JPS6317503B2 - - Google Patents

Info

Publication number
JPS6317503B2
JPS6317503B2 JP59192233A JP19223384A JPS6317503B2 JP S6317503 B2 JPS6317503 B2 JP S6317503B2 JP 59192233 A JP59192233 A JP 59192233A JP 19223384 A JP19223384 A JP 19223384A JP S6317503 B2 JPS6317503 B2 JP S6317503B2
Authority
JP
Japan
Prior art keywords
magnetic
container
sealing member
magnetic bodies
rotating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP59192233A
Other languages
Japanese (ja)
Other versions
JPS6171857A (en
Inventor
Makoto Takeuchi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jeol Ltd
Original Assignee
Nihon Denshi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nihon Denshi KK filed Critical Nihon Denshi KK
Priority to JP59192233A priority Critical patent/JPS6171857A/en
Publication of JPS6171857A publication Critical patent/JPS6171857A/en
Publication of JPS6317503B2 publication Critical patent/JPS6317503B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Joints Allowing Movement (AREA)
  • Quick-Acting Or Multi-Walled Pipe Joints (AREA)
  • Centrifugal Separators (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は遠心力場を利用して高分子の液体を分
離する装置に用いて有効な回転ジヨイントに関す
る。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a rotating joint that is effective for use in a device that separates polymeric liquids using a centrifugal force field.

[従来の技術] 近時、分子量が104以上の高分子溶液を分離可
能にしたF.F.F.(Field Flow Fractionation)な
るものが提案されている。このF.F.F.と言うのは
薄い通路(溝)内に分離しようとする液体を一定
の流速で流しておき、該通路に対して直角な方向
から外部場(Field)を掛けてその場の力により
溶質を通路の壁面に押し付け、溶質の質量の違い
によりその押圧力が相違する点を利用して溶液中
の粒体(溶質)の分離を行うもので、前記分離通
路に印加する場としては、遠心力、熱勾配、電場
等が提案されている。この内、最もポピユラーな
ものとして第2図にその構造を示す様に遠心力を
利用するものが使用されている。即ち、回転軸1
に固定された回転体2の外周に回転中心と同心的
な薄い円筒状の分離溝3を形成し、該回転前をモ
ータ4にて高速回転させた状態で、パイプ5から
試料及び展開液を比較的遅い速度で分離溝3内に
導入せしめれば、この導入された液は回転体の高
速回転に伴なう遠心力により次第に分離されてい
き、パイプ6を介して図示外の検出系に導入さ
れ、クロマトグラムが得られる。尚、図中、7
a,7bは回転軸1を筐体8に回転可能に取付け
るためのベアリングである。
[Prior Art] Recently, a method called FFF (Field Flow Fractionation) has been proposed, which allows separation of polymer solutions with a molecular weight of 10 4 or more. This FFF is a process in which the liquid to be separated is allowed to flow at a constant flow rate in a thin channel (groove), and an external field is applied from a direction perpendicular to the channel, and the solute is separated by the force of that field. is pressed against the wall of the passageway, and particles (solutes) in the solution are separated by utilizing the fact that the pressing force differs depending on the mass of the solute. Forces, thermal gradients, electric fields, etc. have been proposed. Among these, the most popular type is one that utilizes centrifugal force, the structure of which is shown in Figure 2. That is, the rotating shaft 1
A thin cylindrical separation groove 3 concentric with the center of rotation is formed on the outer periphery of the rotating body 2 fixed to the rotating body 2, and while the front part of the rotating body is rotated at high speed by a motor 4, the sample and developing solution are passed through the pipe 5. If introduced into the separation groove 3 at a relatively slow speed, the introduced liquid will be gradually separated by the centrifugal force caused by the high speed rotation of the rotating body, and will be sent to a detection system (not shown) via the pipe 6. A chromatogram is obtained. In addition, in the figure, 7
Numerals a and 7b are bearings for rotatably attaching the rotating shaft 1 to the housing 8.

