちらにするかを選択すべきである
。第2層の被覆の目的は第1層の剥離、溶出等を防止す
るためにあるが、孔内の空隙全体を第2層により完全に
被覆、充填したほうが耐衝撃性の効果はより大きくなる
ことは当然である。
As a method for fixing these first and second layers, a baking method, an electrolytic method, a welding method, a pressure bonding method, a cladding method, a fitting method, a riveting method, etc. are employed. The locations where the first layer is fixed are:
It is sufficient to coat only the inner surface of the hole, and the layer fixed to other parts than the inner surface of the hole will peel off within a short period of time, so it is not necessary to fix it to the entire surface of the electrode. However, when fixing by plating, baking, etc., it may be cheaper to fix the electrode over the entire surface of the electrode than to fix it only partially on the inner surface of the hole. Which one to use should be selected depending on the conditions at that time. The purpose of coating with the second layer is to prevent peeling and elution of the first layer, but the impact resistance effect will be greater if the entire void in the hole is completely covered and filled with the second layer. Of course.

実際は二酸化マンガンの電解製造においては、過酸化鉛
等の二酸化マンガン以外の物質を第2層とする場合を除
き、第2@を二酸化マンガンとする場合には、電解時に
二酸化マンガンが電着してくるので、電極の使用開始に
先立ち、予め別途に二酸化マンガンを固定しておく必要
はない。
In fact, in the electrolytic production of manganese dioxide, unless the second layer is made of a substance other than manganese dioxide such as lead peroxide, if the second layer is manganese dioxide, manganese dioxide is electrodeposited during electrolysis. Therefore, there is no need to separately fix manganese dioxide before using the electrode.

本発明による電極を7ノードとして用い、現行の電流密
度60A / Tdの数倍の電流密度により二酸化マン
ガンの電解採取を繰返し行ったが、孔内部の固定層であ
る第1層や第2層が外れたり、溶出したりすることなく
、従来の電極と比較して長期間の使用に耐えることが実
証された。
Using the electrode according to the present invention as a 7-node electrode, electrowinning of manganese dioxide was repeatedly performed at a current density several times the current density of 60 A/Td, but the first and second layers, which are the fixed layers inside the holes, were It has been demonstrated that it can be used for a longer period of time than conventional electrodes without coming off or eluting.

このような本発明の電解用電極は、二酸化マンガン電解
の際のアノードとして用いられるのみならず、例えば硝
酸鉛浴より過酸他船を電解採取する場合や、亜鉛、銅、
ニッケル等を硫酸塩浴から電解採取する場合等にも有効
な電極として用いられ得ることはいうまでもない。
Such an electrode for electrolysis of the present invention can be used not only as an anode for manganese dioxide electrolysis, but also for electrolytic extraction of peracid from a lead nitrate bath, and for electrolysis of zinc, copper,
It goes without saying that it can also be used as an effective electrode when electrolytically extracting nickel or the like from a sulfate bath.

[実施例] 以下、本発明を実施例および比較例によりさらに具体的
に説明する。
[Examples] Hereinafter, the present invention will be explained in more detail with reference to Examples and Comparative Examples.

例1〜5および 較例1〜4 50mX 200mX 5#lI厚のチタン板に対し、
穿孔その他の処理を施した電極(7ノード)A−1につ
いて、第2表に示す条件で、二酸化マンガンの電解を繰
返し実施し、電解電圧の変化と電橋寿命を評価した。結
果を第1表におよび第2図に示す。
Examples 1 to 5 and Comparative Examples 1 to 4 For titanium plates of 50mX 200mX 5#lI thickness,
Regarding the electrode (7 nodes) A-1 that had been subjected to perforation and other treatments, electrolysis of manganese dioxide was repeatedly performed under the conditions shown in Table 2, and changes in electrolysis voltage and bridge life were evaluated. The results are shown in Table 1 and in Figure 2.

