JPS63175230A - Optical medium recorder - Google Patents

Optical medium recorder

Info

Publication number
JPS63175230A
JPS63175230A JP62007516A JP751687A JPS63175230A JP S63175230 A JPS63175230 A JP S63175230A JP 62007516 A JP62007516 A JP 62007516A JP 751687 A JP751687 A JP 751687A JP S63175230 A JPS63175230 A JP S63175230A
Authority
JP
Japan
Prior art keywords
recording
medium
current
power
input signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62007516A
Other languages
Japanese (ja)
Other versions
JP2712159B2 (en
Inventor
Kiyoshi Kimoto
木本 輝代志
Giichi Aoki
義一 青木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP62007516A priority Critical patent/JP2712159B2/en
Publication of JPS63175230A publication Critical patent/JPS63175230A/en
Application granted granted Critical
Publication of JP2712159B2 publication Critical patent/JP2712159B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Optical Recording Or Reproduction (AREA)

Abstract

PURPOSE:To improve the dependent properties of the optimum recording power onto the ambient temperatures and the recording frequencies, by driving a light source with a larger and/or smaller current than the normal recording and/or non-recording current for an optional fixed period from the rise and/or the fall of an input signal. CONSTITUTION:A laser is turned on at a writing level at a time point I. In this case, the rise of a medium temperature has the larger gradient than usual since the power is larger than usual at the point I. Then the laser is turned on by the normal recording power at a time point II since the medium temperature rises and exceeds a temperature T0 that is needed for recording. A writing task is through at a time point III and the level of power is lowered than the normal level in order to quicken the drop the medium temperature. In this section specific time is set so that the servo control of a recording device is not affected at all even though the recording power is substantially equal to zero. Therefore the maximum temperature has the large rise and fall gradients at each point of the recording layer of a medium which moves relatively to an illuminated laser spot. Thus it is possible to improve the dependent properties of the optimum power onto the ambient temperatures and the recording frequencies.

Description

【発明の詳細な説明】 二産業上の利用分野〕 本発明は光により媒体へ情報を書き込む光媒体記録装置
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Second Industrial Application Fields] The present invention relates to an optical medium recording device that writes information onto a medium using light.

〔従来の技術〕[Conventional technology]

光ディスク、光磁気ディスク、光カード、光磁気カード
等の媒体、即ち媒体と光ビームを相対的に移動してディ
ジタルデータを書込む媒体(以下単に光媒体と称す)に
於いて、従来は記録すべきディジタルデータ信号によっ
てレーザ(半導体レーザ)ル2値点灯(明・暗)駆動し
て媒体にレーザスポットを照射しながら該レーザスポッ
トと媒体とを相対的に移動せしめてディジタルデータの
書き込みをしている。
Conventionally, recording is performed on media such as optical disks, magneto-optical disks, optical cards, and magneto-optical cards, in other words, media in which digital data is written by moving a light beam relative to the medium (hereinafter simply referred to as an optical medium). A laser (semiconductor laser) is driven in binary lighting (bright/dark) by a digital data signal to irradiate a laser spot onto the medium, and the laser spot and the medium are moved relative to each other to write digital data. There is.

具体的には記録すべきデータに対応するパルス幅の矩形
波形のパルス電流をレーザダイオードに加えて駆動して
いる。
Specifically, a laser diode is driven by applying a rectangular waveform pulse current with a pulse width corresponding to the data to be recorded.