[発明が解決しようとする問題点] この様な装置においては、高速回転している回
転体の分離溝内に試料や展開液を導入及び排出し
なければならないために、回転ジヨイントが必要
となつてくる。そのため、従来においては、図の
様に筐体8に固定された外管9と内管10からな
る二重管11をベアリング12a,12bを介し
て回転軸1内にその回転中心と同芯的に配置し、
Oリングパツキング13a,13bにより外管9
と内管10との狭に通路14にパイプ5が、又内
管10にパイプ6が夫々分離して接続する様に構
成した回転ジヨイントが使用されている。
[Problems to be Solved by the Invention] In such an apparatus, a rotating joint is required because the sample and developing solution must be introduced into and discharged from the separation groove of the rotating body that rotates at high speed. It's coming. Therefore, conventionally, as shown in the figure, a double tube 11 consisting of an outer tube 9 and an inner tube 10 fixed to a housing 8 is inserted into the rotating shaft 1 through bearings 12a and 12b so as to be concentric with the center of rotation. Place it in
Outer tube 9 is secured by O-ring packing 13a, 13b.
A rotary joint is used in which the pipe 5 is connected to the narrow passage 14 between the inner tube 10 and the inner tube 10, and the pipe 6 is separately connected to the inner tube 10.

しかし乍ら斯様にOリングパツキングにより2
つの分離領域(通路)を形成する様になした回転
ジヨイントにおいては、、シール圧を高くとるこ
とができないため、液漏れが発生しやすく、又、
シール部材の摩耗も比較的速く、回転速度もせい
ぜい数1000rpm程度が限度であり、従つて、あま
り大きな遠心力場を試料に与えることができない
ため、液の流速を高くとることができなくなり、
分析時間が長くなる。
However, due to the O-ring packing, 2
In a rotating joint that forms two separation areas (passages), it is not possible to maintain a high sealing pressure, so liquid leakage is likely to occur.
The sealing member wears out relatively quickly, and the rotational speed is limited to a few thousand rpm at most. Therefore, it is not possible to apply a very large centrifugal force field to the sample, making it impossible to increase the flow rate of the liquid.
Analysis time becomes longer.

上記の如き問題に鑑み、平板状の摩擦係数の小
さい耐摩耗性シール部材を介して、一方が固定、
他方が回転する金属部材をスプリング圧により、
面と面を押し付けるように構成して高いシール圧
を得るようにした面シール方式の回転ジヨイント
が近時提案されている。この方式ではスプリング
強度を強くして締め付け力を増大すれば、シール
圧は必要なだけ高くとることができる。
In view of the above problems, one side is fixed via a flat plate-like wear-resistant seal member with a small coefficient of friction.
The other rotates the metal member by spring pressure.
Recently, a surface-seal type rotary joint has been proposed that is constructed so that surfaces are pressed against each other to obtain high sealing pressure. In this method, by increasing the spring strength and increasing the tightening force, the sealing pressure can be made as high as necessary.

然し乍ら、耐摩耗性能は、シール圧Pと回転に
よる周速度Vの積で見積られるように、与えられ
たシール部材の耐摩耗性によりPを大きくとると
Vを大きくとることはできない。又、Vを大きく
とるとPを大きくとることができない。耐摩耗性
の優れた材料として、テフロンとグラフアイトカ
ーボン入りポリイミド材があるが、この部材の耐
摩耗性はPV=2100(Kg/cm2)・(m/min)で、摩
擦係数が0.07程度である。このため、シール圧は
必要なだけの圧力にとどめ、周速度Vを高くとる
ようにしているのが実際である。
However, wear resistance performance is estimated by the product of seal pressure P and rotational circumferential speed V, so if P is set large, V cannot be set large due to the wear resistance of a given seal member. Furthermore, if V is set large, P cannot be set large. Materials with excellent wear resistance include Teflon and polyimide containing graphite carbon, but the wear resistance of these materials is PV = 2100 (Kg/cm 2 )・(m/min), and the coefficient of friction is approximately 0.07. It is. For this reason, in reality, the sealing pressure is kept to a necessary level and the circumferential speed V is set high.

