JPS63174406A - Tracking antenna system - Google Patents

Tracking antenna system

Info

Publication number
JPS63174406A
JPS63174406A JP62007139A JP713987A JPS63174406A JP S63174406 A JPS63174406 A JP S63174406A JP 62007139 A JP62007139 A JP 62007139A JP 713987 A JP713987 A JP 713987A JP S63174406 A JPS63174406 A JP S63174406A
Authority
JP
Japan
Prior art keywords
tracking
axis
zenith
angle
direction rotation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62007139A
Other languages
Japanese (ja)
Inventor
Hideo Sakata
阪田 日出雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP62007139A priority Critical patent/JPS63174406A/en
Publication of JPS63174406A publication Critical patent/JPS63174406A/en
Pending legal-status Critical Current

Links

Landscapes

  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

PURPOSE:To realize continuous tracking for all loci, by providing a sub reflecting mirror or a first-order horn with movable structure so that a wave radiation axis can be rotated in a traverse direction, in an antenna system of AZ-BL mounting system. CONSTITUTION:The titled antenna system is constituted of an AZ rotating structure object 1 to rotate an antenna main body in 0-360 deg. around an AZ axis, an EL rotating structure object 2 to rotate the antenna main body around an EL axis, a main reflecting mirror 3, a sub reflecting mirror 4, and a tracking signal switching circuit 6. The sub reflecting mirror 4 is constituted so that the wave radiation axis 5 can be rotated in the traverse direction. And the rotating range of an elevation angle is expanded to a zenith-horizon in a direction opposite to the horizon-zenith of a conventional device in addition to that, and a tracking signal is switched in the circuit 6 so as to control an azimuth, an elevation angle, and a traverse angle respectively so that a floating body can be tracked continuously even in the neighborhood of the zenith.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、人工衛星、ロケット等の飛翔体を自動追尾
する追尾用アンテナ装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a tracking antenna device that automatically tracks flying objects such as artificial satellites and rockets.

〔従来の技術〕[Conventional technology]

従来のこの種の装置におけるアンテナ駆動装置としては
、最も一般的な方式としてAZ−Elマウント方式があ
る。
As an antenna driving device in a conventional device of this type, the most common method is the AZ-El mount method.

AZ−ELlマウント方式構成を第4図(a+に示す。The AZ-EL1 mounting system configuration is shown in FIG. 4 (a+).

図において、1はアンテナ開口面を形成する反射鏡、2
は鉛直軸(以下AZ軸と称する)、3はAZ軸2に直交
した水平軸(以下EL軸と称する)である。
In the figure, 1 is a reflector forming the antenna aperture, 2
3 is a vertical axis (hereinafter referred to as the AZ axis), and 3 is a horizontal axis (hereinafter referred to as the EL axis) perpendicular to the AZ axis 2.

そしてアンテナを、AZ軸2回りに0〜360°。And the antenna is 0 to 360 degrees around 2 AZ axes.

EL軸3回りに0〜90°駆動できるように構成されて
おり、両軸の回転角の組み合わせにより、アンテナを任
意の方向へ指向させることか可能となっている。
It is configured to be able to drive from 0 to 90 degrees around the EL axis 3, and by combining the rotation angles of both axes, it is possible to direct the antenna in any direction.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

ところがこのような従来のへZ−ELマウント方式にお
いては、第5図に示すように目標物の飛行経路の角度変
化量を目標物を含む鉛直面上でΔe。
However, in such a conventional Z-EL mounting system, as shown in FIG. 5, the amount of angular change in the flight path of the target object is Δe on the vertical plane including the target object.