尚、レーザパワーのローレベルを完全にゼロにしない様
に制御しているが、それはこの種の光媒体を使用する装
置に於いては、トラッキング、フォーカシング等のサー
ボ信号を得るために常時一定板上のレベルのレーザビー
ムが必要だからである。又ここで、レーザダイオードの
出力(レーザパワー)は駆動電流と闇値電流との差に比
例する。 ところで相対移動する光媒体(光媒体が移動
するか又はレーザビームが移動する)に照射されるレー
ザスポットのパワー(波窩値)は、記録単位(記録ピッ
ト)の長さく記録単位の移動方向の長さ)、即ち媒体が
回転する円板状(ディスク)であればディスクの周方向
の寸法に影響を与える事が知られており、その為媒体に
入力信号に対応した目的の長さの記録ビットが正確に形
成されるように、媒体の種類、媒体の移動速度、使用さ
れる周囲温度等の種々の条件によって最適のレーザパワ
ーを媒体に照射すべく最適のレーザ駆動電流即ちパルス
波の強度(電流値)が予め設定され、レーザダイオード
に加えられていた。
Note that the low level of the laser power is controlled so as not to be completely zero, but in devices using this type of optical medium, a constant plate is used to obtain servo signals for tracking, focusing, etc. This is because a higher level laser beam is required. Here, the output of the laser diode (laser power) is proportional to the difference between the drive current and the dark value current. By the way, the power (wavefocal value) of a laser spot irradiated onto a relatively moving optical medium (either the optical medium moves or the laser beam moves) is determined by the length of the recording unit (recording pit) and the direction of movement of the recording unit. It is known that if the medium is a rotating disk, it will affect the circumferential dimension of the disk, so it is necessary to record the desired length on the medium corresponding to the input signal. In order to accurately form bits, the optimal laser driving current, that is, the intensity of the pulse wave, is determined to irradiate the medium with the optimal laser power depending on various conditions such as the type of medium, the speed of movement of the medium, and the ambient temperature used. (current value) was set in advance and applied to the laser diode.

従来の技術において、媒体に照射されるレーザパワーが
第3図(1)のように鋭く変化したとしても、照射した
レーザスポットに対して相対的に移動する媒体の記録層
の各点に於ける最高温度は媒体の熱容量等により熱時定
数を持つ事から、第3図(2)のように立ち上がりと立
ち下がりに遅れをともなっている。ここで光による媒体
の加熱によって情報を書き込む光媒体記録(熱記録)の
例として光磁気記録の原理を説明する。
In conventional technology, even if the laser power irradiated onto the medium changes sharply as shown in Figure 3 (1), at each point on the recording layer of the medium that moves relative to the irradiated laser spot. Since the maximum temperature has a thermal time constant due to the heat capacity of the medium, etc., there is a delay in the rise and fall as shown in FIG. 3 (2). Here, the principle of magneto-optical recording will be explained as an example of optical media recording (thermal recording) in which information is written by heating the medium with light.

まず第3図(1)に示す如くのパルス状のレーザ光が光
媒体に照射される。照射したレーザスポットに対して相
対的に移動する媒体の記録層の各点に於ける最高温度は
第3図(2)に示す如く上界する。媒体の記録可能温度
T0を越えた部分で器よ、記録層である垂直磁化膜にお
ける磁化方向は容易に変更し得る状態となり、外部から
加えられる磁場の作用で垂直磁化方向が反転し記録層の
温度が下降すると既磁化方向は固定されて第3図(3)
に示す如く2値記録がなされる。第3図に於いて斜線部
分が他の部分と垂直[イl化方向が異なり、これを以下
仮りに〔1〕とする。
First, an optical medium is irradiated with a pulsed laser beam as shown in FIG. 3(1). The maximum temperature at each point on the recording layer of the medium that moves relative to the irradiated laser spot has an upper limit as shown in FIG. 3(2). At the point where the medium's recordable temperature T0 is exceeded, the magnetization direction in the perpendicularly magnetized film, which is the recording layer, becomes easily changeable, and the perpendicular magnetization direction is reversed by the action of an externally applied magnetic field, causing the recording layer to change. As the temperature decreases, the direction of magnetization becomes fixed, and the direction of magnetization becomes fixed (Figure 3)
Binary recording is performed as shown in FIG. In FIG. 3, the hatched portion is perpendicular to the other portions (the direction of illumination is different from that of the other portions), and this will be hereinafter referred to as [1].