一般にF.F.F.ではカラム系の圧損失とカラムか
ら出たあとの系(即ち検出器)の圧損失に見合う
だけの圧力を必要としない。従つて1mi/min程
度の流速で行う場合は、数Kg/cm2程度のシール圧
で良い。然るに、展開液を超臨界状態の液体
(Super Critical Fluids)を用いて分離性能を高
めようとする試みがある。このような場合は、カ
ラム内の圧力は一定圧力(臨界圧)以上に保つこ
とが必須となる。例えば二酸化炭素CO2では、臨
界温度31.0℃で臨界圧72.8atmであり、臨界温度
以上に保つて100Kg/cm2以上の圧力が必要とされ
る。
Generally, FFF does not require enough pressure to compensate for the pressure loss in the column system and the pressure loss in the system after exiting the column (i.e., the detector). Therefore, when conducting at a flow rate of about 1 mi/min, a sealing pressure of about several kg/cm 2 is sufficient. However, there have been attempts to improve the separation performance by using supercritical fluids as the developing solution. In such a case, it is essential to maintain the pressure inside the column at a constant pressure (critical pressure) or higher. For example, carbon dioxide CO 2 has a critical temperature of 31.0° C. and a critical pressure of 72.8 atm, and a pressure of 100 Kg/cm 2 or more is required to maintain the temperature above the critical temperature.

さて、この様な高圧を従来の回転シールで得よ
うとすると、シール部材の耐摩耗性の能力から回
転速度を高くとることができない。
Now, when attempting to obtain such high pressure with a conventional rotary seal, the rotation speed cannot be increased due to the wear resistance of the seal member.

本発明は上記の欠点を解決することのできる新
規な回転ジヨイントを提供することを目的とする
ものである。
The object of the present invention is to provide a new rotary joint that can overcome the above-mentioned drawbacks.

[問題点を解決するための手段] この目的を達成するため、本発明の回転ジヨイ
ントは、近接して対向配置される1対の磁性体
と、いずれか一方の磁性体に取付けられるシール
部材と、該1対の磁性体間に磁束を通すことによ
り生じる吸引力によつて間に前記シール部材を介
在させて2つの磁性体を密着させるため少なくと
もいずれか一方の磁性体に近接して設けられる磁
石と、前記2つの磁性体及びシール部材を内部に
収容すると共に一方の磁性体を固定的に支持する
容器と、他方の磁性体を容器に固定された磁性体
に対して回転させるため容器外部から回転力を伝
える回転体と、前記2つの磁性体間に流体を流す
ためこの2つの磁性体及びシール部材に夫々設け
られた穴とを備え、前記容器内に加圧された流体
を供給し、前記シール部材と磁性体との境界部に
該加圧流体を接触させるようにしたことを特徴と
するものである。
[Means for solving the problem] In order to achieve this object, the rotating joint of the present invention includes a pair of magnetic bodies disposed close to each other and a sealing member attached to one of the magnetic bodies. , is provided close to at least one of the magnetic bodies in order to bring the two magnetic bodies into close contact with each other with the sealing member interposed therebetween by the attractive force generated by passing magnetic flux between the pair of magnetic bodies. a container that houses a magnet, the two magnetic bodies and the sealing member therein and fixedly supports one of the magnetic bodies, and an outside of the container for rotating the other magnetic body with respect to the magnetic body fixed to the container. A rotating body that transmits rotational force from the container, and holes provided in the two magnetic bodies and the sealing member to flow fluid between the two magnetic bodies, and supply pressurized fluid into the container. , the pressurized fluid is brought into contact with the boundary between the seal member and the magnetic body.

