JP2635659B2 - Reflector antenna device - Google Patents

Reflector antenna device

Info

Publication number
JP2635659B2
JP2635659B2 JP5296488A JP5296488A JP2635659B2 JP 2635659 B2 JP2635659 B2 JP 2635659B2 JP 5296488 A JP5296488 A JP 5296488A JP 5296488 A JP5296488 A JP 5296488A JP 2635659 B2 JP2635659 B2 JP 2635659B2
Authority
JP
Japan
Prior art keywords
reflector
antenna
rotary drive
drive mechanism
control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP5296488A
Other languages
Japanese (ja)
Other versions
JPH01227503A (en
Inventor
信一郎 西田
敬一 平子
誠也 上野
正樹 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP5296488A priority Critical patent/JP2635659B2/en
Publication of JPH01227503A publication Critical patent/JPH01227503A/en
Application granted granted Critical
Publication of JP2635659B2 publication Critical patent/JP2635659B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Aerials With Secondary Devices (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) この発明は、例えば、人工衛星に搭載するのに好適す
る2枚式の反射鏡アンテナ装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Industrial application field) The present invention relates to, for example, a two-piece reflector antenna device suitable for mounting on an artificial satellite.

(従来の技術) 一般に、反射鏡式アンテナ装置は、人工衛星等と電波
を授受する場合、アンテナ給電部を含むアンテナ本体を
回転駆動機構により回転駆動して、その指向方向が制御
される。
(Related Art) In general, when transmitting and receiving radio waves to and from an artificial satellite or the like, a reflector antenna device rotates an antenna body including an antenna feed unit by a rotation driving mechanism, and controls its directivity.

ところで、このような反射鏡式アンテナ装置にあって
は、その指向制御の際に、アンテナ本体の大きな慣性負
荷を大きな加速度で回転駆動しなければならないため
に、非常に大きな反動力が付与されるので、その反射鏡
自体及びアンテナ支持構造体が高い剛性を有するように
形成されている。これにより、アンテナ本体を回転駆動
する回転駆動機構においても、大きな出力トルクを有す
る性能のものが備えられる。
By the way, in such a reflector type antenna device, a large inertia load of the antenna body must be rotated at a large acceleration during the pointing control, so that a very large reaction force is applied. Therefore, the reflector itself and the antenna support structure are formed to have high rigidity. As a result, a rotary drive mechanism that rotates the antenna body is provided with a performance having a large output torque.

ところが、上記反射鏡式アンテナ装置では、人工衛星
等の宇宙航行体に搭載した場合、指向制御の際の反動に
より人工衛星の姿勢を乱すおそれがあると共に、アンテ
ナ支持構造体等の剛性が高いことにより重量化が促進さ
れるため、搭載が困難なものであった。
However, in the above reflector antenna device, when mounted on a spacecraft such as an artificial satellite, there is a possibility that the attitude of the artificial satellite may be disturbed due to recoil at the time of directivity control, and the rigidity of the antenna support structure and the like must be high. Therefore, the weight is promoted, so that mounting is difficult.

そこで、反射鏡を主及び副反射鏡の2枚に分割して副
反射鏡のみを指向制御するように構成した2枚式の反射
鏡アンテナ装置を用いることも考えられる。このような
2枚式の反射鏡アンテナ装置は、その指向制御の際の慣
性負荷が小さくて済むことにより、その反動力が小さい
ので、その反射鏡自体及びアンテナ支持構造体が低い剛
性で形成することが可能なうえ、その回転駆動機構も、
小さな出力トルクで良いからである。
Therefore, it is conceivable to use a two-reflector reflector antenna device in which the reflector is divided into two main reflectors and a sub-reflector, and only the sub-reflector is used for directivity control. Such a two-piece reflector antenna device requires only a small inertial load during directivity control, and therefore has a small reaction force. Therefore, the reflector itself and the antenna support structure are formed with low rigidity. Is possible, and its rotary drive mechanism is
This is because a small output torque is sufficient.