ここで周囲温度が変動すると、照射したレーザスポット
に対して相対的に移動する媒体の記録層の各点に於ける
最高温度が第4図(1)に示す如く上下方向にシフトす
るので最高温度プロフィールと記録可能温度T0との交
わりから求められる2植体号の〔1〕の長さは第4図(
2)のように変動する。つまり同じレーザパワーで記録
をおこなう場合、周囲温度が上がると記録(1)の長さ
が伸び、周囲温度が下がると逆に縮まる。即ち最適記録
パワーの周囲温度依存性である。換言すると、いかなる
周囲温度に於いても同じ記録長で記録するためには、周
囲温度の変動に従って記録時媒体に照射するレーザパワ
ー即ちレーザ駆動電流を二周整しなければならない。
If the ambient temperature changes here, the maximum temperature at each point on the recording layer of the medium that moves relative to the irradiated laser spot shifts in the vertical direction as shown in Figure 4 (1), so the maximum temperature The length of [1] of the two plant numbers determined from the intersection of the profile and the recordable temperature T0 is shown in Figure 4 (
2). In other words, when recording with the same laser power, the length of recording (1) increases as the ambient temperature increases, and conversely decreases as the ambient temperature decreases. That is, the optimum recording power depends on the ambient temperature. In other words, in order to record with the same recording length at any ambient temperature, the laser power irradiated to the medium during recording, that is, the laser drive current, must be adjusted by two cycles in accordance with the fluctuations in ambient temperature.

更に、記録信号(レーザ駆動電流)の周波数が高く、レ
ーザーパワーが第5図(1)の様に変化する時、1パル
スの持続期間が記録層の熱時定数の程度にまで短くなり
、媒体の記録層の温度変化がパルスの変化に追随しきれ
なくなるため、照射したレーザスポットに対して相xI
的に移動する媒体(光磁気ディスクの場合は媒体即ちデ
ィスクの回転により移動する)の記録層の各点に於ける
最高温度は、高温部(山)・低温部(谷)とも定常温度
まで達せず、第5図(2)のように山と谷との差(振幅
)が小さくなる。従って記録イマ号が高周波数になると
低周波数での最適記録パワーのままでは正確なピットの
長さが得られなくなるという問題点が有った。即ち最適
照射レーザパワーの記録周波数依存性である。
Furthermore, when the frequency of the recording signal (laser drive current) is high and the laser power changes as shown in Figure 5 (1), the duration of one pulse becomes as short as the thermal time constant of the recording layer, and the medium Since the temperature change of the recording layer cannot follow the pulse change, the phase xI for the irradiated laser spot
The maximum temperature at each point on the recording layer of a medium that moves mechanically (in the case of a magneto-optical disk, it moves due to the rotation of the medium or disk) reaches a steady temperature in both high temperature areas (peaks) and low temperature areas (troughs). First, the difference (amplitude) between peaks and valleys becomes smaller, as shown in FIG. 5(2). Therefore, when the recording time signal becomes high in frequency, there is a problem that an accurate pit length cannot be obtained with the optimum recording power at a low frequency. That is, it is the recording frequency dependence of the optimum irradiation laser power.

そ、二で本発明は、上記問題点すなわち最適記録パワー
の周囲温度依存性及び記録周波数依存性の改善を目的と
する。
Second, the present invention aims to improve the above-mentioned problems, that is, the dependence of optimum recording power on ambient temperature and recording frequency.

(IXI題点を解決する為の手段〕 上記問題点すなわら最適記録パワーの周囲温度依存性及
び記録周波数依存性の改善の為に本究明では、記録時の
レーザ駆動電流に補正電流を加える事により媒体に照射
されるレーザパワーの立ち上がりと立ち下がりを強調し
て記録層の温度変化の追従遅れを極力少なくした。即ら
ディジタル入力信号に従って光源を記録電流と非記録電
流との2値で制御して光を媒体に照射し、該照射部の媒
体温度の上界により、ディジタル入カイC号を記録する
光媒体記録装置に於いて、前記光源を、入力信号の立上
り及び/又は立下りから任意の一定期間通常の記録電流
及び/又は非記録電流よりも大電流及び/又は小電流で
駆動する様にした。
(Means for solving problem IXI) In order to improve the above problems, that is, the dependence of optimal recording power on ambient temperature and recording frequency, in this study, a correction current is added to the laser drive current during recording. By emphasizing the rise and fall of the laser power irradiated to the medium, the delay in tracking temperature changes in the recording layer is minimized.In other words, the light source is controlled to generate two values of recording current and non-recording current according to the digital input signal. In an optical media recording device that controls and irradiates light onto a medium and records digital input signal C according to the upper limit of the medium temperature of the irradiation section, the light source is controlled to Therefore, the device is driven with a current larger and/or smaller than the normal recording current and/or non-recording current for an arbitrary fixed period.