[実施例] 第1図は本発明の一実施例を示す断面図であ
り、15は回転ジヨイントの容器である。該容器
は有底円筒状をなし、底部の中央部にはこの容器
内に連通した円筒16が固定してあり、これらの
部材は例えばSUS316あるいはSUS304等の非磁
性体で形成されている。この円筒16は第2図で
示す筐体8に取付られ、又、その中心は回転軸1
の回転中心と一致している。17は前記容器15
の蓋体18の内壁に固定された例えばサマリウム
コバルトの如き円筒状の永久磁石で、この磁石の
下面には高透磁率材料で形成された円筒状の部材
19が取付けられている。又、該部材の下面には
円板状のシール部材20を介して、同じく高透磁
率材料で形成された部材21が相対向する様に置
かれている。これらの部材19及び21を構成す
る高透磁率材料としては、SUS430や純鉄(この
純鉄の表面にカニゼンニツケルメツキあるいはハ
ードクロムメツキを施しても良い)が用いられ
る。前記シール部材20は部材19及び21のい
ずれかに取付けられる。例えば該シール部材20
は部材1と共に蓋体18に固定された円筒状の支
持体22にビスにより固定されており、又、この
シール部材の材料としては摩擦係数が少なく、且
つ剥離性がなく形状変化の少ないものを用いる必
要がある。この様な特性を満足させるシール部材
としては、例えばグラフアイトやテフロン入りポ
リイミドあいはグラフアイトカーボン入りテフロ
ン等が用いられる。
[Embodiment] FIG. 1 is a sectional view showing an embodiment of the present invention, and 15 is a container of a rotating joint. The container has a cylindrical shape with a bottom, and a cylinder 16 communicating with the inside of the container is fixed at the center of the bottom, and these members are made of a non-magnetic material such as SUS316 or SUS304. This cylinder 16 is attached to the housing 8 shown in FIG. 2, and its center is the rotating shaft 1.
coincides with the center of rotation of 17 is the container 15
A cylindrical permanent magnet, such as samarium cobalt, is fixed to the inner wall of the lid 18, and a cylindrical member 19 made of a high magnetic permeability material is attached to the lower surface of this magnet. Further, a member 21 also made of a high magnetic permeability material is placed on the lower surface of the member so as to face each other with a disc-shaped seal member 20 interposed therebetween. As the high magnetic permeability material constituting these members 19 and 21, SUS430 or pure iron (the surface of this pure iron may be plated with nickel plating or hard chrome plating) is used. The seal member 20 is attached to either member 19 or 21. For example, the seal member 20
is fixed with screws to a cylindrical support 22 fixed to the lid body 18 together with the member 1, and the material for this seal member is a material that has a low coefficient of friction, is not peelable, and has little change in shape. It is necessary to use it. As a seal member satisfying such characteristics, for example, graphite, polyimide containing Teflon, Teflon containing graphite carbon, etc. are used.

23は前記部材21の下端に取付けられた例え
ばサマリウムコバルトの如き永久磁石で、この磁
石と前述した磁石17とによる吸引力によつて前
記2つの部材19と21とを間にシール部材20
を介在した状態で密着させる役目を果す。24は
前記部材21及び磁石23を回転させるための回
転台で、該回転台の底部中心部には軸25が固定
されている。該軸25は容器15に設けた円筒1
6内に隙間を保つて挿入され、その下端は例えば
ナイロンの如き可撓性を有するチユーブ26を介
して回転軸1に連結されており、該回転軸1の回
転が該チユーブ26を介して該軸25に伝えられ
るように構成されている。前記回転台24の下面
と容器15の底部との間にも隙間が設けてあるこ
とは言うまでもない。
Reference numeral 23 denotes a permanent magnet such as samarium cobalt, which is attached to the lower end of the member 21, and the seal member 20 is inserted between the two members 19 and 21 by the attractive force of this magnet and the magnet 17 described above.
It plays the role of bringing the material into close contact with the media. Reference numeral 24 denotes a rotary table for rotating the member 21 and the magnet 23, and a shaft 25 is fixed to the center of the bottom of the rotary table. The shaft 25 is a cylinder 1 provided in the container 15.
The lower end of the rotary shaft 1 is connected to the rotary shaft 1 through a flexible tube 26 made of, for example, nylon. The signal is configured to be transmitted to the shaft 25. Needless to say, a gap is also provided between the lower surface of the rotary table 24 and the bottom of the container 15.