しかしながら、上記2枚式の反射鏡アンテナ装置で
は、その構成上、指向方向の可変角度がアンテナ本体を
回動駆動する方式に比して狭いために、広い範囲の指向
制御に不向きであるという問題を有していた。
However, in the two-reflector reflector antenna device, since the variable angle of the directivity direction is narrower than that of a system in which the antenna body is rotationally driven due to its configuration, it is not suitable for directivity control over a wide range. Had.

(発明が解決しようとする課題) 以上述べたように、従来の反射鏡アンテナ装置では慣
性負荷が大きく、しかも、重量が嵩むものであったり、
指向範囲が狭いために、人工衛星等の宇宙航行体に搭載
するのに不向きなものであった。
(Problems to be Solved by the Invention) As described above, the conventional reflector antenna device has a large inertial load and is heavy,
Due to its narrow pointing range, it is not suitable for mounting on space vehicles such as artificial satellites.

この発明は上記の事情に鑑みてなされたもので、指向
制御の際の慣性負荷の軽減を図り得と共に、軽量化を図
り得、かつ、可及的に広い範囲の指向制御を実現し得る
ようにした反射鏡アンテナ装置を提供することを目的と
する。
The present invention has been made in view of the above circumstances, and it is possible to reduce the inertial load at the time of directional control, to reduce the weight, and to realize directional control as wide as possible. It is an object of the present invention to provide a reflecting mirror antenna device.

[発明の構成] (課題を解決するための手段) この発明は主反射鏡に対向して副反射鏡を配設してな
るアンテナを回転駆動して指向方向を設定する第1の回
転駆動機構と、前記副反射鏡を回転駆動して指向方向を
設定する第2の回転駆動機構と、アンテナ給電部に接続
され、指向対象からの電波を受けてアンテナ指向誤差を
検出する追尾受信手段と、この追尾受信手段で検出した
指向誤差信号に応動して前記第1及び第2の回転駆動機
構を駆動制御するもので、前記第1の回転駆駆動機構を
前記第2の回転駆動機構より低い制御帯域で駆動制御せ
しめる制御手段とを備えて構成したものである。
[Constitution of the Invention] (Means for Solving the Problems) The present invention relates to a first rotary drive mechanism for rotating an antenna having a sub-reflector disposed opposite to a main reflector to set a directional direction. A second rotation drive mechanism that rotationally drives the sub-reflector to set a directivity direction, and a tracking reception unit that is connected to an antenna feed unit and receives an electric wave from a directivity target to detect an antenna directivity error; The first and second rotary drive mechanisms are driven and controlled in response to the pointing error signal detected by the tracking receiving means, and the first rotary drive mechanism is controlled to be lower than the second rotary drive mechanism. And control means for performing drive control in a band.

(作用) 上記構成によれば、慣性モーメントの小さい副反射鏡
は第2の回転駆動機構により高い応答性で駆動され、慣
性モーメントの大きい主及び副反射鏡を含むアンテナが
第位の回転駆動機構により低い応答性で駆動制御され
る。これにより、従来の反射鏡アンテナ装置における回
転駆動機構の消費電力に比して軽減されると共に、駆動
トルクの軽減が実現され、かつ、アンテナ支持構造への
反動力の軽減が図れる。
(Operation) According to the above configuration, the sub-reflector having a small moment of inertia is driven with high responsiveness by the second rotation driving mechanism, and the antenna including the main and sub-reflectors having the large moment of inertia is the first rotation driving mechanism. Drive control is performed with lower responsiveness. As a result, the power consumption is reduced as compared with the power consumption of the rotary driving mechanism in the conventional reflector antenna device, the driving torque is reduced, and the reaction force to the antenna support structure is reduced.

(実施例) 以下、この発明の実施例について、図面を参照して詳
細に説明する。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

第1図はこの発明の一実施例に係る反射鏡アンテナ装
置を示すもので、例えば人工衛星本体に取着される支持
体10には、CFRP等の強化繊維プラスチック等で凹面状に
形成される主反射鏡11が指向制御用の第1の回転駆動機
構12を介して回転自在に支持される。この第1の回転駆
動機構12は、例えばアジマス−エレベーション方式(第
2図(a)参照)あるいはX−Y方式(第2図(b)参
照)の自由度配置に駆動モータ及び減速機構等を用いて
構成され、アンテナ指向方向を広い範囲で変更せしめ
る。そして、この主反射鏡11には、その略中央部にアン
テナ給電部13が配設され、このアンテナ給電部13には、
例えば高次モード方式あるいはマルチホーン方式等の指
向誤差検出用追尾受信機14が配設される。また、主反射
鏡11には支持部材15が取着され、この支持部材15には副
反射鏡16が指向制御用の第2の回転駆動機構17を介して
回転自在に支持される。この第2の回転駆動機構17は、
第3図に示すように、上記支持部材15に取着されるハウ
ジング17a内にヨーク17bが軸17cを介してY軸回りに回
動自在に配設される。そして、このヨーク17b内には副
反射鏡16を支持してなる取付け部材17dが軸17eを介して
X軸回りに回動自在に配設される。これらヨーク17b及
び取付け部材17dは各変位量が変位センサ17fで検出さ
れ、各変位量に対応してアクチュエータ17gを介してY
軸及びX軸回りに回動制御されて副反射鏡16の指向方向
を変更せしめる。
FIG. 1 shows a reflector antenna device according to an embodiment of the present invention. For example, a support 10 attached to a satellite body is formed in a concave shape with a reinforcing fiber plastic such as CFRP. The main reflector 11 is rotatably supported via a first rotation drive mechanism 12 for directivity control. The first rotary drive mechanism 12 includes, for example, a drive motor and a reduction mechanism in an azimuth-elevation system (see FIG. 2A) or an XY system (see FIG. 2B). To change the direction of the antenna in a wide range. The main reflecting mirror 11 is provided with an antenna feed unit 13 at a substantially central portion thereof.
For example, a tracking receiver 14 for pointing error detection of a higher-order mode system or a multi-horn system is provided. A supporting member 15 is attached to the main reflecting mirror 11, and a sub-reflecting mirror 16 is rotatably supported on the supporting member 15 via a second rotation driving mechanism 17 for directivity control. This second rotation drive mechanism 17
As shown in FIG. 3, a yoke 17b is rotatably disposed around a Y-axis via a shaft 17c in a housing 17a attached to the support member 15. In the yoke 17b, a mounting member 17d supporting the sub-reflecting mirror 16 is disposed via a shaft 17e so as to be rotatable around the X axis. The displacement amount of each of the yoke 17b and the mounting member 17d is detected by the displacement sensor 17f, and the displacement amount is determined via the actuator 17g.
The directional control of the sub-reflection mirror 16 is changed by rotation control about the axis and the X-axis.