なお、電解1回当りの電解日数は7日であるが、各回終
了毎に、N着した二酸化マンガンを鉄製のハンマーで衝
撃を与え、アノードより剥離させ。
The number of days for each electrolysis was 7 days, and after each electrolysis, the N-deposited manganese dioxide was subjected to impact with an iron hammer to be peeled off from the anode.

アノードはそのまま繰返し電解に使用した。The anode was used for repeated electrolysis as it was.

第1表 *1;電解液に浸漬する部分の面積50m5+X 10
06x 2面、*2;貫通:両開孔型、閉塞:閉塞孔型
を示す(第1図参照)、*3;固定方法は、次の通りで
ある。
Table 1 *1; Area of part immersed in electrolyte 50m5+X 10
06x 2 sides, *2; Penetration: both open hole type, closed: indicates obstructed hole type (see Figure 1), *3; Fixing method is as follows.

lr 02 、RIJ 02  :各化合物の塗布、焼
成によるコーティング、Pt :メッキ法、 Mn 02  : FaMマ”、yjjンHノNWt、
固定部分は、次の通りである。
lr 02, RIJ 02: Application of each compound, coating by firing, Pt: Plating method, Mn 02: FaM, yjj-NWt,
The fixed parts are as follows.

穿孔電極(A−E):孔内表面にのみ固定、無孔電極(
F−H):全表面に固定、 *4:メッキ厚は、約0.2μmである。
Perforated electrode (A-E): Fixed only on the inner surface of the hole, non-perforated electrode (
F-H): Fixed on the entire surface *4: Plating thickness is approximately 0.2 μm.

第2表 第1表および第2図に示されるように、基体である無孔
のチタン板に、何らの処理を施さない比較例4のアノー
ドエを用いた場合には、180A /尻の^電流密度下
では電解開始後直ちに不vJ態化し、通電不能となった
As shown in Table 2, Table 1, and Figure 2, when the anode of Comparative Example 4 without any treatment was used on the non-porous titanium substrate, the current was 180 A/min. Under high density conditions, immediately after the start of electrolysis, it turned into a non-vJ state and could no longer be energized.

また、基体である無孔のチタン板の表面を酸化イリジウ
ムまたは酸化ルテニウムと二酸化マンガンで被覆した比
較例1〜3のアノードF−Hは、電解回数を重ねるにつ
れて徐々に電解電圧が上昇して、840時間後には不動
態化を起して通電が不可能となった。このアノードF−
Hを表面分析装置により測定したところ、イリジウムや
ルテニウムの酸化物膜は消滅しており、代ってチタンの
酸化皮膜が発生していた。なお、比較例2のアノードG
と比較例3のアノードHは、酸化ルテニウムの被覆量が
異なり、比較例2のアノードGのはう−が被覆量を少な
くしたものである。
In addition, in the anodes F-H of Comparative Examples 1 to 3, in which the surface of the non-porous titanium plate that is the substrate is coated with iridium oxide or ruthenium oxide and manganese dioxide, the electrolysis voltage gradually increases as the number of electrolysis increases, After 840 hours, passivation occurred and it became impossible to conduct electricity. This anode F-
When H was measured using a surface analyzer, it was found that the iridium and ruthenium oxide films had disappeared and a titanium oxide film had occurred in their place. Note that the anode G of Comparative Example 2
Anode H of Comparative Example 3 and Anode H of Comparative Example 3 differ in the amount of ruthenium oxide coated, and Anode G of Comparative Example 2 has a smaller amount of ruthenium oxide coated.