〔作用〕[Effect]

本発明では、レーザパワーの立ち上がり及び/又は立下
がりを強調しているので、例えば第1図(1)ではレー
ザパワーの立ち上がり及び立下がりを強調しているので
、記録層の各点に於ける最高温度は第1図(2)の如く
立ち上がりと立ち下がりの遅れが改訃される。 即ち第
1図(1)について、時刻rでレーザが書き込みレベル
で点灯するが、このときのパワーは通常より強い。この
ため媒体温度の上昇の立ち上がりは通常より傾きが大き
い。時刻■では、媒体温度が十分上胃、シて記録に必要
な温度T0を越えているので通常の記録パワーで点灯す
る。時刻■で書き込みが終了するが、媒体温度の降下を
速めるため、通常のパワーより下げる。この区間は(例
えば50nsec程度と充分短かく)もしパワーがほと
んどゼロになったとしても、記録装置のサーボ制御には
全く影響がでない程度の時間とする事により解決可能で
ある。
In the present invention, since the rise and/or fall of the laser power is emphasized, for example, in FIG. 1 (1), the rise and fall of the laser power is emphasized, so that As for the maximum temperature, the delay in rise and fall is modified as shown in FIG. 1 (2). That is, regarding FIG. 1(1), the laser is turned on at a writing level at time r, but the power at this time is stronger than usual. Therefore, the slope of the rise in medium temperature is larger than usual. At time (3), the medium temperature is sufficiently high and exceeds the temperature T0 necessary for recording, so the light is turned on with the normal recording power. Writing ends at time ■, but in order to speed up the drop in medium temperature, lower the power than normal. This interval can be solved by making it sufficiently short (for example, about 50 nsec) that even if the power becomes almost zero, it will not affect the servo control of the recording device at all.

以上の過程によって照射レーザスポットに対して相対的
に移動する媒体(光ディスク、光磁気ディスク、光カー
ド、光磁気カードの場合は媒体即ちディスクの回転やカ
ードの移動による)の記iJ[の各点(即ちトラック上
の各点)に於ける最高温度は、第1図(2)の如く立ち
上がりと立ち下がりの傾きが大きくなるため最適パワー
の周囲温度依存性や記録周波数依存性が改善される。
Through the above process, each point of the medium (in the case of an optical disk, magneto-optical disk, optical card, or magneto-optical card, due to rotation of the medium or movement of the disk) that moves relative to the irradiated laser spot As for the maximum temperature at each point on the track (that is, at each point on the track), the rising and falling slopes become larger as shown in FIG.

〔実施例〕〔Example〕

補正電流の持vt期間は立上り及び/又は立下りによっ
てそれぞれ適当な時間を設定し得るものであるが、以下
実施例では説明を容易にするために立上り及び立下りを
補正するものであって、しかも立上り及び立下りいずれ
の補正時間も記録信号のちょうど1ピット分の長さであ
る場合について説明する。
Although the Vt period of the correction current can be set to an appropriate time depending on the rise and/or fall, in the following embodiments, the rise and fall are corrected for ease of explanation. Moreover, a case will be explained in which both the rising and falling correction times are exactly the length of one pit of the recording signal.

勿論、補正時間が信号のIビット分でない場合について
も回路構成は同様である。
Of course, the circuit configuration is the same even when the correction time is not equal to I bits of the signal.

第6図は本発明の光媒体記録装置の半導体レーザ駆動電
流発生回路の一実施例のブロック図である。記録パルス
電流発生回路1は第6図(a)に示す様な信号波形のデ
ィジタル記録信号から第6図(b)に示す様な通常の記
録パルス電流を発生する。パルスエツジ検出回路2.4
はそれぞれ記録13号の立ち上がりと立ち下がりを検出
し、それぞれ第6図(c)、(e)に示す様なトリガー
信号を発生する。補正パルス電流発生回路3,5ではト
リガー信号をとらえて第6図(d)、<r>に示す様な
それぞれプラス側とマイナス側の補正パルス電流を1ビ
ット分の長さだけ発生する。記録パルス電流(第6図(
a)と補正パルス電流(第6図(d)、(f))は足し
合わされて第6図(g)に示す電流波形となってレーザ
ダイオードを駆動する。
FIG. 6 is a block diagram of an embodiment of the semiconductor laser drive current generating circuit of the optical medium recording device of the present invention. The recording pulse current generating circuit 1 generates a normal recording pulse current as shown in FIG. 6(b) from a digital recording signal having a signal waveform as shown in FIG. 6(a). Pulse edge detection circuit 2.4
detect the rising edge and falling edge of record No. 13, respectively, and generate trigger signals as shown in FIGS. 6(c) and 6(e), respectively. The correction pulse current generating circuits 3 and 5 receive the trigger signal and generate correction pulse currents on the plus side and minus side, respectively, each having a length of one bit, as shown in FIG. 6(d) and <r>. Recording pulse current (Fig. 6 (
a) and the correction pulse current (FIGS. 6(d) and (f)) are added together to form a current waveform shown in FIG. 6(g), which drives the laser diode.