また、第1及び第2の回転駆動機構12,17には駆動制
御装置18が接続される。この駆動制御装置18は、例え
ば、第4図に示すように、目標角度Θd及びアンテナ指
向方向角Θから減算器19で指向誤差信号を生成し、この
指向誤差信号が追尾受信機14に導かれる。この追尾受信
機14は指向誤差信号から指向方向の偏差信号を生成する
もので、その第1の出力端に上記第1の回転駆動機構12
を駆動制御せしめる第1の駆動制御部20が接続され、そ
の第2の出力端には上記第2の回転駆動機構17を駆動制
御せしめる第2の駆動制御部21が接続される。この第1
及び第2の駆動制御部20,21は第1及び第2の回転駆動
機構12,17を偏差信号の偏差を減少する方向に駆動制御
せしめるもので、そのうち第1の駆動制御部20からのア
ンテナ駆動角が指向方向の偏差信号の情報から副反射鏡
駆動により指向制御が可能な値以下に追込める程度に設
定され、他方の第2の駆動制御部21からの副反射鏡駆動
角が、高い応答性で追従可能に設定される。即ち、第1
の駆動制御部20は第1の回転駆動機構12の制御帯域を第
2の駆動制御部21による第2の回転駆動機構17の制御帯
域より低い帯域で駆動制御するように設定される。
Further, a drive control device 18 is connected to the first and second rotary drive mechanisms 12 and 17. For example, as shown in FIG. 4, the drive control device 18 generates a pointing error signal by a subtractor 19 from the target angle Θd and the antenna pointing direction angle Θ, and the pointing error signal is guided to the tracking receiver 14. . The tracking receiver 14 generates a deviation signal in the pointing direction from the pointing error signal, and has a first output terminal connected to the first rotation drive mechanism 12.
A first drive control unit 20 for controlling the drive of the motor is connected, and a second output terminal thereof is connected to a second drive control unit 21 for controlling the drive of the second rotation drive mechanism 17. This first
And the second drive control units 20 and 21 are for controlling the drive of the first and second rotary drive mechanisms 12 and 17 in the direction of decreasing the deviation of the deviation signal, of which the antenna from the first drive control unit 20 is provided. The driving angle is set to such an extent that it can be driven to a value less than the value that allows directivity control by driving the sub-reflecting mirror based on the information of the deviation signal of the directing direction, and the driving angle of the sub-reflecting mirror from the other second drive control unit 21 is high It is set to be able to follow in response. That is, the first
The drive control unit 20 is set so as to control the drive of the control band of the first rotary drive mechanism 12 in a band lower than the control band of the second rotary drive mechanism 17 by the second drive control unit 21.

上記構成において、駆動制御装置18は追尾受信機14で
検出した指向誤差信号に応じて、その第1及び第2の駆
動制御部20,21でアンテナ駆動角信号及び副反射鏡駆動
角信号を生成し、第1及び第2の回転駆動機構12,17を
駆動制御する。このうち第1の駆動制御部20は第1の回
転駆動機構12を第2の回転駆動機構17より低い制御帯域
で駆動制御し、他方の第2の駆動制御部21がその第2の
回転駆動機構17を第1の回転駆動機構12より高い制御帯
域で駆動制御せしめる。これにより、副反射鏡16を含む
主反射鏡11は低い応答性で駆動制御され、その副反射鏡
16のみが高い応答性で駆動制御されてアンテナ指向方向
角Θが制御される。このアンテナ指向方向角Θは、物理
的に第1の駆動制御部20の駆動角と第2の駆動制御部21
の駆動角に指向変化特性を掛合わせた値を加算した角度
となる。
In the above configuration, the drive controller 18 generates an antenna drive angle signal and a sub-reflector mirror drive angle signal in the first and second drive controllers 20 and 21 according to the pointing error signal detected by the tracking receiver 14. Then, the first and second rotation drive mechanisms 12, 17 are drive-controlled. The first drive control unit 20 controls the drive of the first rotary drive mechanism 12 in a control band lower than that of the second rotary drive mechanism 17, and the other second drive control unit 21 controls the second rotary drive mechanism. The drive of the mechanism 17 is controlled in a higher control band than that of the first rotary drive mechanism 12. Thus, the main reflecting mirror 11 including the sub-reflecting mirror 16 is driven and controlled with low response, and
Only 16 is driven and controlled with high responsiveness to control the antenna directional angle Θ. This antenna pointing direction angle Θ is physically determined by the drive angle of the first drive control unit 20 and the second drive control unit 21.
Is obtained by adding a value obtained by multiplying the drive angle by the directivity change characteristic.

このように、上記反射鏡アンテナ装置は、副反射鏡16
を含む主反射鏡11を回転駆動して指向方向を制御する第
1の回転駆動機構12と、副反射鏡16を回転駆動して指向
方向を設定する第2の回転駆動機構17を備え、指向対象
からの電波を受けてアンテナ指向誤差を検出する追尾受
信機14からの指向誤差信号に応動してその第1の回転駆
動機構12を第2の回転駆動機構17より低い制御帯域で駆
動制御せしめるように構成した。これによれば、慣性モ
ーメントの小さい副反射鏡16が第2の回転駆動機構17に
より高い応答性で駆動され、慣性モーメントの大きい副
反射鏡16を含む主反射鏡11が第1の回転駆動機構12によ
り低い応答性で駆動制御されて迅速な指向制御が実現す
る。この結果、従来の反射鏡アンテナ装置における回転
駆動機構の消費電力に比して、その総消費電力が軽減さ
れると共に、駆動トルクが軽減され、その慣性負荷の軽
減が実現することによりアンテナ支持構造への反動力が
低減され、しかも、従来の2枚式の反射鏡アンテナ装置
より広い範囲の指向が実現されることにより、可及的に
人工衛星への搭載が可能となる。
As described above, the reflector antenna device is
A first rotary drive mechanism 12 for driving a main reflecting mirror 11 including a mirror to control a directivity direction, and a second rotary drive mechanism 17 for driving a sub-reflector 16 to rotate and set a directivity direction. In response to a pointing error signal from a tracking receiver 14 that receives an electric wave from the target and detects an antenna pointing error, the first rotary drive mechanism 12 is driven and controlled in a lower control band than the second rotary drive mechanism 17 in response to a pointing error signal. It was configured as follows. According to this, the sub-reflector 16 having a small moment of inertia is driven with high responsiveness by the second rotation driving mechanism 17, and the main reflection mirror 11 including the sub-reflection mirror 16 having a large moment of inertia is moved to the first rotation driving mechanism. Drive control is performed with a lower responsiveness than in 12, and quick pointing control is realized. As a result, as compared with the power consumption of the rotary drive mechanism in the conventional reflector antenna device, the total power consumption is reduced, the driving torque is reduced, and the inertia load is reduced, thereby realizing the antenna support structure. As a result, the reaction force is reduced, and a wider range of directivity than the conventional two-mirror reflector antenna device is realized, so that it can be mounted on an artificial satellite as much as possible.

なお、この発明は上記実施例に限ることなく、その
他、この発明の要旨を逸脱しない範囲で種々の変形を実
施し得ることは勿論のことである。
It should be noted that the present invention is not limited to the above-described embodiment, and it goes without saying that various modifications can be made without departing from the spirit of the present invention.

[発明の効果] 以上詳述したように、この発明によれば、指向制御の
際の慣性負荷の軽減を図り得と共に、軽量化を図り得、
かつ、可及的に広い範囲の指向制御を実現し得るように
した反射鏡アンテナ装置を提供することができる。
[Effects of the Invention] As described above in detail, according to the present invention, it is possible to reduce the inertial load during the directional control and to reduce the weight,
In addition, it is possible to provide a reflector antenna device capable of realizing directivity control in a range as wide as possible.

【図面の簡単な説明】[Brief description of the drawings]

第1図はこの発明の一実施例に係る反射鏡アンテナ装置
を示す構成図、第2図は第1図の第1の回転駆動機構を
取出して示す図、第3図は第1図の第2の回転駆動機構
を取出して示す図、第4図は第1図の駆動制御装置を取
出して示すブロック図である。 10……支持体、11……主反射鏡、12……第1の回転駆動
機構、13……アンテナ給電部、14……追尾受信機、15…
…支持部材、16……副反射鏡、17……第2の回転駆動機
構、18……駆動制御装置、19……減算器、20……第1の
駆動制御部、21……第2の駆動制御部、22……指向変化
特性。
FIG. 1 is a configuration diagram showing a reflector antenna device according to an embodiment of the present invention, FIG. 2 is a diagram showing a first rotary drive mechanism of FIG. 1 taken out, and FIG. FIG. 4 is a block diagram showing the drive control device of FIG. 1 taken out and shown. 10 ... support, 11 ... main reflecting mirror, 12 ... first rotary drive mechanism, 13 ... antenna feeder, 14 ... tracking receiver, 15 ...
... Support member, 16... Sub-reflector, 17... Second rotational drive mechanism, 18... Drive control device, 19... Subtractor, 20... First drive control unit, 21. Drive control unit, 22 ... directional change characteristics.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 田中 正樹 神奈川県川崎市幸区小向東芝町1番地 株式会社東芝小向工場内 (56)参考文献 特開 昭53−80150(JP,A) 特開 昭61−82503(JP,A) ────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Masaki Tanaka 1 Koga Toshiba-cho, Saiwai-ku, Kawasaki-shi, Kanagawa Prefecture Toshiba Komukai Plant (56) References Kaisho 61-82503 (JP, A)

