JPS6317570A - Phototransistor - Google Patents

Phototransistor

Info

Publication number
JPS6317570A
JPS6317570A JP61162261A JP16226186A JPS6317570A JP S6317570 A JPS6317570 A JP S6317570A JP 61162261 A JP61162261 A JP 61162261A JP 16226186 A JP16226186 A JP 16226186A JP S6317570 A JPS6317570 A JP S6317570A
Authority
JP
Japan
Prior art keywords
layer
quantum well
well structure
collector
emitter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61162261A
Other languages
Japanese (ja)
Other versions
JPH0513546B2 (en
Inventor
Mitsunori Sugimoto
杉本 満則
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP61162261A priority Critical patent/JPS6317570A/en
Publication of JPS6317570A publication Critical patent/JPS6317570A/en
Publication of JPH0513546B2 publication Critical patent/JPH0513546B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Light Receiving Elements (AREA)
  • Photo Coupler, Interrupter, Optical-To-Optical Conversion Devices (AREA)

Abstract

PURPOSE:To achieve low-voltage photoswitching operation of a phototransistor by a method wherein the mean refractive index of a quantum well structure is set up to exceed those of an emitter layer, base layer and collector layer. CONSTITUTION:A collector layer 2, multiple quantum well layers 3, a base layer 4, an emitter layer 5, and a cap layer 6 are successively crystal-grown on an n-GaAs substrate 1. Next, partial photoetching is done to expose the base layer 4. The layer 3 is shaped into stripes to form a collector layer 7, a base electrode 8 and an emitter electrode 9. At this time, if the film thickness and composition of quantum well and barrier of the multiple quantum well structure 3 are set up so that the mean refractive index of multiple the quantum well structure 3 may exceed those of the collector layer 2, base layer 4 and emitter layer 5, then incident light 10 is led to the multiple quantum structure 3 and output light 11 is obtained. Through these procedures, photoswitching operation is enabled to be performed at low signal voltage making use of the amplification of a transistor.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は元トランジスタに関し、特に光通信ないしは情
報処理装置等で利用される光スィッチ。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to an original transistor, and particularly to an optical switch used in optical communication or information processing equipment.

光双安定機能を有する光トランジスタに関する。This invention relates to a phototransistor having an optical bistable function.

〔従来の技術〕[Conventional technology]

従来この樵の元スイッチとしては、半導体を用いたフラ
ンツ−ケルディツシュ効果を用いたデバイスが小型であ
り優れている。フランツーケルディッシ瓢効果は半導体
に電界を加えたときに吸収端波長が長波長にシフトする
効果である。この半導体として、禁制帯幅の異なるそれ
ぞれs o o tx以下の層を交互に積層した多重量
子井戸構造を用いる導波型光スイッチが考えられている
(昭和60年度電子通信学会総合全国大会83−4)。
Conventionally, as the original switch for this woodcutter, a device using a semiconductor using the Franz-Keldytsch effect is small and excellent. The Franz-Keldissi gourd effect is an effect in which the absorption edge wavelength shifts to longer wavelengths when an electric field is applied to a semiconductor. As this semiconductor, a waveguide optical switch is being considered that uses a multi-quantum well structure in which layers with different forbidden band widths of s o o tx or less are laminated alternately (1985 IEICE General Conference 83- 4).

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上述した従来の導波型光スイッチは、導波層に比較的高
い電界を加えてこの導波層の吸収係数を変化させること
によって元スイッチを行なうものでsb、sv程度の比
較的高い信号電圧を必要とする欠点があった。
The above-mentioned conventional waveguide optical switch performs switching by applying a relatively high electric field to the waveguide layer and changing the absorption coefficient of the waveguide layer. It had the disadvantage of requiring

本発明の目的は、上述の欠点を除去し低電圧で光スイツ
チング動作出来る光トランジスタを提供することにある
SUMMARY OF THE INVENTION An object of the present invention is to eliminate the above-mentioned drawbacks and provide a phototransistor capable of optical switching operation at low voltage.