一方、基体であるチタン板を穿孔して貫通孔または閉塞
孔を設け、これに酸化イリジウム、白金、酸化ルテニウ
ムと二酸化マンガンを被覆した実施例1〜5のアノード
A〜Eは、180A / 7dの高電流密度下での16
80時間という長期間にわたる使用にもかかわらず、不
動態化現象は見られず電解電圧の上昇もわずかで、電解
に何ら支障は認められなかった。使用後のアノードA−
Eを同様に表面分析したところ、第1層の固定膜の剥離
や消耗はほとんど見られなかった。電流効率については
、従来法とほぼ同程度で、しかも得られた二酸化マンガ
ンの結晶形は主に乾電池用に使用されているγ−二酸化
マンガンと同定された。また電着二酸化マンガンブロッ
クの性状も、従来法により製造されたものと同様に緻密
なものであった。
On the other hand, the anodes A to E of Examples 1 to 5, in which a titanium plate serving as a substrate was bored to provide through holes or closed holes, and the holes were coated with iridium oxide, platinum, ruthenium oxide, and manganese dioxide, had a diameter of 180 A/7 d. 16 under high current density
Despite being used for a long period of 80 hours, no passivation phenomenon was observed, the electrolysis voltage increased only slightly, and no problems were observed in electrolysis. Anode A- after use
When the surface of Sample E was analyzed in the same manner, there was almost no peeling or wear of the fixed film of the first layer. The current efficiency was approximately the same as that of the conventional method, and the crystalline form of manganese dioxide obtained was identified as γ-manganese dioxide, which is mainly used for dry batteries. The properties of the electrodeposited manganese dioxide block were also dense, similar to those produced by the conventional method.

[発明の効果] 以上の説明から明らかなように、基体の表面に孔を設け
て、この孔に異なった2層を設けた本発明の電解用電極
は、電気分解による金属等の採取における電極を長寿命
化させ、ひいては生産性、経済性や作業性の向上に著し
く寄与することから、二酸化マンガンの電解用その他の
電極として好適に用いられる。
[Effects of the Invention] As is clear from the above description, the electrode for electrolysis of the present invention, in which holes are provided on the surface of the substrate and two different layers are provided in the holes, is suitable as an electrode for collecting metals, etc. by electrolysis. It is suitable for use as an electrode for manganese dioxide electrolysis and other electrodes because it extends the life of the electrode and significantly contributes to improving productivity, economy, and workability.

【図面の簡単な説明】 第1図(a)および偽)は、それぞれ本発明の電解用電
極の一例を示す貫通孔型および閉塞孔型の断面図、 第1図(C)は、従来の電解用電極を示す断面図、第2
図は、実施例1〜5および比較例1〜4の電極を7ノー
ドとして用い、二酸化マンガンの電解採取を行ったとき
の摺電圧と電解日数との関係を示すグラフである。 1:基体、 2:第1層、 3:第2層、4:電着層。 特許出願人  三井金属鉱業株式会社 代理人 弁理士 伊 東 辰 雄 代理人 弁理士 伊 東 哲 也 第1図(0) 第1図(1)) 第1図(c)
[BRIEF DESCRIPTION OF THE DRAWINGS] FIG. 1(a) and FIG. 1(a) are cross-sectional views of a through-hole type and a closed-hole type, respectively, showing an example of the electrolytic electrode of the present invention. FIG. 1(C) is a cross-sectional view of a conventional electrolysis electrode. Cross-sectional view showing the electrode for electrolysis, 2nd
The figure is a graph showing the relationship between the sliding voltage and the number of days of electrolysis when manganese dioxide is electrolytically extracted using the electrodes of Examples 1 to 5 and Comparative Examples 1 to 4 as seven nodes. 1: Substrate, 2: First layer, 3: Second layer, 4: Electrodeposition layer. Patent applicant Mitsui Kinzoku Mining Co., Ltd. Agent Patent attorney Tatsuo Ito Agent Patent attorney Tetsuya Ito Figure 1 (0) Figure 1 (1)) Figure 1 (c)

Claims (1)