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】主反射鏡に対向して副反射鏡を配設してな
るアンテナを回転駆動して指向方向を設定する第1の回
転駆動機構と、前記副反射鏡を回転駆動して指向方向を
設定する第2の回転駆動機構と、アンテナ給電部に接続
され、指向対象からの電波を受けてアンテナ指向誤差を
検出する追尾受信手段と、この追尾受信手段で検出した
指向誤差信号に応動して前記第1及び第2の回転駆動機
構を駆動制御するもので、前記第1の回転駆動機構を前
記第2の回転駆動機構より低い制御帯域で駆動制御せし
める制御手段とを具備したことを特徴とする反射鏡アン
テナ装置。
A first rotary drive mechanism for rotating an antenna having a sub-reflector disposed opposite to a main reflector to set a directivity direction; A second rotary drive mechanism for setting a direction, a tracking receiving means connected to the antenna feeder for receiving a radio wave from a pointing target and detecting an antenna pointing error, and responding to a pointing error signal detected by the tracking receiving means And control means for controlling the drive of the first and second rotary drive mechanisms, and for controlling the drive of the first rotary drive mechanism in a control band lower than that of the second rotary drive mechanism. Characteristic reflector antenna device.
JP5296488A 1988-03-07 1988-03-07 Reflector antenna device Expired - Lifetime JP2635659B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5296488A JP2635659B2 (en) 1988-03-07 1988-03-07 Reflector antenna device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5296488A JP2635659B2 (en) 1988-03-07 1988-03-07 Reflector antenna device

Publications (2)

Publication Number Publication Date
JPH01227503A JPH01227503A (en) 1989-09-11
JP2635659B2 true JP2635659B2 (en) 1997-07-30

Family

ID=12929573

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5296488A Expired - Lifetime JP2635659B2 (en) 1988-03-07 1988-03-07 Reflector antenna device

Country Status (1)

Country Link
JP (1) JP2635659B2 (en)

Also Published As

Publication number Publication date
JPH01227503A (en) 1989-09-11

Similar Documents

Publication Publication Date Title
US7298342B2 (en) Antenna positioner system
EP0867969B1 (en) Directional beam antenna device and directional beam controlling apparatus
US5025262A (en) Airborne antenna and a system for mechanically steering an airborne antenna
US6531990B2 (en) Gimbal system for satellite antenna
US6492955B1 (en) Steerable antenna system with fixed feed source
JP2003521424A5 (en)
JP2635659B2 (en) Reflector antenna device
US5091733A (en) Antenna pointing device
US12074379B2 (en) Pedestal including tilted azimuth axis
JPS6022803A (en) Controller of satellite tracking antenna
JP2624611B2 (en) Satellite dish receiving parabolic antenna with polar mount
EP1414110A1 (en) Steerable antenna system with fixed feed source
JPH028411Y2 (en)
JPH08288732A (en) Device for adjusting pointing direction of antenna
JPS6276902A (en) Antenna system
JP3157976B2 (en) Mobile antenna mount
JPH0149204B2 (en)
JP2994100B2 (en) Antenna drive
JPH0444238B2 (en)
KR20000067631A (en) Satellite communication antenna system for ship
CA1252194A (en) Device and method for automatically tracking satellite by receiving antenna
JPH0156561B2 (en)
JPH05199028A (en) Tracking antenna
JP2000228604A (en) Antenna mechanism
JPS63206005A (en) Rotary driver