〔問題点を解決するための手段〕[Means for solving problems]

本発明の元トランジスタは、第1伝導型のコレクタ層と
、このコレクタ層に接して設けられた少なくとも1つの
量子井戸を含む量子井戸構造体と、この量子井戸構造体
に接して設けられた第1伝導型のエミッタ層を備え、前
記量子井戸構造体の平均屈折率が前記エミッタ層、前記
ベース層及び前記コレクタ層のいずれの屈折率よりも大
きいという構成を有している。
The original transistor of the present invention includes a collector layer of a first conductivity type, a quantum well structure including at least one quantum well provided in contact with the collector layer, and a quantum well structure provided in contact with the quantum well structure. The quantum well structure has a structure in which the average refractive index of the quantum well structure is larger than the refractive index of any of the emitter layer, the base layer, and the collector layer.

〔実施例〕〔Example〕

次に本発明の実施例について図面を参照して説明する。 Next, embodiments of the present invention will be described with reference to the drawings.

第1図は本発明の一実施例の元トランジスタの斜視図で
ある。
FIG. 1 is a perspective view of an original transistor according to an embodiment of the present invention.

図中、1はn−GaAs基板、2はコレクタ層(n−A
lxcGat−xcAsからな)、厚さは0.3〜3μ
m。
In the figure, 1 is an n-GaAs substrate, 2 is a collector layer (n-GaAs
lxcGat-xcAs), thickness is 0.3-3μ
m.

典型的には例えばn −AA!0.4 Ga6..1A
s、厚さ1.5μm)、3は多重量子井戸構造体(kl
 X QwGal−XQWA S 、 O(厚さ≦30
0Aの量子井戸とAll x(2BGa I  XQB
 As 、 O<厚さ≦300人のバリア、典型的には
例えば厚さ100Ga(1,6Asからなるバリアを1
0周期)、4はベース層(p  kl XB G a 
I XB Asからなり、Oく厚さく2μm1典型的に
はAJo、20a、)、、B As 、厚さ2000A
)5はエミッタ層(n −AI XEGal −XE 
Asからなシ、厚さは0.3〜3μm1典型的にはAI
、、、 Ga6.6 As厚さ1.5μm)、6はキ’
ryプ層(n−GaAs)である。
Typically, for example n-AA! 0.4 Ga6. .. 1A
s, thickness 1.5 μm), 3 is a multiple quantum well structure (kl
X QwGal-XQWA S, O (thickness≦30
0A quantum well and All x (2BGa I
A barrier of As, O<thickness≦300, typically has a thickness of, for example, 100 Ga (a barrier made of 1,6 As is
0 period), 4 is the base layer (p kl
Consisting of I
)5 is the emitter layer (n-AI XEGal-XE
Made of As, the thickness is 0.3-3μm1 typically AI
,,, Ga6.6 As thickness 1.5 μm), 6 is key
ryp layer (n-GaAs).

ここで、多重量子井戸構造体3の平均屈折率はコレクタ
層2.ベース層4及びエミッタ層5のいずれの屈折率よ
りも大きくなる様に多重量子井戸構造体3の量子井戸お
よびバリアの膜厚と組成が設定されている。これによっ
て多重量子井戸構造体3に入射光10が導波されて、出
射光11が得られる。
Here, the average refractive index of the multi-quantum well structure 3 is the collector layer 2. The film thicknesses and compositions of the quantum well and barrier of the multi-quantum well structure 3 are set so that the refractive index is greater than the refractive index of either the base layer 4 or the emitter layer 5. As a result, the incident light 10 is guided into the multi-quantum well structure 3, and the output light 11 is obtained.

次に本実施例の光トランジスタの動作について説明する
Next, the operation of the phototransistor of this example will be explained.

第2図はこの実施例を導波型光スイッチとして動作させ
る場合の回路図を示している。
FIG. 2 shows a circuit diagram when this embodiment is operated as a waveguide type optical switch.