第6図では補正電流の波形が矩形であったが、立ち上が
りと立ち下がりを強調した補正電流の波形であればどの
様な波形でも良く、例えば鋸歯状波でも良い。
In FIG. 6, the waveform of the correction current is rectangular, but any waveform may be used as long as the waveform of the correction current emphasizes rising and falling edges, such as a sawtooth waveform.

第7図は第2の実施例であり、補正電流が鋸歯状波の場
合の実施例である。記録パルス電流発生回路lは第6図
の回路lと同様に通常の記録パルス″1lit流を発生
する。微分回路6では記録信号の微分をおこない第7図
(C)に示す様なトリガー信号をつくる。補正パルス電
流発生回路7でトリガー信号をもとに第7図(d)に示
す様な長さ1ビット分の鋸歯状の補正パルス電流を発生
する。
FIG. 7 shows a second embodiment, in which the correction current is a sawtooth wave. The recording pulse current generating circuit 1 generates a normal recording pulse of 1 liter in the same way as the circuit 1 in FIG. 6.The differentiating circuit 6 differentiates the recording signal and generates a trigger signal as shown in FIG. The correction pulse current generating circuit 7 generates a sawtooth correction pulse current having a length of 1 bit as shown in FIG. 7(d) based on the trigger signal.

記録パルス電流(第7図(b))と補正パルス電流(第
7図(d))は足し合わされて第7図(e)に示す電流
波形となってレーザダイオードを駆動する。
The recording pulse current (FIG. 7(b)) and the correction pulse current (FIG. 7(d)) are added together to form a current waveform shown in FIG. 7(e), which drives the laser diode.

第8図は本発明の第3の実施例である。本実施例では補
正パルス電流発生回路8と9はそれぞれ補正電流の持続
時間が1ビット以内の時間で調節可能でありこの点を除
いて第6図に示す回路と同じである。第8図(a)〜(
g)は第8図の回路における各所における電流波形を示
す。
FIG. 8 shows a third embodiment of the present invention. In this embodiment, the correction pulse current generating circuits 8 and 9 are the same as the circuit shown in FIG. 6, except that the duration of the correction current can be adjusted within one bit. Figure 8(a)-(
g) shows current waveforms at various points in the circuit of FIG.

第9図は本発明の第4の実施例である。本実施例では鋸
歯状波補正パルス電流発生回路10による補正N’a 
(第9図(d))の持続時間が1ビットより短い時間内
で調節可能でありこの点を除いて鋸歯状波の補正電流を
発生する第7図の回路と同じである。
FIG. 9 shows a fourth embodiment of the present invention. In this embodiment, the correction N'a by the sawtooth wave correction pulse current generation circuit 10 is
The duration of the circuit (FIG. 9(d)) is adjustable within a time period of less than one bit and is otherwise the same as the circuit of FIG. 7 for generating a sawtooth wave correction current.

以上4つの実施例をあげて説明したが、各実施例の特徴
を以下に記載する。
Although four embodiments have been described above, the characteristics of each embodiment will be described below.

第8図に示す第3実施例は第6図に示す第1実施例と比
べ補正時間の細かい調節が出来る為補正時間の最適化が
可能である。
Compared to the first embodiment shown in FIG. 6, the third embodiment shown in FIG. 8 allows fine adjustment of the correction time, so that the correction time can be optimized.

