JPS61134093A - Integrated element including semiconductor laser - Google Patents

Integrated element including semiconductor laser

Info

Publication number
JPS61134093A
JPS61134093A JP25666384A JP25666384A JPS61134093A JP S61134093 A JPS61134093 A JP S61134093A JP 25666384 A JP25666384 A JP 25666384A JP 25666384 A JP25666384 A JP 25666384A JP S61134093 A JPS61134093 A JP S61134093A
Authority
JP
Japan
Prior art keywords
electrode
layer
semiconductor laser
active layer
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25666384A
Other languages
Japanese (ja)
Inventor
Mitsunori Sugimoto
杉本 満則
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP25666384A priority Critical patent/JPS61134093A/en
Publication of JPS61134093A publication Critical patent/JPS61134093A/en
Pending legal-status Critical Current

Links

Landscapes

  • Semiconductor Lasers (AREA)

Abstract

PURPOSE:To obtain the titled element of high integration degree with mounts of the semiconductor laser and the transistor, by a method wherein a semiconductor laser and a transistor are arranged in stack in the layer thickness direction. CONSTITUTION:In the state of no bias on an electrode 6, current is passed to a stripe region 12 by impressing positive and negative voltages on a P type electrode 9 and an N type electrode 10, respectively; thereby, laser oscillation is carried out in an active layer 3 close to said region. When a negative voltage higher than to the electrode 9 is impressed on the electrode 6 in this state of laser oscillation, a current path to the active layer 3 becomes narrow because of the spread of a depletion layer 11, and the current to the active layer 3 can be reduced. When the voltage impressed on the electrode 6 is reversely stepped down, the depletion layer 11 reduces, and the current to the active layer 3 can be increased. Since the current flowing through the active layer 3 can be thus controlled according to the voltage impressed on the electrode 6, the titled element can be regarded as a kind of FET having the electrode 6 as the gate, electrode 9 as the source, and semiconductor laser as the drain.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は光通信、情報処理装置等に利用される半導体レ
ーザを含む集積素子に関する。
DETAILED DESCRIPTION OF THE INVENTION <Field of Industrial Application> The present invention relates to an integrated device including a semiconductor laser used in optical communication, information processing equipment, etc.

く従来技術とその問題点〉 従来、半導体レーザとこれを駆動するためのトランジス
タを同じ基板の上に集積化した素子に、浮遊容量の低減
及び小型化のメリットがあり、活発に研究開発が進めら
れて込る。この様な集積化素子としては、雑誌[アプラ
イド・フィジツクス・レターズ(AFL)J vol 
、41,126〜128頁に示される様に、基板上に半
導体レーザ領域とトランジスタ領域とを二次元的に配置
していた。
Conventional technology and its problems> Conventionally, devices in which a semiconductor laser and a transistor to drive it are integrated on the same substrate have the merits of reducing stray capacitance and miniaturization, and active research and development is progressing. I'm so excited. Such integrated elements are described in the magazine [Applied Physics Letters (AFL) J vol.
, 41, pp. 126-128, a semiconductor laser region and a transistor region are two-dimensionally arranged on a substrate.

このため比較的大きな面積の基板の上に半導体レーザと
トランジスタとを集積化する必要があり、さらに多くの
半導体レーザとトランジスタとを集積化する場合に非常
に大きな面積の基板を有し、集積度が上がらないといり
欠点を有してhた。
For this reason, it is necessary to integrate semiconductor lasers and transistors on a substrate with a relatively large area, and when integrating a large number of semiconductor lasers and transistors, it is necessary to use a substrate with a very large area and increase the integration rate. However, it has some drawbacks, such as the lack of improvement.

〈発明の目的〉 本発明の目的は、Cれらの欠点を除去し、集積度の高い
半導体レーザ金倉む集積値素子を提供することにある。
<Object of the Invention> An object of the present invention is to eliminate these drawbacks and to provide an integrated value device including a semiconductor laser with a high degree of integration.

〈発明の構成〉 本発明の半導体レーザを含む集lit素子の構成は、半
導体基板上に設けられ九第1導電型の第1リクラッド層
と、この第1クラッド層上に形成された活性層と、この
活性層上に形成された第2導電型の第2のクラッド層と
、この第2のクラッド層上にストライプ状領域を除いて
形成され次第1導電型の電流狭窄層と、この電流狭窄層
上および前記ストライプ状領域上に形成され次第2導電
型の再3のクラッド層と、この第3クラッド層上に設け
られ九第1の電極と、前記電流狭窄層上に設けられ九第
2の電極と、前記半導体基板に設けられた第3の電極と
を備え、前記第1お工び@3の電極に工って半導体レー
ザを動作させ、この半導体レーザの出力を前記wI2の
電極全制御端子として制御するトランジスタとI/c1
j11作させることを特徴とする。
<Structure of the Invention> The structure of a condensed LIT device including a semiconductor laser of the present invention includes: a first re-cladding layer of a first conductivity type provided on a semiconductor substrate; an active layer formed on the first cladding layer; , a second cladding layer of the second conductivity type formed on the active layer, a current confinement layer of the first conductivity type formed on the second cladding layer except for the striped region, and a current confinement layer of the first conductivity type formed on the second cladding layer except for the striped region; A third cladding layer of two conductivity types is formed on the layer and the striped region, a first electrode is provided on the third cladding layer, and a second electrode is provided on the current confinement layer. and a third electrode provided on the semiconductor substrate. Transistor controlled as control terminal and I/c1
It is characterized by making 11 works.

〈実施例〉 次に図面を参照して本発明の詳細な説明する。<Example> Next, the present invention will be described in detail with reference to the drawings.

第1図は本発明の一実施例の断面図である。図中、1は
n −G a A s基板、2はn型の第1クラッド層
(n−At xn □Ga □−xn 1As、 Xn
□=0.2〜0.8 )、3は活性層(GaAs、厚さ
≦0.5μm、典型的には厚さ〜Q、1μm)、 4は
p型第2クラッド層(P−AJl工、□Ga、−xpI
As、 xp1=0.2〜0.8 p≧i X 10 
” ’ Cm−3厚さ=0.1〜2μm、典型的Vcu
 0.3〜0.5 Arn )t 5 ハ電流狭窄層(
n−Alxn2Ga1□n2As、Xn2=0〜0.8
.厚さ0.1−’−2μms典型的にu 〜0.5μm
)、6は電極、7はp型第3クラッド層CP−Al1工
、2Ga、 !−xp2As、 xp2=0.2〜α8
. P≦lX10’6.厚さ0.3〜2 p rrl、
典型的に#:tO,5μm 〜1μm)、8はキャップ
層(P−GaAs)、9ICp型電極、10Hn型電極
、11は空乏層領域、12は電流狭窄層5が無いストラ
イプ領域(幅0.5〜3μm9期艷気と2μm〕である
FIG. 1 is a sectional view of an embodiment of the present invention. In the figure, 1 is an n-GaAs substrate, 2 is an n-type first cladding layer (n-At xn □Ga □-xn 1As, Xn
□=0.2~0.8), 3 is an active layer (GaAs, thickness ≦0.5 μm, typically thickness ~Q, 1 μm), 4 is a p-type second cladding layer (P-AJl process). , □Ga, -xpI
As, xp1=0.2~0.8 p≧i X 10
” ' Cm-3 thickness = 0.1-2μm, typical Vcu
0.3 to 0.5 Arn ) t 5 C current confinement layer (
n-Alxn2Ga1□n2As, Xn2=0~0.8
.. Thickness 0.1-'-2μms typically u~0.5μm
), 6 is the electrode, 7 is the p-type third cladding layer CP-Al1, 2Ga, ! -xp2As, xp2=0.2~α8
.. P≦lX10'6. Thickness 0.3~2 prrl,
Typically #:tO, 5 μm to 1 μm), 8 is a cap layer (P-GaAs), 9 is an ICp type electrode, 10 is a Hn type electrode, 11 is a depletion layer region, and 12 is a stripe region (with a width of 0. 5-3 μm, 9th stage, and 2 μm].

本実施例においては、電極6にバイアスをかけない状態
においてな、p型電極9及びn型電穫10にそれぞれ正
及び負の電圧をかけ、ストライプ領域12に電流金泥す
ことに二って、この近傍の活性層3でレーザ発掘ヲ行な
う。このレーザ発振を行な°ってbる状態で、電極6に
正でp型電極9二りも高い電圧を加えると、空乏層11
が伸びて活性層3への電流通路が狭くなり、活性層3へ
の電流を減少させることが出来る。逆に、電極6に加え
る電圧を減らすと、空乏層11が小さくなって活性層3
への電流を増大させることが出来る。この様に電極6に
加える電圧に1って、活性層3に流れるt流金制御する
ことが出来るので、電極6をゲート、電極9t−ソース
、半導体レーザをドレインとした一種の電界効果トラン
ジスタとみなされる。ま之、本実施例においては、半導
体レーザ領域と、トランジスタ領域とが層方向に集積化
されているため、通常の半導体レーザと同様の面積で半
導体レーザとトランジスタの集積化全行なうことが出来
る。
In this embodiment, while the electrode 6 is not biased, positive and negative voltages are applied to the p-type electrode 9 and the n-type electrode 10, respectively, and the striped region 12 is coated with electric current. Laser excavation is performed in the active layer 3 in this vicinity. While performing this laser oscillation, if a voltage is applied to the electrode 6 which is positive and which is also higher than the p-type electrode 9, the depletion layer 11
is extended, the current path to the active layer 3 becomes narrower, and the current flowing to the active layer 3 can be reduced. Conversely, when the voltage applied to the electrode 6 is reduced, the depletion layer 11 becomes smaller and the active layer 3 becomes smaller.
It is possible to increase the current to. In this way, the voltage applied to the electrode 6 can be adjusted to control the amount of money flowing into the active layer 3, so it can be used as a type of field effect transistor with the electrode 6 as the gate, the electrode 9 as the source, and the semiconductor laser as the drain. It is regarded. However, in this embodiment, since the semiconductor laser region and the transistor region are integrated in the layer direction, the semiconductor laser and the transistor can be completely integrated in the same area as a normal semiconductor laser.

従がって、半導体レーザとトランジスタと全複数個集積
する場合にも、集積度を高く実装することが出来る。
Therefore, even when a plurality of semiconductor lasers and transistors are integrated, it is possible to achieve a high degree of integration.

本実施例の製造方法は、2回の結晶成長を行なう。まず
、最初の結晶成長において、n G aAs基板1上に
n型第1クラツド層2.活性層3.p型温2クラッド層
4.電流狭窄層5t−順次成長する。次に、ホトエツチ
ング法等を用いて、ストライプ領域12を形成する。次
の2回目の結晶成長において、p型用3クラッド層7.
キャップ層8t−順次成長する。次に、p型電極9を形
成する。
In the manufacturing method of this example, crystal growth is performed twice. First, in the initial crystal growth, an n-type first cladding layer 2. Active layer 3. p-type temperature 2 cladding layer 4. Current confinement layer 5t - sequentially grown. Next, stripe regions 12 are formed using a photoetching method or the like. In the next second crystal growth, p-type three cladding layers 7.
Cap layer 8t - grown sequentially. Next, a p-type electrode 9 is formed.

次に、ホトエツチング法に工って、p型温3クラッド層
7t″除去し、電流狭窄層50表面を出して電極6を形
成し、最後にn型電極10を形成する。
Next, the p-type hot 3 cladding layer 7t'' is removed by photo-etching, the surface of the current confinement layer 50 is exposed, and the electrode 6 is formed, and finally the n-type electrode 10 is formed.

なお、本実施例においては、活性層3を単層構造として
い友が、これに限らず多重量子井戸構造や光ガイド層を
伴なっ念多層構造であっても良い。
In this embodiment, although the active layer 3 has a single layer structure, it is not limited to this, but may have a multi-layer structure with a multiple quantum well structure or a light guide layer.

また、本実施例では活性層3の上に電流狭容層5を形成
していたが、反対側に電流狭窄層を形成しても良い。ま
た、本実施例においては第2p型クラツド層を単層構造
としたが、これを例えばp−A4GaAsとP −Al
GaAs  からなる多層構造としてp側の抵抗を減ら
す様にしても良い。さらに本実施例では材料としてAA
’GaAs/GaAs系を用イilZ、これに限らずI
 nGaAs P/ I n P系、In−GaAlA
s/InP 系等の材料を用いても↓い。
Further, in this embodiment, the current confinement layer 5 is formed on the active layer 3, but the current confinement layer may be formed on the opposite side. Further, in this example, the second p-type cladding layer has a single layer structure, but this is made of, for example, p-A4GaAs and P-Al.
A multilayer structure made of GaAs may be used to reduce the resistance on the p side. Furthermore, in this example, AA is used as the material.
'It is possible to use GaAs/GaAs system, but not limited to IlZ.
nGaAs P/I n P system, In-GaAlA
Materials such as s/InP may also be used.

〈発明の効果〉 以上説明し之二うに、本発明によれば、半導体レーザと
トランジスタとが層厚方向に重なって配置されているた
めに、通常の半導体レーザと同様な面積で半導体レーザ
とトランジスタとの集積化を行なうことが出来、高い集
積度の半導体レーザとトランジスタとを実装し友集積素
子金実現出来る。
<Effects of the Invention> As explained above, according to the present invention, since the semiconductor laser and the transistor are arranged to overlap in the layer thickness direction, the semiconductor laser and the transistor can be arranged in the same area as a normal semiconductor laser. It is possible to implement integration with semiconductor lasers and transistors with a high degree of integration, making it possible to realize highly integrated semiconductor lasers and transistors.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の断面図である。図において
、l u n −G a A S基板、2はn型第1ク
ラツド層、3は活性層、4はp型巣2クラッド層。
FIG. 1 is a sectional view of an embodiment of the present invention. In the figure, 2 is an n-type first cladding layer, 3 is an active layer, and 4 is a p-type second cladding layer.

Claims (1)

【特許請求の範囲】[Claims] 半導体基板上に設けられた第1導電型の第1のクラッド
層と、この第1クラッド層上に形成された活性層と、こ
の活性層上に形成された第2導電型の第2のクラッド層
と、この第2のクラッド層上にストライプ状領域を除い
て形成された第1導電型の電流狭窄層と、この電流狭窄
層上および前記ストライプ状領域上に形成された第2導
電型の第3のクラッド層と、この第3クラッド層上に設
けられた第1の電極と、前記電流狭窄層上に設けられた
第2の電極と、前記半導体基板に設けられた第3の電極
とを備え、前記第1および第3の電極によって半導体レ
ーザを動作させ、この半導体レーザの出力を前記第2の
電極を制御端子として制御するトランジスタとして動作
させることを特徴とする半導体レーザを含む集積素子。
A first cladding layer of a first conductivity type provided on a semiconductor substrate, an active layer formed on the first cladding layer, and a second cladding of a second conductivity type formed on the active layer. a current confinement layer of a first conductivity type formed on the second cladding layer except for the striped region; and a current confinement layer of a second conductivity type formed on the current confinement layer and the striped region. a third cladding layer, a first electrode provided on the third cladding layer, a second electrode provided on the current confinement layer, and a third electrode provided on the semiconductor substrate. An integrated element including a semiconductor laser, characterized in that the semiconductor laser is operated by the first and third electrodes, and the output of the semiconductor laser is operated as a transistor that controls the output of the semiconductor laser by using the second electrode as a control terminal. .
JP25666384A 1984-12-05 1984-12-05 Integrated element including semiconductor laser Pending JPS61134093A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25666384A JPS61134093A (en) 1984-12-05 1984-12-05 Integrated element including semiconductor laser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25666384A JPS61134093A (en) 1984-12-05 1984-12-05 Integrated element including semiconductor laser

Publications (1)

Publication Number Publication Date
JPS61134093A true JPS61134093A (en) 1986-06-21

Family

ID=17295738

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25666384A Pending JPS61134093A (en) 1984-12-05 1984-12-05 Integrated element including semiconductor laser

Country Status (1)

Country Link
JP (1) JPS61134093A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0354141A2 (en) * 1988-08-05 1990-02-07 Eastman Kodak Company Diode laser with improved means for electrically modulating the emitted light beam intensity including turn-on and turn-off and electrically controlling the position of the emitted laser beam spot
US5216686A (en) * 1992-02-03 1993-06-01 Motorola, Inc. Integrated HBT and VCSEL structure and method of fabrication

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5833887A (en) * 1981-08-25 1983-02-28 Semiconductor Res Found Semiconductor laser
JPS58114479A (en) * 1981-12-26 1983-07-07 Fujitsu Ltd Semiconductor light emitting device
JPS594192A (en) * 1982-06-30 1984-01-10 Sharp Corp Semiconductor laser device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5833887A (en) * 1981-08-25 1983-02-28 Semiconductor Res Found Semiconductor laser
JPS58114479A (en) * 1981-12-26 1983-07-07 Fujitsu Ltd Semiconductor light emitting device
JPS594192A (en) * 1982-06-30 1984-01-10 Sharp Corp Semiconductor laser device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0354141A2 (en) * 1988-08-05 1990-02-07 Eastman Kodak Company Diode laser with improved means for electrically modulating the emitted light beam intensity including turn-on and turn-off and electrically controlling the position of the emitted laser beam spot
US5216686A (en) * 1992-02-03 1993-06-01 Motorola, Inc. Integrated HBT and VCSEL structure and method of fabrication

Similar Documents

Publication Publication Date Title
JP3745015B2 (en) Electronic devices
US4430741A (en) Semiconductor laser device
JPH0212968A (en) Integrated multilayer quantum well photon and electron device
US5345464A (en) Semiconductor laser
KR100533293B1 (en) Quantum device
US4888781A (en) Semiconductor laser
JPS61134093A (en) Integrated element including semiconductor laser
JP3179511B2 (en) Semiconductor laser
JPS61159784A (en) Semiconductor laser device
EP0645859B1 (en) Semiconductor laser
JPS6140082A (en) Semiconductor device
JP2758472B2 (en) Light modulator
JPH0936484A (en) Semiconductor laser and fabrication thereof
JPS63196084A (en) Pnpn photo thyristor
JPH01196888A (en) Optical integrated circuit
JPS601874A (en) Semiconductor light emitting device with control electrode
JPS637691A (en) Semiconductor laser device
JPS63136591A (en) Seniconductor laser
JPH05160506A (en) Semiconductor laser and its manufacture
JPH09179237A (en) Optical memory element
JPS62244167A (en) Optical, electronic semiconductor integrated circuit
JPH02238432A (en) Optical modulating device
JPH02132415A (en) Optical modulator
JPH0590640A (en) Semiconductor device
JPS61264776A (en) Optical semiconductor device