信号電圧23を、ペースおよびエミッタ間に加えるとこ
れに応じてペース電流24(二In )がペース電極8
に流れる。このときコレクタ電流25(EIc)は光ト
ランジスタ20の電流増幅率βを用いると IC=βIB           ・・・・・・ (
1)と表わされる。このときにコレクタ電圧26(=V
c)は VC=V0−)1,1c・−・−・−(2)と表わされ
る。(2)式で■oは直流電源22の電圧、Rは外付け
の抵抗21の抵抗値である。(1) 、 (2)式よシ
コレクタ電圧26(EVc)は VC=V。−RβI 、        、−・・ (
3)となる。ここで信号電圧23を変化するとベース電
流z、1(=IB)が変化レコレクタ電圧■cが(3)
式により変化することになる。信号電圧23の大きさは
大まかには半纏体の禁制帯幅前後となるためL5〜2v
程度となる。又直流電源22は5v以上の比較的大きな
電圧をコレクタ電極7に加えることが出来る。したがっ
て、本実施例では低い信号電圧23で大きなコレクタ電
圧26が制御されるため多重量子井戸構造体3にかかる
電界が変化し、元スイッチ動作することが出来る。
When a signal voltage 23 is applied between the pace and the emitter, a pace current 24 (2In) is applied to the pace electrode 8.
flows to At this time, the collector current 25 (EIc) is calculated as IC=βIB using the current amplification factor β of the phototransistor 20.
1). At this time, collector voltage 26 (=V
c) is expressed as VC=V0-)1,1c.--.--(2). In equation (2), ■o is the voltage of the DC power supply 22, and R is the resistance value of the external resistor 21. According to equations (1) and (2), collector voltage 26 (EVc) is VC=V. −RβI, ,−・・(
3). Here, when the signal voltage 23 is changed, the base current z,1 (=IB) changes, and the collector voltage ■c changes (3)
It will change depending on the formula. The magnitude of the signal voltage 23 is roughly around the forbidden band width of the semi-coated body, so it is L5~2v.
It will be about. Further, the DC power supply 22 can apply a relatively large voltage of 5V or more to the collector electrode 7. Therefore, in this embodiment, since the large collector voltage 26 is controlled by the low signal voltage 23, the electric field applied to the multi-quantum well structure 3 changes, and the original switch operation can be performed.

上述の動作では信号としては電気的信号を入力して来た
が、光の入力信号に対して本実施例の元トランジスタを
制(■することが出来る。
In the above-described operation, an electrical signal is input as the signal, but the original transistor of this embodiment can be controlled by an optical input signal.

次にこの動作について説明する。Next, this operation will be explained.

第3因は多重量子井戸構造体3の吸収スペクトルを示し
ている。制御信号−5’l:30として電界が零の場合
の多重量子井戸構造体3のエキシトンビーク付近の波長
λ0の光とする。又被制御光31はλ0よりも長波長の
λ1の波長の元とする。まず、制御信号光30が零の場
合には、コレクタ電流25が零であるため(2)式によ
りコレクタ電圧26には大きな直流電圧(HVo)が加
えられている。このときには第3図の破線の吸収スペク
トルとなり被制御元31に対しても大きな吸収があり被
制御′jt31に対してオフの状態となる。次に制御信
号光30を入射すると大きな吸収を受けてこの吸収によ
ってベース電流24(=IB)が流れたのと同様な効果
によって、コレクタ電流25(=Ic)が流れる。
The third factor shows the absorption spectrum of the multi-quantum well structure 3. The control signal -5'l:30 is assumed to be light having a wavelength λ0 near the exciton peak of the multi-quantum well structure 3 when the electric field is zero. Furthermore, the controlled light 31 has a wavelength of λ1, which is longer than λ0. First, when the control signal light 30 is zero, the collector current 25 is zero, so a large DC voltage (HVo) is applied to the collector voltage 26 according to equation (2). At this time, the absorption spectrum is shown by the broken line in FIG. 3, and there is a large absorption for the controlled source 31, resulting in an OFF state for the controlled source 'jt31. Next, when the control signal light 30 is incident, it undergoes a large absorption, and this absorption causes a collector current 25 (=Ic) to flow due to the same effect as the base current 24 (=IB).

そうすると(3)式によってコレクタ電圧26(ミVc
)が低下し、はとんど零となって第3図の電界=Oの吸
収スペクトルとなる。このとき被制御光31に対しては
吸収がほとんど零であるオンの状態となる。したがって
制御信号光30が入射している時のみ被制御光31がオ
ンとなり制御信号光30が無い場合には被制御光31が
オフとなる。
Then, according to equation (3), the collector voltage 26 (miVc
) decreases and becomes almost zero, resulting in the absorption spectrum of electric field=O shown in FIG. At this time, the control light 31 is in an on state in which absorption is almost zero. Therefore, the controlled light 31 is turned on only when the control signal light 30 is incident, and when the control signal light 30 is not present, the controlled light 31 is turned off.

次に本実施例の光トランジスタの光双安定動作について
説明する。この動作のための回路図を第4図に示す。ま
ず入射光としては第3図の波長λ。
Next, the optical bistable operation of the optical transistor of this example will be explained. A circuit diagram for this operation is shown in FIG. First, the incident light is the wavelength λ shown in Figure 3.

の光を入射することとする。まず入射光がない場合には
コレクタ電流25(ミIC)が零であるためコレクタ電
圧26(=VC)はほぼ直流電源22の電圧voと等し
く多重量子井戸構造体3に大きな電界がかかっている状
態となっている。このため多重量子井戸構造体3の吸収
スペクトルは第3図の破線の様になっている。次に入射
光(波長λ0)を除々に増していくにつれコレクタ電流
25が増大して多重量子井戸構造体3にかかる電界が減
少するするために波長λ0での吸収係数が増大する。吸
収係数が増大するとさらにコレクタ電流25が増大する
という正帰還がかかる。この正帰還の様子は下に示す様
になる。
Let's assume that the light is incident. First, when there is no incident light, the collector current 25 (MiIC) is zero, so the collector voltage 26 (=VC) is approximately equal to the voltage vo of the DC power supply 22, and a large electric field is applied to the multi-quantum well structure 3. It is in a state. Therefore, the absorption spectrum of the multi-quantum well structure 3 is as shown by the broken line in FIG. Next, as the incident light (wavelength λ0) is gradually increased, the collector current 25 increases and the electric field applied to the multi-quantum well structure 3 decreases, so that the absorption coefficient at the wavelength λ0 increases. As the absorption coefficient increases, positive feedback occurs, which further increases the collector current 25. The state of this positive feedback is shown below.

この様な正帰還がかかると急激に吸収が増大し、出射光
強度はほとんど零となる。この変化は第5図で示した出
射光強度の入射光強度依存性におけるA−)Bの遷移で
ある。次に入射光をB点から逆に減少させていくと下に
示す様な正帰還がかかる。
When such positive feedback is applied, absorption increases rapidly, and the intensity of the emitted light becomes almost zero. This change is the A-)B transition in the dependence of the output light intensity on the incident light intensity shown in FIG. Next, when the incident light is decreased from point B, a positive feedback as shown below is applied.

そうすると急激に吸収係数が減少し出射光が増大する様
になる。このときに動作点は第5図の0点からD点に遷
移する。
Then, the absorption coefficient decreases rapidly and the output light increases. At this time, the operating point transitions from point 0 to point D in FIG.

以上説明した様に本実施例の光トランジスタでは光双安
定動作することが出来る。なお第4図のバイアス電源V
Bを調節することによって入射光が無い場合の動作点を
調節することが出来る。
As explained above, the optical transistor of this embodiment can perform optical bistable operation. Note that the bias power supply V in Fig. 4
By adjusting B, the operating point when there is no incident light can be adjusted.

次に本実施例の元トランジスタの製作方法について簡単
に述べる。まずn−GaAs基板1上にコレクタ層2.
多重量子井戸層3.ベース層4.エミッタ層5.キャッ
プ層6を順次結晶成長する。
Next, a method for manufacturing the original transistor of this embodiment will be briefly described. First, a collector layer 2 is placed on an n-GaAs substrate 1.
Multiple quantum well layer 3. Base layer 4. Emitter layer 5. The cap layer 6 is successively crystal-grown.

結晶成長方法は分子線エビタクシ−法、有機金属気相成
長法等のどの成長方法によっても良い。次にベース層4
が露出するまで部分的にホトエツチングを行なう。次に
多重量子井戸層3をストライプ状に加工するホトエツチ
ングを行なう。次にコレクタ電極7.ペース電極8.エ
ミッタ電極9を形成して完成する。
The crystal growth method may be any growth method such as molecular beam epitaxy, organometallic vapor phase epitaxy, or the like. Next, base layer 4
Partially photo-etch until exposed. Next, photoetching is performed to process the multiple quantum well layer 3 into stripes. Next, collector electrode 7. Pace electrode8. The emitter electrode 9 is formed to complete the process.

以上説明した本実施例では、量子井戸構造として多重量
子井戸を用いたがこれに限らず単一量子井戸構造でも良
い。又本実施例ではnpn )ランジスタ構成としたが
これに限らすI)nl) )ランジスタ構成としても良
い。又、本実施例では横方向の導波構造をハイメサスト
ライプ構造としたがこれに限らず他の導波構造1例えば
埋め込み構造、リッジ導波構造等を用いても良い。又、
本実施例では材料としてklGaAs/GaAs系を用
いたがこれに限らず他の材料、例えばInGaAsP/
InP系InGaAlAs/InP系等を用いても良い
In the embodiment described above, a multiple quantum well structure is used as the quantum well structure, but the quantum well structure is not limited to this, and a single quantum well structure may also be used. Further, in this embodiment, the npn) transistor configuration is used, but the present invention is not limited to this. Further, in this embodiment, the lateral waveguide structure is a high mesa stripe structure, but the present invention is not limited to this, and other waveguide structures 1 such as a buried structure, a ridge waveguide structure, etc. may be used. or,
In this example, klGaAs/GaAs was used as the material, but the material is not limited to this, and other materials such as InGaAsP/
InP-based InGaAlAs/InP-based materials, etc. may also be used.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明はバイポーラトランジスタの
コレクタとペースの間に量子井戸構造体を設けることに
より、トランジスタの増=作用t−利用して低い信号電
圧で光スイツチング動作可能な元トランジスタが得られ
る効果がある。
As explained above, in the present invention, by providing a quantum well structure between the collector and pace of a bipolar transistor, an original transistor capable of optical switching operation at a low signal voltage can be obtained by utilizing the increase in transistor = action t. effective.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例の斜視図、第2図は本発明の
一実施例の光スイツチング動作のための回路図、第3図
は多重量子井戸層の吸収スペクトルを示す特性図、第4
図は光双安定動作のための回路図、第5図は光双安定動
作の入出力特性図である。 1・・・・・・n−GaAs基板、2・・・・・・コレ
クタ層、3・・・・・・多重量子井戸構造体、4・・・
・・・ペース層、5・・・・・・エミッタ層、6・・・
・・・キャップ層、7・・・・・・コレクタ電極、8・
・・・・・ペース電極、9・・・・・・エミッタ電極、
10・・・・・・入射光、11・・・・・・出射光、2
0・・・・・・光トランジスタ、21・・・・・・抵抗
、22・・・・・・直流電源、23・・・・・・信号電
圧、24・・・・・・ペース電流、25・・・・・・コ
レクタ電流、26・・・・・・コレクタ電圧、30・・
・・・・制御信号光、31・・・・・・被制御光、40
・・・・・・バイ茅 l 匠 2θ老Yランンス、り′ 第 2 図 30牛1し信号光 第 3 聞 某 sWJ
FIG. 1 is a perspective view of an embodiment of the present invention, FIG. 2 is a circuit diagram for optical switching operation of an embodiment of the present invention, and FIG. 3 is a characteristic diagram showing the absorption spectrum of a multiple quantum well layer. Fourth
The figure is a circuit diagram for optical bistable operation, and FIG. 5 is an input/output characteristic diagram for optical bistable operation. DESCRIPTION OF SYMBOLS 1... N-GaAs substrate, 2... Collector layer, 3... Multiple quantum well structure, 4...
...Pace layer, 5...Emitter layer, 6...
...Cap layer, 7...Collector electrode, 8.
...Pace electrode, 9...Emitter electrode,
10...Incoming light, 11...Outgoing light, 2
0...Phototransistor, 21...Resistor, 22...DC power supply, 23...Signal voltage, 24...Pace current, 25 ...Collector current, 26...Collector voltage, 30...
... Control signal light, 31 ... Controlled light, 40
・・・・・・Bye Kaya l Takumi 2θ old Y Lance, ri' 2nd Figure 30 Cow 1 signal light 3rd sWJ

Claims (1)

【特許請求の範囲】[Claims] 第1伝導型のコレクタ層と、このコレクタ層に接して設
けられた少なくとも1つの量子井戸を含む量子井戸構造
体と、この量子井戸構造体に接して設けられたベース層
と、このベース層に接して設けられた第1伝導型のエミ
ッタ層を備え、前記量子井戸構造体の平均屈折率が前記
エミッタ層、前記ベース層及び前記コレクタ層のいずれ
の屈折率よりも大きいことを特徴とする光トランジスタ
A quantum well structure including a collector layer of a first conductivity type, at least one quantum well provided in contact with the collector layer, a base layer provided in contact with the quantum well structure, and a quantum well structure including at least one quantum well provided in contact with the collector layer; A light comprising an emitter layer of a first conductivity type provided in contact with each other, wherein the average refractive index of the quantum well structure is larger than the refractive index of any of the emitter layer, the base layer, and the collector layer. transistor.
JP61162261A 1986-07-09 1986-07-09 Phototransistor Granted JPS6317570A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61162261A JPS6317570A (en) 1986-07-09 1986-07-09 Phototransistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61162261A JPS6317570A (en) 1986-07-09 1986-07-09 Phototransistor

Publications (2)

Publication Number Publication Date
JPS6317570A true JPS6317570A (en) 1988-01-25
JPH0513546B2 JPH0513546B2 (en) 1993-02-22

Family

ID=15751079

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61162261A Granted JPS6317570A (en) 1986-07-09 1986-07-09 Phototransistor

Country Status (1)

Country Link
JP (1) JPS6317570A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02220478A (en) * 1989-02-21 1990-09-03 Canon Inc Photodetector
JPH05145114A (en) * 1991-04-25 1993-06-11 American Teleph & Telegr Co <Att> Planer self electrooptic effect device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02220478A (en) * 1989-02-21 1990-09-03 Canon Inc Photodetector
JPH05145114A (en) * 1991-04-25 1993-06-11 American Teleph & Telegr Co <Att> Planer self electrooptic effect device

Also Published As

Publication number Publication date
JPH0513546B2 (en) 1993-02-22

Similar Documents

Publication Publication Date Title
US4840446A (en) Photo semiconductor device having a multi-quantum well structure
JPS62174728A (en) Optical switch
JPH0236585A (en) Quantum well structure and semiconductor element provided therewith
JPS6317570A (en) Phototransistor
US5105432A (en) Semiconductor laser device
CA2139193A1 (en) Semiconductor Multiple Quantum Well Mach-Zehnder Optical Modulator and Method for Fabricating the Same
JPS60252329A (en) Optical switch
JPH06125141A (en) Semiconductor quantum well optical element
GB2187300A (en) Semiconductor optical modulator
JPH11204773A (en) Waveguide type semiconductor optical integrated element and its manufacture
TWI225723B (en) Two-pole different width multi-layered semiconductor quantum well laser with carrier redistribution to modulate light-emission wavelength
JP6962497B1 (en) Semiconductor laser device and its manufacturing method
EP0177141A2 (en) Semiconductor lasers
JPS6297386A (en) Distributed feedback type bistable semiconductor laser
KR960015274B1 (en) Semiconductor laser device
JPH02262133A (en) Semiconductor device
KR19980069642A (en) p-type ohmic material
JPS61134093A (en) Integrated element including semiconductor laser
JP2866683B2 (en) Bistable light emitting device
JPH01108535A (en) Optical logic integrated element
JP2839539B2 (en) Semiconductor light emitting device and method of manufacturing the same
JPS6245088A (en) Semiconductor laser element
JPH0551193B2 (en)
JPH05119359A (en) Substrate type optical switch and production thereof
JPS62245689A (en) Semiconductor light emitting device