鉛直面に直交した目標物を含む面内でΔaとすると、舵
軸2とIELEL軸アンテナ回転角度は、それぞれ元の
角度をAZ、EL、目標物の角度変化量に応じた回転角
をΔAZ、  ΔELとすると、ΔAZ−Δa/cos
EL          −(11ΔE14. Δe 
           ・・・(2)で表される。従っ
て天頂近傍を飛行する目標物からの到来電波方向を指向
するためには、AZ軸2の回転速度は目標物の飛行角速
度Δa以上(1/c。
Assuming that Δa is in the plane including the target perpendicular to the vertical plane, the rudder shaft 2 and IELEL axis antenna rotation angles are the original angles AZ and EL, and the rotation angle according to the amount of angle change of the target as ΔAZ, If ΔEL, ΔAZ−Δa/cos
EL −(11ΔE14. Δe
...It is expressed as (2). Therefore, in order to point in the direction of incoming radio waves from a target flying near the zenith, the rotational speed of the AZ axis 2 must be greater than or equal to the flight angular velocity Δa of the target (1/c).

sEL倍)に高速にする必要があり、天頂においては無
限大となって追跡不可能である。従ってこのAZ−EL
マウント方式では天頂付近における追尾を中断していた
sEL times), and at the zenith it becomes infinite and cannot be tracked. Therefore, this AZ-EL
With the mounting method, tracking was interrupted near the zenith.

一方、アンテナ駆動装置の他の方式として、第4図(b
lに示すようなX−Y方式がある。第4図(b)におい
て、1はアンテナ開口面を形成する反射鏡、22.23
は互いに直交した水平軸(それぞれX軸、Y軸と称する
)である。X軸回り、X軸回りとも0〜180°の回転
角が得られるようアンテナを駆動すれば、両軸の回転角
の組み合わせにより任意の方向への指向が可能となり、
この場合、X軸の延長線方向近傍を飛行する目標物に対
しては高速回転が必要となるが、天頂近(9(天頂を含
む)に対しては、目標物の飛行角速度相当の軸回転速度
を有していれば追跡可能である。
On the other hand, as another method of the antenna driving device, FIG.
There is an X-Y method as shown in 1. In FIG. 4(b), 1 is a reflecting mirror forming the antenna aperture, 22.23
are horizontal axes (referred to as the X axis and the Y axis, respectively) that are orthogonal to each other. If the antenna is driven so that a rotation angle of 0 to 180° is obtained both around the X-axis and around the X-axis, directing in any direction is possible by combining the rotation angles of both axes.
In this case, high-speed rotation is required for targets flying near the extension line direction of the X-axis, but for targets near the zenith (9 (including the zenith) If it has speed, it can be tracked.

従って天頂付近の連続追尾が絶対必要条件の場合は、上
記のような極方向を水平方向に持って(るX−Yマウン
ト方式のアンテナ装置を用いていた。しかるに、/IZ
−ELマウント方式ではAZ軸の回転に対してはアンテ
ナ全体の重心は一定で、EL軸の回転に対してのみ重心
が移動するが、上記X−Yマウント方式ではX軸、Y軸
いずれの回転に対しても重心が移動する。このため全体
のバランスを調整する上で構造が複雑となり、かつ重量
が大きくなるという欠点があった。
Therefore, when continuous tracking near the zenith is an absolute requirement, an antenna device of the X-Y mount type with the pole direction horizontally as described above was used.However, /IZ
- In the EL mount method, the center of gravity of the entire antenna remains constant with respect to rotation of the AZ axis, and the center of gravity moves only with rotation of the EL axis, but with the above X-Y mount method, rotation of either the X or Y axis The center of gravity also moves. As a result, the structure becomes complicated in adjusting the overall balance, and the weight increases.

この発明は、上記のような問題点を解消するためになさ
れたもので、一般的で安価なAZ−ELマウントのアン
テナで、天頂通過も含めた全ての軌道を中断することな
く連続追尾ができる追尾用アンテナ装置を得ることを目
的とする。
This invention was made to solve the above-mentioned problems, and allows continuous tracking of all orbits, including those passing through the zenith, without interruption, using a general and inexpensive AZ-EL mount antenna. The purpose is to obtain a tracking antenna device.