27a及び27bは前記部材19と21との対
向面に夫々形成した穴で、この両穴の中心は回転
台24(回転軸1)の回転中心と一致している。
28は部材21の対向面に形成された例えば幅が
0.4mm程度の環状の浅い溝で、該溝は前記穴27
bと同芯状に形成されている。29は他方の部材
19の対向面に形成された穴で、該穴は一方の部
材21に形成した環状の溝28と対向する位置に
折けられている。又この2つの部材19と21と
の間に置かれるシール部材20にも部材19に形
成した穴27a,29と対応する位置に穴が設け
てあることは言うまでもない。前記部材19の穴
27a,29には蓋体18、磁石17及び部材1
9を貫通したパイプ30,31が夫々接続されて
おり、又、部材21に形成した穴27b及び溝2
8の一点にはこの部材21、磁石23、回転台2
4、軸25を貫通したパイプ32,33が夫々接
続されている。このパイプ32,33はチユーブ
26を通して第2図の回転体2に形成された分離
溝3に接続されたパイプ5,6に夫々連結され
る。
Holes 27a and 27b are respectively formed in the opposing surfaces of the members 19 and 21, and the centers of these holes coincide with the center of rotation of the rotary table 24 (rotary shaft 1).
28 is formed on the opposite surface of the member 21, for example, the width is
A shallow annular groove of about 0.4 mm, which is connected to the hole 27.
It is formed concentrically with b. Reference numeral 29 denotes a hole formed in the opposing surface of the other member 19, and the hole is bent at a position opposite to the annular groove 28 formed in the one member 21. It goes without saying that the sealing member 20 placed between these two members 19 and 21 also has holes at positions corresponding to the holes 27a and 29 formed in the member 19. The holes 27a and 29 of the member 19 have the lid 18, the magnet 17, and the member 1.
Pipes 30 and 31 passing through the member 9 are connected to each other, and the hole 27b and the groove 2 formed in the member 21 are connected to each other.
This member 21, the magnet 23, and the rotary table 2 are placed at one point in 8.
4. Pipes 32 and 33 passing through the shaft 25 are connected to each other. The pipes 32 and 33 are connected through tubes 26 to pipes 5 and 6, respectively, which are connected to separation grooves 3 formed in the rotating body 2 of FIG. 2.

34は前記容器15の側壁に貫通せしめた管
で、加圧された例えば水や試料搬送用の展開液等
の液体あるいか超臨界液体35を容器15内のシ
ール部材20によつて仕切られる空間36、つま
りシール部材20に密接した状態で回転する部材
21が置かれる側の空間に連続的に注入するため
のものである。この空間36に注入された液体は
円筒16と軸25との隙間を流れて受け皿37に
溜まり、図示外の回収装置に回収される。38は
軸25の受け皿37内部分に取付けられた傘状の
水切り体で、液体35がチユーブ26側に漏れる
のを防止するためのものである。
Reference numeral 34 denotes a tube penetrated through the side wall of the container 15, through which a pressurized liquid such as water or a developing solution for transporting a sample, or a supercritical liquid 35 is passed through the space partitioned off by the sealing member 20 inside the container 15. 36, that is, for continuously injecting into the space on the side where the member 21 that rotates in close contact with the seal member 20 is placed. The liquid injected into this space 36 flows through the gap between the cylinder 16 and the shaft 25, collects in a saucer 37, and is collected by a collection device (not shown). Reference numeral 38 denotes an umbrella-shaped draining body attached to the inner portion of the tray 37 of the shaft 25, and is used to prevent the liquid 35 from leaking to the tube 26 side.

尚、前記蓋体18、支持体22、回転台24、
軸2、パイプ30,31,32,33及び管34
は夫々例えばSUS316あるいはSUS304等
の非磁性体で形成されている。
In addition, the lid body 18, the support body 22, the rotary table 24,
Shaft 2, pipes 30, 31, 32, 33 and pipe 34
are each made of a non-magnetic material such as SUS316 or SUS304.