第7図に示す第2実施例は第6図に示す第1実施例と比
ベエソジ強調の効果が大きくなる。第9図に示す第4実
施例は第7図の第2実施例と比較して補正時間の最適化
が可能である。
The second embodiment shown in FIG. 7 has a greater effect of emphasizing the distortion than the first embodiment shown in FIG. The fourth embodiment shown in FIG. 9 allows optimization of the correction time compared to the second embodiment shown in FIG.

尚、実施例ではパルスによる補正(第1、第3実施例)
はエツジ検出回路2.4によっていたが勿論微分回路6
も使用出来る。又1に歯状波による補正(第2、第4実
施例)は微分回路6によっていたが勿論エツジ検出回路
2.4も使用し得る。
In addition, in the embodiment, correction by pulse (first and third embodiments)
was determined by the edge detection circuit 2.4, but of course the differential circuit 6
can also be used. In addition, although the correction using the tooth wave (in the second and fourth embodiments) was performed using the differentiating circuit 6, it is of course possible to use the edge detection circuit 2.4.

更に他のエツジ部分検出手段を使用する事も出来る。又
、実施例では立上り及び立下りの両方を補正するものを
示したが、勿論何れか一方でも良い。
Furthermore, other edge detection means can also be used. Further, in the embodiment, a case is shown in which both the rising edge and the falling edge are corrected, but it goes without saying that either one of them may be corrected.

更に、補正する期間もlビット以内に限定するものでは
無い。但し回路構成上は実施例の如く1ビットにする事
でFJT jF−になる。
Furthermore, the correction period is not limited to 1 bit or less. However, in terms of circuit configuration, by setting it to 1 bit as in the embodiment, it becomes FJT jF-.

〔発明の効果〕〔Effect of the invention〕

以上のように本発明によれば、記録層の最高温度のプロ
フィールにおいて、立ち上がり及び/又は立ち下がりに
当たる部分の温度上昇或いは下降がよりシャープになり
、そのため最適記録パワーの周囲温度依存性や記録周波
数依存性が改善できる。
As described above, according to the present invention, in the maximum temperature profile of the recording layer, the temperature rise or fall at the rising and/or falling portions becomes sharper, and therefore the ambient temperature dependence of the optimum recording power and the recording frequency Dependency can be improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例によるレーザパワーのパルス
波形及び記録層の各点に於ける最高温度を示す図、第2
図は従来のレーザ駆動電Ql+iの波形図、第3図はレ
ーザ出力波形と記録層の各点に於ける最高温度及び記録
ビットの関係を示す図、第4図は周囲温度が変化した場
合に、最高温度が平行移動し、記録ビット長が変わるこ
とを示す図、第5図は記録周囲波数が窩いときのレーザ
出力波形と記録層の最高温度との関係を示す図、第6図
、第7図、第8図、第9図は実施例を説明するブロック
図と各部の電流波形。 〔主要部分の符号の説明〕 1−−−−−−−−−−−−・−−一−−−−−−−−
−〜−−−記録パルス電流発生回路2.4−−−−−−
−−−−・ −・−・パルスエツジ検出回路3.5、・
8.9−一−−・・・・−補正パルス電流発生回路出願
人   日本光学工業株式会社 代理人 弁理士 渡 辺  隆 男 N1 日 第5図 第6図 第7図 第3図
FIG. 1 is a diagram showing the pulse waveform of laser power and the maximum temperature at each point of the recording layer according to an embodiment of the present invention, and FIG.
The figure is a waveform diagram of the conventional laser drive voltage Ql+i, Figure 3 is a diagram showing the relationship between the laser output waveform, the maximum temperature at each point of the recording layer, and the recording bit, and Figure 4 is a diagram showing the relationship between the laser output waveform and the maximum temperature at each point of the recording layer and recording bits. , a diagram showing that the maximum temperature moves in parallel and the recording bit length changes, FIG. 5 is a diagram showing the relationship between the laser output waveform and the maximum temperature of the recording layer when the recording peripheral wave number is not sharp, and FIG. FIG. 7, FIG. 8, and FIG. 9 are block diagrams explaining the embodiment and current waveforms of each part. [Explanation of symbols of main parts] 1−−−−−−−−−−−−・−−1−−−−−−−−
-~----Recording pulse current generation circuit 2.4------
−−−−・−・−・Pulse edge detection circuit 3.5,・
8.9-1---Correction pulse current generating circuit Applicant Nippon Kogaku Kogyo Co., Ltd. Agent Patent attorney Takashi Watanabe Male N1 Day Figure 5 Figure 6 Figure 7 Figure 3