【特許請求の範囲】 1、a)電解液中で分極させたときに不動態化する金属
または合金の少なくとも1種であり、その表面に孔を有
する基体と、 b)該基体全表面のうち少なくとも孔内の表面の一部ま
たは全部に設けられる、電解液中で分極させたときに不
動態化せず、かつ電解液に不溶性の金属、合金、化合物
またはこれらの混合物の1種からなる第1層と、 c)該第1層が施された基体の全表面のうち少なくとも
孔内の一部または全部に、孔を被覆、充填するように設
けられる、電解液中で分極させたときに不動態化せず、
かつ電解液に不溶性の第1層と異なる金属、合金、化合
物またはこれらの混合物の少なくとも1種からなる第2
層とを有することを特徴とする電解用電極。 2、二酸化マンガン電解用のアノードとして用いられる
特許請求の範囲第1項記載の電解用電極。
[Scope of Claims] 1. a) a substrate made of at least one metal or alloy that becomes passivated when polarized in an electrolytic solution and having pores on its surface; b) of the entire surface of the substrate; A first layer made of a metal, alloy, compound, or a mixture thereof that does not become passivated when polarized in the electrolyte and is insoluble in the electrolyte, and is provided on at least part or all of the surface within the pore. c) at least a part or all of the pores of the entire surface of the substrate on which the first layer is applied, when polarized in an electrolytic solution, which is provided so as to cover and fill the pores; without passivation,
and a second layer made of at least one metal, alloy, compound, or mixture thereof different from the first layer and insoluble in the electrolytic solution.
An electrode for electrolysis characterized by having a layer. 2. The electrode for electrolysis according to claim 1, which is used as an anode for manganese dioxide electrolysis.
JP62006139A 1986-08-14 1987-01-16 Electrode for electrolysis Pending JPS63176489A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP62006139A JPS63176489A (en) 1987-01-16 1987-01-16 Electrode for electrolysis
GR871281A GR871281B (en) 1986-08-14 1987-08-13 Electrodes for electrolysis

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62006139A JPS63176489A (en) 1987-01-16 1987-01-16 Electrode for electrolysis

Publications (1)

Publication Number Publication Date
JPS63176489A true JPS63176489A (en) 1988-07-20

Family

ID=11630175

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62006139A Pending JPS63176489A (en) 1986-08-14 1987-01-16 Electrode for electrolysis

Country Status (1)

Country Link
JP (1) JPS63176489A (en)

Similar Documents

Publication Publication Date Title
US4459189A (en) Electrode coated with lead or a lead alloy and method of use
US4033837A (en) Plated metallic cathode
JP4771130B2 (en) Oxygen generating electrode
JP2003503598A5 (en)
US2390282A (en) Electrolytic barrel pickling and polishing
GB2065171A (en) Low overvoltage hydrogen cathodes
Zhang et al. Lead-silver anode behavior for zinc electrowinning in sulfuric acid solution
Hrussanova et al. Electrochemical properties of Pb–Sb, Pb–Ca–Sn and Pb–Co 3 O 4 anodes in copper electrowinning
Lupi et al. New lead alloy anodes and organic depolariser utilization in zinc electrowinning
US6923897B1 (en) Method for producing electrolytically coated cold rolled strip, preferably for use in the production of battery sheaths, and battery sheath produced according to this method
KR20030014246A (en) Surface treatment of metallic components of electrochemical cells for improved adhesion and corrosion resistance
Zhang et al. Anodic behavior and microstructure of Al/Pb–Ag anode during zinc electrowinning
JPS5815550B2 (en) Method for manufacturing coated lead dioxide electrode
JPS63176489A (en) Electrode for electrolysis
CN110724976B (en) Aluminum/lead anode plate and preparation method thereof
US2533533A (en) Method of forming a strongly adherent electrodeposit
US4212725A (en) Electrodes for electrolysis purposes
JPH07258897A (en) Insoluble electrode and its production
US4483752A (en) Valve metal electrodeposition onto graphite
JP3566023B2 (en) Electrode for fluorine-containing liquid electrolysis
JP2577965B2 (en) Insoluble anode material
JP3537255B2 (en) Electrode for electrolysis
JP2639950B2 (en) Insoluble anode material
US20020003092A1 (en) Process for the production of refractory metal plates and expanded metal grids platinized on one side
JP5159624B2 (en) Electrode plate grid