〔問題点を解決するための手段〕[Means for solving problems]

この発明に係る追尾用アンテナ装置は、副反射鏡又は一
次ホーンを可動な構造として電波放射軸をトラバース方
向に回転(追尾)できるよう構成するとともに、仰角回
転範囲を従来装置の水平〜天頂に加え反対方向の天頂〜
水平(逆水平)迄拡大し、飛翔体を天頂付近でも連続追
尾可能なように方位(AZ>角、 ffn (EL)角
、  l−ラハース角を各々最適に制御する切り換え回
路を設けたものである。
The tracking antenna device according to the present invention is configured such that the sub-reflector or the primary horn is movable so that the radio wave emission axis can be rotated in the traverse direction (tracking), and the elevation angle rotation range is added to the horizontal to zenith of the conventional device. The zenith in the opposite direction
It is equipped with a switching circuit that optimally controls the azimuth (AZ> angle, ffn (EL) angle, and l-Lahas angle) so that it can be extended to the horizontal (reverse horizontal) and continuously track flying objects even near the zenith. be.

〔作用〕[Effect]

この発明においては、追尾目標の(rμ角が高くなく、
充分方位角が追尾できる範囲では通常のAZ−ELマウ
ント方式(トラバース角は中央位置)により追尾し、仰
角が高く天頂付近を通るようなバスにおいては、仰角が
ある一定角度以上になるとAZ−EL軸追尾からトラハ
ーフ−EL軸追尾に切り換えて天頂付近を追尾し、この
間AZ軸は上記追尾目標が天頂通過後再びAZ−EL追
尾が可能になる方位角の反対方向(±180°)へゆっ
くりと移動して待機し、これにより連続追尾を可能とす
る。
In this invention, the (rμ angle of the tracking target is not high,
In the range where the azimuth angle can be tracked sufficiently, the normal AZ-EL mount method (the traverse angle is at the center position) is used for tracking, and for buses that have a high elevation angle and pass near the zenith, when the elevation angle exceeds a certain angle, the AZ-EL mount method is used. Switch from axis tracking to tiger half-EL axis tracking to track near the zenith, and during this time the AZ axis slowly moves in the opposite direction (±180°) to the azimuth angle at which AZ-EL tracking becomes possible again after the tracking target passes the zenith. It moves and waits, which enables continuous tracking.

〔実施例〕〔Example〕

以下、本発明の実施例を図について説明する。 Embodiments of the present invention will be described below with reference to the drawings.

第1図は本発明の一実施例による追尾用アンテナ装置の
概念図を示し、図において、■はアンテナ本体をAZ軸
回りに0〜360°回転するためのΔ2回転構造物、2
はアンチリル本体をEL軸回りに回転するためのEL回
転構造物、3は主反射鏡、4はトラバース方向に電波ヒ
ーム5を回転できる駆動機構を備えた副反射鏡であり、
特に上記EL回転構造物2ば通常のO”(水平)〜90
° (天頂)の回転範囲よりも広く、0° (水平)〜
90° (天頂)〜180° (逆水平)の回転範囲を
有する。また、6は追尾用アンテナの各々の駆動部分と
接続され、最適な追尾を実現するための追尾用信号切り
換え回路である。
FIG. 1 shows a conceptual diagram of a tracking antenna device according to an embodiment of the present invention.
is an EL rotation structure for rotating the Antilil main body around the EL axis, 3 is a main reflector, 4 is a sub-reflector equipped with a drive mechanism that can rotate the radio wave beam 5 in the traverse direction,
In particular, the EL rotating structure 2 has a normal O" (horizontal) to 90
Rotation range wider than ° (zenith), 0° (horizontal) to
It has a rotation range of 90° (zenith) to 180° (reverse horizontal). Further, 6 is a tracking signal switching circuit connected to each drive part of the tracking antenna to realize optimal tracking.