Claims (7)

【特許請求の範囲】[Claims] (1)ディジタル入力信号に従って光源を記録電流と非
記録電流との2値で制御して光を媒体に照射し、該照射
部の媒体温度の上昇により、ディジタル入力信号を記録
する光媒体記録装置に於いて、前記光源を、入力信号の
立上りから任意の一定期間通常の記録電流より大電流で
駆動する事を特徴とする光媒体記録装置。
(1) Optical media recording device that controls a light source with binary values of recording current and non-recording current according to a digital input signal, irradiates the medium with light, and records the digital input signal by increasing the temperature of the medium in the irradiation section. An optical medium recording device characterized in that the light source is driven with a current larger than a normal recording current for an arbitrary fixed period from the rise of an input signal.
(2)ディジタル入力信号に従って光源を記録電流と非
記録電流との2値で制御して光を媒体に照射し、該照射
部の媒体温度の上昇により、ディジタル入力信号を記録
する光媒体記録装置に於いて、前記光源を、入力信号の
立下りから任意の一定期間通常の非記録電流より小電流
で駆動する事を特徴とする光媒体記録装置。
(2) Optical media recording device that controls a light source with binary values of recording current and non-recording current according to a digital input signal, irradiates the medium with light, and records the digital input signal by increasing the temperature of the medium in the irradiation section. An optical medium recording device characterized in that the light source is driven with a current smaller than a normal non-recording current for an arbitrary fixed period from the fall of an input signal.
(3)ディジタル入力信号に従って光源を記録電流と非
記録電流との2値で制御して光を媒体に照射し、該照射
部の媒体温度の上昇により、ディジタル入力信号を記録
する光媒体記録装置に於いて、前記光源を、入力信号の
立上りから任意の一定期間通常の記録電流より大電流で
駆動し、記録信号の立下りから任意の一定期間通常の非
記録電流より小電流で駆動する事を特徴とする光媒体記
録装置。
(3) Optical media recording device that controls a light source with binary values of recording current and non-recording current according to a digital input signal, irradiates the medium with light, and records the digital input signal by increasing the temperature of the medium in the irradiation section. The light source is driven with a current larger than the normal recording current for an arbitrary fixed period from the rising edge of the input signal, and is driven with a smaller current than the normal non-recording current for an arbitrary fixed period from the falling edge of the recording signal. An optical medium recording device characterized by:
(4)前記任意の一定期間は立上り時と立下り時とで異
なる事を特徴とする特許請求の範囲第3項記載の光媒体
記録装置。
(4) The optical medium recording device according to claim 3, wherein the arbitrary fixed period is different at a rising time and a falling time.
(5)前記任意の一定期間は立上り時と立下り時とで等
しい事を特徴とする特許請求の範囲第3項記載の光媒体
記録装置。
(5) The optical medium recording device according to claim 3, wherein the arbitrary fixed period is equal at a rising time and a falling time.
(6)前記任意の一定期間は1ビットである事を特徴と
する特許請求の範囲第5項記載の光媒体記録装置。
(6) The optical medium recording device according to claim 5, wherein the arbitrary fixed period is one bit.
(7)前記任意の一定期間は最長1ビットである事を特
徴とする特許請求の範囲第4項又は第5項 記載の光媒
体記録装置。
(7) The optical medium recording device according to claim 4 or 5, wherein the arbitrary fixed period has a maximum length of 1 bit.
JP62007516A 1987-01-16 1987-01-16 Optical media recording method Expired - Fee Related JP2712159B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62007516A JP2712159B2 (en) 1987-01-16 1987-01-16 Optical media recording method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62007516A JP2712159B2 (en) 1987-01-16 1987-01-16 Optical media recording method

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP8872497A Division JP2867993B2 (en) 1997-03-24 1997-03-24 Optical media recording method

Publications (2)

Publication Number Publication Date
JPS63175230A true JPS63175230A (en) 1988-07-19
JP2712159B2 JP2712159B2 (en) 1998-02-10

Family

ID=11667935

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62007516A Expired - Fee Related JP2712159B2 (en) 1987-01-16 1987-01-16 Optical media recording method