しかして、高透磁率の部材19,21により永
久磁石17と23よりの磁束が絞られ、それぞれ
の端面に強い異極の磁化が発生する結果、強い吸
引力が発生するため、部材19と21がシール部
材20に対して強いシール圧で圧着される。この
状態で一方の部材21が回転しながら、穴27
a,27bより試料及び展開液が回転体2の分離
溝3に供給され、又、分離された液が環状の溝2
8、穴29を通つて図示外の検出系に導かれる。
As a result, the magnetic flux from the permanent magnets 17 and 23 is constricted by the members 19 and 21 with high magnetic permeability, and as a result, strong magnetization of different polarities occurs on each end face, and as a result, a strong attractive force is generated. is pressed against the sealing member 20 with strong sealing pressure. While one member 21 rotates in this state, the hole 27
The sample and developing solution are supplied from a and 27b to the separation groove 3 of the rotating body 2, and the separated liquid is supplied to the annular groove 2.
8. It is led to a detection system (not shown) through the hole 29.

尚、前述の実施例では回転する部材21のシー
ル面に環状の溝28を形成したが、シール部材2
0を厚く加工し、このシール部材の下面にこの環
状の溝を形成しても良いことは言うまでもない。
又、2つの永久磁石17,23を用いて部材1
9,21を吸着するようになしたが、いずれか一
方の永久磁石のみでも部材19,21を吸着でき
ることは言うまでもない。
Incidentally, in the above embodiment, the annular groove 28 was formed on the sealing surface of the rotating member 21, but the sealing member 2
It goes without saying that the annular groove may be formed on the lower surface of the seal member by processing the seal member 0 thicker.
In addition, the member 1 is
Although the members 9 and 21 are attracted, it goes without saying that the members 19 and 21 can be attracted by only one of the permanent magnets.

[発明の効果] 以上詳説した様に本発明によれば、高速回転が
可能で、しかもシール部材の寿命の長い回転ジヨ
イントを得ることができる。つまに液漏れを防ぐ
ためにシール圧は、分離する液体の液圧とシール
面外部の圧力との圧力差よりも充分に高くするわ
けであるが、本発明では加圧した液体をシール面
の外部に注入するため、両者の圧力差は非常に小
さくなるので、シール圧もそれだけ低くすること
がきる。その結果、回転速度が高くとれると共に
シール部材の寿命を増すことができる。又、回転
によるシール部での摩擦熱による発熱も加圧した
液体で冷却することができ、更に、加圧された液
体はシール部の回転部材の軸受部分を通過させる
様になしてあるため、潤滑剤としての役目を果す
等の効果を有する。
[Effects of the Invention] As described in detail above, according to the present invention, it is possible to obtain a rotating joint that is capable of high speed rotation and has a long sealing member life. In order to prevent liquid leakage, the sealing pressure is set to be sufficiently higher than the pressure difference between the liquid pressure of the liquid to be separated and the pressure outside the sealing surface, but in the present invention, the pressurized liquid is Since the pressure difference between the two is very small, the sealing pressure can also be lowered accordingly. As a result, the rotation speed can be increased and the life of the seal member can be increased. In addition, the heat generated by frictional heat in the seal part due to rotation can be cooled by the pressurized liquid, and furthermore, since the pressurized liquid is made to pass through the bearing part of the rotating member of the seal part, It has effects such as acting as a lubricant.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示す断面図、第2
図は従来例装置を示す図である。 15:容器、16:円筒、17,23:永久磁
石、19,21:部材、20:シール部材、2
4:回転台、25:軸、26:チユーブ、27
a,27b,29:穴、28:溝、30,31,
32,33:パイプ、34:管、35:加圧液、
36:空間、37:受け皿、38:水切り体。
FIG. 1 is a cross-sectional view showing one embodiment of the present invention, and FIG.
The figure shows a conventional example device. 15: Container, 16: Cylinder, 17, 23: Permanent magnet, 19, 21: Member, 20: Seal member, 2
4: Turntable, 25: Axis, 26: Tube, 27
a, 27b, 29: hole, 28: groove, 30, 31,
32, 33: pipe, 34: pipe, 35: pressurized liquid,
36: Space, 37: Saucer, 38: Drainer body.

Claims (1)

【特許請求の範囲】[Claims] 1 近接して対向配置される1対の磁性体と、い
ずれか一方の磁性体に取付けられるシール部材
と、該1対の磁性体間に磁束を通すことにより生
じる吸引力によつて間に前記シール部材を介在さ
せて2つの磁性体を密着させるため少なくともい
ずれか一方の磁性体に近接して設けられる磁石
と、前記2つの磁性体及びシール部材を内部に収
容すると共に一方の磁性体を固定的に支持する容
器と、他方の磁性体を容器に固定された磁性体に
対して回転させるため容器外部から回転力を伝え
る回転体と、前記2つの磁性体間に流体を流すた
めこの2つの磁性体及びシール部材に夫々設けら
れた穴とを備え、前記容器内に加圧された流体を
供給し、前記シール部材と磁性体との境界部に該
加圧流体を接触させるようにしたことを特徴とす
る回転ジヨイント。
1 A pair of magnetic bodies disposed close to each other, a sealing member attached to one of the magnetic bodies, and an attractive force generated by passing a magnetic flux between the pair of magnetic bodies, A magnet provided close to at least one of the magnetic bodies in order to bring the two magnetic bodies into close contact with each other with a sealing member interposed therebetween; and a magnet that accommodates the two magnetic bodies and the sealing member inside and fixes one of the magnetic bodies. a rotating body that transmits rotational force from outside the container in order to rotate the other magnetic body relative to the magnetic body fixed to the container, and a rotating body that transmits rotational force from the outside of the container in order to rotate the other magnetic body relative to the magnetic body fixed to the container; A magnetic body and a hole provided in the sealing member are provided, and a pressurized fluid is supplied into the container, and the pressurized fluid is brought into contact with the boundary between the sealing member and the magnetic body. A rotating joint featuring
JP59192233A 1984-09-13 1984-09-13 Rotary joint Granted JPS6171857A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59192233A JPS6171857A (en) 1984-09-13 1984-09-13 Rotary joint

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59192233A JPS6171857A (en) 1984-09-13 1984-09-13 Rotary joint

Publications (2)

Publication Number Publication Date
JPS6171857A JPS6171857A (en) 1986-04-12
JPS6317503B2 true JPS6317503B2 (en) 1988-04-14

Family

ID=16287868

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59192233A Granted JPS6171857A (en) 1984-09-13 1984-09-13 Rotary joint

Country Status (1)

Country Link
JP (1) JPS6171857A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61164667A (en) * 1985-01-16 1986-07-25 Jeol Ltd High speed rotary joint for transferring fluid

Also Published As

Publication number Publication date
JPS6171857A (en) 1986-04-12

Similar Documents

Publication Publication Date Title
EP0451376B1 (en) Centrifugal blood pump and motor drive
US3420184A (en) Pump employing magnetic drive
US3620584A (en) Magnetic fluid seals
US4293137A (en) Magnetic liquid shaft sealing
EP0221107A1 (en) Rotor drive for medical disposables.
US4221322A (en) Tube guide insert and constraint fittings for compensating rotor
CA2215527A1 (en) Pump with co-axial magnetic coupling
US5799951A (en) Rotating sealing device
JPS599371A (en) Shaft sealing device
US4545587A (en) Coaxial, multiple-shaft ferrofluid seal apparatus
JPH0691201A (en) Disposable film filtering device
JPS6317503B2 (en)
US3854326A (en) Rotary ultrasonic testing apparatus
US4502699A (en) Rotating seal for continuous flow centrifuge
US3169398A (en) Magnetic drive for fluid flow meters
US3759591A (en) Centrifuge seal assembly and method
JPS6320580B2 (en)
JPH0250792B2 (en)
EP0183477B1 (en) Coaxial, multiple-shaft ferrofluid seal apparatus
JPH11287371A (en) Rotary joint
JPS59147162A (en) Magnetic fluid seal device
SU1364811A1 (en) Magnetic liquid seal
JPH0512738Y2 (en)
RU2037142C1 (en) Device for measuring flow rate of liquid or gas
JPH0621566Y2 (en) Continuous centrifuge seal cooling structure