第3図は本実施例による追尾用アンテナ装置のブロック
図を示し、図において、7は自動追尾のために角度誤差
を検出する角度誤差検出器、8は検出された角度誤差を
直流信号に変換する角度誤差検波器、9は仰角(EL)
を制御するEL制御装置、10はl・ラハース角を制御
する副反射鏡制御装置、11は方位角を制御するAZ制
御装置、12はAZ誤差信号の極性を反転させる反転回
路、13はAZ。
FIG. 3 shows a block diagram of the tracking antenna device according to this embodiment. In the figure, 7 is an angular error detector that detects angular error for automatic tracking, and 8 converts the detected angular error into a DC signal. angle error detector, 9 is elevation angle (EL)
10 is a sub-reflector control device that controls the l/Lahas angle, 11 is an AZ control device that controls the azimuth, 12 is an inversion circuit that inverts the polarity of the AZ error signal, and 13 is AZ.

EL角度データ(角度検出手段は図示せず)及び時刻デ
ータから衛星の飛行角度を予測し、それに基いて追尾動
作の切り換え、 EL、 AZ、  l−ラパース角の
各制御等を行うプログラム装置である。
This is a programming device that predicts the flight angle of the satellite from EL angle data (angle detection means not shown) and time data, and based on this predicts the flight angle of the satellite and controls each of the EL, AZ, and l-lapas angles. .

第2図は衛星の通過経路とアンテナの方位角。Figure 2 shows the satellite path and antenna azimuth.

仰角の関係とを表す図であり、■が通常のAZ−ELマ
ウントで連続追尾可能な範囲を示し、■は高仰角のため
、AZ−ELマウントでは追尾できない領域を表す。第
1のパス(低仰角時)は、衛星の出現から没入まですべ
ての領域にあり、通常のAZ−EL方式にて追尾ができ
るが、第2のパス(高仰角時)の時には■の領域に入り
、AZ−EL方式では連続追尾ができない。
2 is a diagram showing the relationship between elevation angles, where ■ indicates a range that can be continuously tracked with a normal AZ-EL mount, and ■ indicates an area that cannot be tracked with an AZ-EL mount due to a high elevation angle. The first pass (when the elevation angle is low) is in all areas from the appearance of the satellite to the satellite's submersion, and it can be tracked using the normal AZ-EL method, but the second pass (when the elevation angle is high) is in the area marked ■. , and continuous tracking is not possible with the AZ-EL method.

以下、本実施例装置における第2のパスの追尾手順を説
明する。第2のパスにおいて、衛星の出現(a点)から
AZ−EL追尾限界(b点)迄はAZ−EL方式で追尾
し、この間は第3図のスイッチS1がa側、S2がa側
に切り換え制御され、またS3がb側で、プログラム装
置13により副反射鏡4は中央点に固定され、通常状態
の自動追尾を行う。
The second path tracking procedure in the device of this embodiment will be described below. In the second pass, tracking is performed using the AZ-EL method from the appearance of the satellite (point a) to the AZ-EL tracking limit (point b), during which time switch S1 in Figure 3 is set to side a, and switch S2 is set to side a. The switching is controlled, and when S3 is on the b side, the sub-reflector 4 is fixed at the center point by the program device 13, and automatic tracking in the normal state is performed.

そしてb点に達した時に、スイッチS1をb側。Then, when point b is reached, switch S1 is set to b side.

S2をb側、S3をa側に切り換え、第2図の領域■を
通過する間、EL角とトラバース角により自動追尾が行
われ、この間AZはプロゲラJ・装置13により、b点
からC点の方位角の逆方向である0点く±180°)へ
ゆっくりと移動する。ここで、従来装置のようにEl、
回転構造物が0〜90°の回転範囲であれば、AZはb
点からC点へ移動させる必要があり、移動角度が大きく
追いつ(ことかできないが、本実施例装置では0〜90
〜180゜の広い範囲を有するので、AZはb点からC
点の方位角の逆方向である0点へ移動させるだけでよく
、充分追尾が可能となる。従って衛星か天頂近くを通過
後のEL角度は90° (天頂)を過ぎ、いわゆる反転
追尾の形となる。
Switching S2 to the b side and S3 to the a side, automatic tracking is performed using the EL angle and the traverse angle while passing through area ■ in Fig. 2, and during this time AZ is moved from point b to point C by the Progera J device 13. slowly move toward the 0 point (±180°) in the opposite direction of the azimuth. Here, as in the conventional device, El,
If the rotating structure has a rotation range of 0 to 90 degrees, AZ is b
It is necessary to move from point to point C, and the moving angle is too large to catch up (although it is impossible to do so, in this example device, the angle of movement is 0 to 90
Since it has a wide range of ~180°, AZ is from point b to C
It is sufficient to simply move the point to the 0 point, which is the opposite direction of the azimuth angle, and sufficient tracking becomes possible. Therefore, after the satellite passes near the zenith, the EL angle will exceed 90° (zenith), resulting in what is called inverted tracking.

そしてC点に到達すれば■領域に入るが、反転追尾の形
となるため、スイッチS1はa側、S2はC側でAZ−
ELの追尾を行い、スイッチS3はb側になってプロク
ラム装置13の指令により副反射鏡4はゆっくりと中央
位置に戻る。これにともなってトラバース方向にビーム
軸がゆっ(りと移動するが、この分はΔ2の追尾系によ
り吸収されるため、問題にならない。以後、d点(衛星
没入)まで、AZ−F、L方式でかつ反転のまま自動追
尾を行う。なお、第3図において、AZ誤差(ΔAZ)
のSIECANT補償回路(ΔAZX 1 /cosE
L )はへZ制御装置11内に含まれる。
Then, when it reaches point C, it enters the area ■, but since it is in the form of reverse tracking, switch S1 is on the a side and S2 is on the C side.
The EL is tracked, the switch S3 is set to the b side, and the sub-reflector 4 slowly returns to the center position in response to a command from the program device 13. As a result, the beam axis moves slowly in the traverse direction, but this is absorbed by the tracking system of Δ2, so it is not a problem. From then on, until point d (satellite immersion), Automatic tracking is performed in the same manner and inverted.In addition, in Fig. 3, the AZ error (ΔAZ)
SIECANT compensation circuit (ΔAZX 1 /cosE
L) is included in the Z control device 11.

なお、上記実施例では副反射鏡を駆動して電波ビームを
トラバース方向に回転するようにしたが、これは一次ホ
ーンを駆動して行うようにしてもよい。
In the above embodiment, the sub-reflector is driven to rotate the radio beam in the traverse direction, but this may be done by driving the primary horn.

また、上記実施例ではΔZ−ELマウントの天頂方向追
尾に関する方法を述べたが、本発明は他の方式、例えば
X−Yマウント方式の水平方向の極に対する方法につい
ても全く同様に応用でき、上記実施例と同様、の効果を
奏する。
Furthermore, although the above embodiment describes a method for tracking in the zenith direction using a ΔZ-EL mount, the present invention can be applied in exactly the same way to a method for tracking the horizontal direction of an X-Y mount method, The same effects as in the embodiment are achieved.

〔発明の効果〕〔Effect of the invention〕

以上のように、この発明によれば、最も安価でかつ一般
的であるAZ−ELマウント方式のアンテナ装置におい
て、電波放射軸をトラバース方向に回転できるよう副反
射鏡又は一次ホーンを可動な構造とするとともに、仰角
回転範囲を水平〜天頂〜逆水平迄拡大し、方位角、仰角
、1−ラハース角を各々飛翔体の経路によって切り換え
制御するようにしたので、上記AZ−ELマウント方式
の極である天頂方向の追尾を中断することなく連続追尾
できる効果がある。
As described above, according to the present invention, in the cheapest and most common AZ-EL mount type antenna device, the sub-reflector or the primary horn has a movable structure so that the radio wave emission axis can be rotated in the traverse direction. At the same time, the elevation angle rotation range was expanded from horizontal to zenith to reverse horizontal, and the azimuth angle, elevation angle, and 1-Rahas angle were controlled by switching each according to the path of the projectile, so that the pole of the AZ-EL mount method described above This has the effect of allowing continuous tracking without interrupting tracking in a certain zenith direction.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の一実施例による追尾用アンテナ装置
の概念図、第2図は衛星の通過経路と方位角、仰角との
関係を示す図、第3図は本発明の一実施例のプロ・ツク
図、第4図(alは従来のAZ−ELマウント方式の構
成を示す図、第4図(b)は従来のX−Yマウント方式
の構成を示す図、第5図は第4図(alにおけるAZ、
 ELの角度概算を説明するだめの図である。 1・・・AZ回転構造物、2・・・EL回転構造物、3
・・・主反射鏡、4・・・副反射鏡、5・・・電波軸方
向、6・・・追尾用信号切り換え回路、7・・・角度誤
差検出器、8・・・角度誤差検波器、9・・・EL制御
装置、10・・・副反射鏡制御装置、11・・・AZ制
御装置、12・・・反転回路、13・・・プログラム装
置。 なお図中同一符号は同−又は相当部分を示す。
FIG. 1 is a conceptual diagram of a tracking antenna device according to an embodiment of the present invention, FIG. 2 is a diagram showing the relationship between a satellite passage path, an azimuth angle, and an elevation angle. Figure 4 shows the configuration of the conventional AZ-EL mount system, Figure 4(b) shows the configuration of the conventional X-Y mount system, and Figure 5 shows the configuration of the conventional AZ-EL mount system. Figure (AZ in al,
FIG. 3 is a diagram illustrating an approximate angle of EL. 1...AZ rotating structure, 2...EL rotating structure, 3
...Main reflecting mirror, 4...Sub-reflecting mirror, 5...Radio wave axis direction, 6...Tracking signal switching circuit, 7...Angle error detector, 8...Angle error detector , 9... EL control device, 10... Sub-reflector control device, 11... AZ control device, 12... Inversion circuit, 13... Program device. Note that the same reference numerals in the figures indicate the same or equivalent parts.

Claims (2)

【特許請求の範囲】[Claims] (1)飛翔体を自動追尾するAZ−ELマウント方式の
追尾用アンテナ装置であって、 アンテナ本体をAZ軸回りに0〜360°回転するため
のAZ方向回転手段と、 アンテナ本体をEL軸回りに0〜180°回転するため
のEL方向回転手段と、 電波放射軸がトラバース方向に回転するよう副反射鏡又
は一次ホーンを駆動するためのトラバース方向回転手段
と、 上記飛翔体がAZ−EL追尾の追尾限界を越えた天頂近
傍を通過する際は上記EL方向回転手段及びトラバース
方向回転手段による追尾動作に、それ以外の領域を通過
する際は上記EL方向回転手段及びAZ方向回転手段に
よる追尾動作に切り換える切り換え手段とを備えたこと
を特徴とする追尾用アンテナ装置。
(1) An AZ-EL mount type tracking antenna device that automatically tracks flying objects, which includes an AZ direction rotation means for rotating the antenna body from 0 to 360 degrees around the AZ axis, and an AZ direction rotation means for rotating the antenna body around the EL axis. EL direction rotation means for rotating from 0 to 180° in the traverse direction; traverse direction rotation means for driving the sub-reflector or the primary horn so that the radio wave emission axis rotates in the traverse direction; When passing near the zenith exceeding the tracking limit of , the tracking operation is performed by the above-mentioned EL direction rotation means and traverse direction rotation means, and when passing through other areas, the above-mentioned tracking operation is performed by the above-mentioned EL direction rotation means and AZ direction rotation means. A tracking antenna device comprising a switching means for switching to.
(2)上記切り換え手段は、 上記アンテナ本体のAZ、EL角度を検出する角度検出
手段と、 該AZ、EL角度データ及び時刻データをもとに上記飛
翔体の通過経路を予測するとともに、該予測結果に応じ
てAZ−EL追尾の追尾限界を判定する予測判定手段と
からなるものであることを特徴とする特許請求の範囲第
1項記載の追尾用アンテナ装置。
(2) The switching means includes an angle detection means for detecting the AZ and EL angles of the antenna body, and predicts the passage route of the flying object based on the AZ and EL angle data and time data, and 2. The tracking antenna device according to claim 1, further comprising a predictive determination means for determining a tracking limit of AZ-EL tracking according to a result.
JP62007139A 1987-01-13 1987-01-13 Tracking antenna system Pending JPS63174406A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62007139A JPS63174406A (en) 1987-01-13 1987-01-13 Tracking antenna system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62007139A JPS63174406A (en) 1987-01-13 1987-01-13 Tracking antenna system

Publications (1)

Publication Number Publication Date
JPS63174406A true JPS63174406A (en) 1988-07-18

Family

ID=11657744

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62007139A Pending JPS63174406A (en) 1987-01-13 1987-01-13 Tracking antenna system

Country Status (1)

Country Link
JP (1) JPS63174406A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06307868A (en) * 1993-04-21 1994-11-04 Topcon Corp Automatic tracking surveying equipment
EP1227541A2 (en) 2001-01-30 2002-07-31 Andrew AG Reflector antenna
JP2011102766A (en) * 2009-11-11 2011-05-26 Japan Radio Co Ltd Satellite capturing device
CN103904430A (en) * 2014-04-04 2014-07-02 北京理工大学 Terahertz beam two-dimensional mechanical scanning antenna feed system
JP2020053777A (en) * 2018-09-25 2020-04-02 三菱電機株式会社 Antenna driving device, antenna driving method, and antenna driving program

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06307868A (en) * 1993-04-21 1994-11-04 Topcon Corp Automatic tracking surveying equipment
EP1227541A2 (en) 2001-01-30 2002-07-31 Andrew AG Reflector antenna
EP1227541A3 (en) * 2001-01-30 2003-11-12 Andrew AG Reflector antenna
US6943750B2 (en) 2001-01-30 2005-09-13 Andrew Corporation Self-pointing antenna scanning
JP2011102766A (en) * 2009-11-11 2011-05-26 Japan Radio Co Ltd Satellite capturing device
CN103904430A (en) * 2014-04-04 2014-07-02 北京理工大学 Terahertz beam two-dimensional mechanical scanning antenna feed system
JP2020053777A (en) * 2018-09-25 2020-04-02 三菱電機株式会社 Antenna driving device, antenna driving method, and antenna driving program

Similar Documents

Publication Publication Date Title
US6285338B1 (en) Method and apparatus for eliminating keyhole problem of an azimuth-elevation gimbal antenna
EP0275266B1 (en) Rosette scanning surveillance sensor
US20070241244A1 (en) Method and apparatus for eliminating keyhole problems in an X-Y gimbal assembly
US5673057A (en) Three axis beam waveguide antenna
US7212170B1 (en) Antenna beam steering via beam-deflecting lens and single-axis mechanical rotator
US4786912A (en) Antenna stabilization and enhancement by rotation of antenna feed
JPS63174406A (en) Tracking antenna system
JP2573465B2 (en) 3-axis control antenna unit
JPH0897758A (en) Phased array antenna system
US6853349B1 (en) Method and device for prevention of gimbal-locking
US3243805A (en) Zenith tracking radar
US5751460A (en) Optical system with an articulated mirror unit
JP2973919B2 (en) Acquisition control device for satellite antenna and control method therefor
US4105174A (en) Device for receiving or transmitting radiation
JPH04336821A (en) Satellite reception tracing device for mobile object
JPH05259721A (en) Antenna directive device
JP3157976B2 (en) Mobile antenna mount
JP2842963B2 (en) Mobile antenna device
JPS62206470A (en) Radar unit
JPH0797725B2 (en) Antenna drive
JP2635659B2 (en) Reflector antenna device
JPH0128470Y2 (en)
JPH0634733A (en) Missile tracking device
JP3331330B2 (en) Antenna system
JPH05150834A (en) Antenna driving controller