Country Status (1)

Country Link
JP (1) JP2712159B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0265213U (en) * 1988-11-04 1990-05-16
JPH02232841A (en) * 1989-03-06 1990-09-14 Fujitsu Ltd Recording method for magneto-optical disk
JPH02244443A (en) * 1989-03-15 1990-09-28 Sony Corp Magneto-optical recording method
JPH02273325A (en) * 1989-04-14 1990-11-07 Nec Corp Optical information recorder
JPH03232140A (en) * 1990-02-08 1991-10-16 Nec Corp Magneto-optical overwrite device
JPH03296942A (en) * 1990-04-17 1991-12-27 Mitsubishi Electric Corp Magneto-optical recorder

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55139693A (en) * 1979-04-17 1980-10-31 Fujitsu Ltd Write system for optical recording medium
JPS60150240A (en) * 1984-01-17 1985-08-07 Nippon Kogaku Kk <Nikon> Thermal information recorder
JPS60247827A (en) * 1984-05-24 1985-12-07 Nec Corp Optical storage and writing circuit
JPS62281124A (en) * 1986-05-30 1987-12-07 Sharp Corp Optical information recorder

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55139693A (en) * 1979-04-17 1980-10-31 Fujitsu Ltd Write system for optical recording medium
JPS60150240A (en) * 1984-01-17 1985-08-07 Nippon Kogaku Kk <Nikon> Thermal information recorder
JPS60247827A (en) * 1984-05-24 1985-12-07 Nec Corp Optical storage and writing circuit
JPS62281124A (en) * 1986-05-30 1987-12-07 Sharp Corp Optical information recorder

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0265213U (en) * 1988-11-04 1990-05-16
JPH02232841A (en) * 1989-03-06 1990-09-14 Fujitsu Ltd Recording method for magneto-optical disk
JPH02244443A (en) * 1989-03-15 1990-09-28 Sony Corp Magneto-optical recording method
JPH02273325A (en) * 1989-04-14 1990-11-07 Nec Corp Optical information recorder
JPH03232140A (en) * 1990-02-08 1991-10-16 Nec Corp Magneto-optical overwrite device
JPH03296942A (en) * 1990-04-17 1991-12-27 Mitsubishi Electric Corp Magneto-optical recorder

Also Published As

Publication number Publication date
JP2712159B2 (en) 1998-02-10

Similar Documents

Publication Publication Date Title
JP3787415B2 (en) Test recording method and optical information recording / reproducing apparatus using the method
US5959943A (en) Information recording medium with clock information therein
US20040052178A1 (en) Information recording apparatus
JP3134290B2 (en) Magneto-optical recording device
EP0762400B1 (en) Optical information recording and/or reproducing apparatus and method
JP2674453B2 (en) Optical disc medium recording method and apparatus
EP0284056A2 (en) Method of optically recording information and apparatus therefor
JPH11167754A (en) Magneto-optical recording and reproducing method and its reproducing device
JPH02126447A (en) Magneto-optical recorder
JP2734066B2 (en) Optical media recording device
US5487059A (en) Heat shut off condition determination method and apparatus for optical recording, and optical recording method and apparatus
JP3081551B2 (en) Information recording and playback method
US5321672A (en) Method of an apparatus for magneto-optically recording information by changing the position or shape or controlling the diameter of reversed domains
KR20050071635A (en) Optical information recording method, optical information recording device and optical information recording medium
JPS63175230A (en) Optical medium recorder
US5798996A (en) Method and apparatus for recording digital data by controlling the location of the edge of recording pits through modulation of a laser
JP2650357B2 (en) Recording method for optical information recording member
JP2867993B2 (en) Optical media recording method
JPH0729239A (en) Recording control method for magneto-optical disk
EP0594425A2 (en) Pulse train condition/heat shut off condition determination method and apparatus for optical recording, and optical recording method and apparatus
JP3659524B2 (en) Optical information recording method and apparatus
JP2776833B2 (en) Information recording device
JP3974672B2 (en) Recording / reproducing method of recording medium
EP0595625A2 (en) Prepulse condition/heat shut off condition determination method and apparatus for optical recording, and optical recording method and apparatus
JP3359054B2 (en) Magneto-optical information recording / reproducing device

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees