JPS6022803A - Controller of satellite tracking antenna - Google Patents

Controller of satellite tracking antenna

Info

Publication number
JPS6022803A
JPS6022803A JP13026683A JP13026683A JPS6022803A JP S6022803 A JPS6022803 A JP S6022803A JP 13026683 A JP13026683 A JP 13026683A JP 13026683 A JP13026683 A JP 13026683A JP S6022803 A JPS6022803 A JP S6022803A
Authority
JP
Japan
Prior art keywords
tracking
zenith
antenna
control circuit
axis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13026683A
Other languages
Japanese (ja)
Inventor
Takashi Shimizu
隆司 清水
Takao Kuroda
黒田 喬雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP13026683A priority Critical patent/JPS6022803A/en
Publication of JPS6022803A publication Critical patent/JPS6022803A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/02Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system using mechanical movement of antenna or antenna system as a whole
    • H01Q3/08Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system using mechanical movement of antenna or antenna system as a whole for varying two co-ordinates of the orientation

Abstract

PURPOSE:To attain the miniaturization and simplicity of the structure of an axis driving section by providing a zenith tracking means forecasting orbit to a satellite tracking antenna controller of three-axis mount structure. CONSTITUTION:A tracking receiver 2 receives a radio wave output of an antenna 1 and gives an automatic tracking error signal to an elevating angle control circuit 3, an azimuth angle control circuit 5 and an orthogonal elevating angle control circuit. Each control circuit controls the attitude of the antenna 1 by using respectively mechanical systems 15-17. In the automatic tracking mode, the elevating angle and the azimuth angle of the antenna are controlled via the mechanical systems 15, 17, the elevating angle and azimuth angle data at that time are detected by detectors 12, 14 and fed to a zenith tracking device 18. The zenith tracking device 18 forecasts an orbit of a satellite based on the data and when it is discriminated that the satellite approaches the vicinity of the zenith and the driving speed of the vertical axis exceeds a prescribed value, the mode is changed over into the zenith mode and the preceding drive by using the three axes where the vertical axis is driven in a constant speed is conducted.

Description

【発明の詳細な説明】 〔発明の属する技術分野〕 本発明は5軸マウント構造からなる空中線装置の制御装
置に関する。特に天頂付近通過の衛星を連続的に自動追
尾するための空中線の制御装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of the Invention] The present invention relates to a control device for an antenna device having a five-axis mount structure. In particular, the present invention relates to an antenna control device for continuously and automatically tracking satellites passing near the zenith.

〔従来技術の説明〕[Description of prior art]

従来の垂直軸上、水平軸上、および直交水平軸の画構成
からなる6軸マウント空中轟装置において、直交水平軸
の制御角度範囲は天頂通過の衛星を追跡する場合に広く
とる必要があった。このことはアンテナ径が大きくなれ
ばなるほど3軸マウントの構造が複雑化し、型面も畢〈
なり、マウント自体が大型化し、また駆動モーターの容
;11増加ならびにモーター駆動増幅部の大容量化のた
めに装置が高価で寸法が大きくなる欠点があった。
In the conventional 6-axis mounted aerial device, which has image configurations on the vertical axis, horizontal axis, and orthogonal horizontal axes, the control angle range of the orthogonal horizontal axes needed to be wide when tracking a satellite passing the zenith. . This means that the larger the antenna diameter, the more complex the structure of the three-axis mount, and the smaller the shape.
Therefore, the mount itself becomes large, and the device becomes expensive and large in size due to the increase in the capacity of the drive motor and the capacity of the motor drive amplification section.

〔発明の目的〕[Purpose of the invention]

本発明は前述の欠点を除去するもので、ろΦ11)マウ
ント方式空中線装置6の駆動部の構造の簡素化および小
形化を計るだめの制御装置?イを提供すること金目的と
する。
The present invention eliminates the above-mentioned drawbacks and provides a control device for simplifying and downsizing the structure of the drive section of the mounted antenna device 6. The objective is to provide the following.

〔発明の要点〕[Key points of the invention]

本発明は、方位角を変更できる垂直軸、仰角を変更でき
る水平軸、およびこの水平軸上にありかつ直交して取り
つけられその角度を変更できる直交水平軸とからなる6
軸により支持された空中ねを、この空中線に受16され
る衛星およびロケットを含む空間飛翔体からの電波強度
が最大になるように上記6軸のそれぞれを制御する衛星
追尾空中1埠制御装fe?において、外挿法による軌道
予測を演算する」:うに構成された天頂追尾GfLを備
え、この天頂追尾装置は垂直軸の先行駆動を指令するよ
うに構成されたことを特徴とする。
The present invention consists of a vertical axis whose azimuth angle can be changed, a horizontal axis whose elevation angle can be changed, and an orthogonal horizontal axis which is on this horizontal axis and is mounted perpendicularly and whose angle can be changed.
Satellite tracking aerial 1st pier control system fe that controls each of the above six axes so that the aerial beam supported by the axis is received by the antenna 16 and the radio wave intensity from space flying objects including satellites and rockets is maximized. ? A zenith tracking device is provided with a zenith tracking GfL configured to calculate a trajectory prediction by extrapolation.

〔実施例による説明〕[Explanation based on examples]

本発明の実施例装置の構成を第1図に示す。第1図にて
、追尾用の垂直軸、水平軸、および直交水平軸の軸構成
の空中線1の電波出力は追尾受(g機2に受信され、追
尾受信桜2の出力である自動追尾誤差信号は仰角1j1
]御回路3、方位角制御回路5、および直交仰角制御回
路4に与えられる。仰角制御回路3の出力は増幅器6を
介してモーター9を駆動し、その回転出力は機械系15
を介して空中線1の仰角を制御する。同様に方位角も制
御回路5、増幅器6、モーター11、機械系17により
制御される。このような構成で仰角および方位角の制御
が行われ自動追尾がなされるように構成されている。
FIG. 1 shows the configuration of an apparatus according to an embodiment of the present invention. In Fig. 1, the radio wave output of the antenna 1, which has an axis configuration of a vertical axis for tracking, a horizontal axis, and an orthogonal horizontal axis, is received by the tracking receiver (g machine 2), and the automatic tracking error is the output of the tracking receiver Sakura 2. The signal has an elevation angle of 1j1
] control circuit 3, azimuth control circuit 5, and orthogonal elevation control circuit 4. The output of the elevation control circuit 3 drives a motor 9 via an amplifier 6, and its rotational output is sent to a mechanical system 15.
The elevation angle of the antenna 1 is controlled via. Similarly, the azimuth angle is also controlled by the control circuit 5, amplifier 6, motor 11, and mechanical system 17. With such a configuration, the elevation angle and azimuth angle are controlled and automatic tracking is performed.

ここで本発明の特徴とするところは自動追尾時における
方位角および仰角を検出器12および検出器14により
検出し、天頂追尾装置18に与え、天頂追尾装置18は
方位角および仰角により衛星の軌道予測演″!X、を行
いその演算結果に基き自動追尾モードから天頂追尾モー
ドへ、また天頂追尾モードより自動追尾モードに復帰さ
せるように水平軸系、直交水平軸系および垂直軸系に制
御信号をhえることにある。
Here, the feature of the present invention is that the azimuth angle and elevation angle during automatic tracking are detected by the detector 12 and the detector 14, and are provided to the zenith tracking device 18, and the zenith tracking device 18 uses the azimuth angle and the elevation angle to Prediction calculation ``! The goal is to heal.

次に第2図に基き動作を説明する。すでに、衛星の初期
捕捉が終り、アンテナが自動追尾可能な受信レベルにあ
る状態になっている。捷ず、水平軸の回転が下限リミッ
トにないときは垂直軸および水平軸による追尾が行われ
る自動追尾モードで追尾が行われる。この間に前述の軌
道予測演算を行い、衛星が天頂付近に接近すると垂直軸
の所要駆動速度が増加するが、その速度が垂直軸の最大
駆動速度を越えると判断された場合に自動追尾モードを
天頂追尾モードに切換えて、水平軸および直交水平軸に
よる追尾と垂直軸の定速度による先行駆動とが行われる
。さらに衛星が天頂を通過し2仰角角度が所定の角度以
下になると、垂直軸定速度駆動が終了し再び自動追尾モ
ードに戻る。水平軸の回転が下限リミットになると追尾
動作は終了する。
Next, the operation will be explained based on FIG. Initial acquisition of the satellite has already been completed, and the antenna is now at a reception level that allows automatic tracking. If the rotation of the horizontal axis is not within the lower limit, tracking is performed in an automatic tracking mode in which tracking is performed along the vertical and horizontal axes. During this period, the above-mentioned orbit prediction calculation is performed, and as the satellite approaches the zenith, the required driving speed of the vertical axis will increase, but if it is determined that this speed exceeds the maximum driving speed of the vertical axis, the automatic tracking mode will be set to the zenith. Switching to the tracking mode, tracking on the horizontal axis and orthogonal horizontal axes and advance driving at a constant speed on the vertical axis are performed. Furthermore, when the satellite passes the zenith and the two elevation angles become less than a predetermined angle, the vertical axis constant speed drive ends and the automatic tracking mode returns again. The tracking operation ends when the rotation of the horizontal axis reaches the lower limit.

第3図は軌道予測結果を補正なしで駆動した場合の追尾
軌跡である。衛星予測軌道は空中線装置の真上すなわち
仰角90’の通過を示す。視線速度を毎秒15°とし、
垂直軸最大速度を毎秒1o0とした場合の垂直軸および
水平軸軌跡を実線で示し、実線の状態から水平軸および
直交水平軸による自動追尾した場合の軌跡を破線で示す
。ベクトル量は水平軸および直交水平軸の補正量を示す
FIG. 3 shows a tracking trajectory when driving without correcting the trajectory prediction results. The predicted satellite orbit shows passage directly above the antenna device, ie at an elevation angle of 90'. Let the radial velocity be 15 degrees per second,
The vertical and horizontal axes trajectories when the vertical axis maximum speed is 100 per second are shown by solid lines, and the trajectories when automatic tracking by the horizontal and orthogonal horizontal axes is performed from the state of the solid lines are shown by broken lines. The vector amount indicates the amount of correction on the horizontal axis and the orthogonal horizontal axis.

第4図は第2図と同一条件で仰角765°付近から垂直
軸を先行駆動させた場合であって、第2図にくらべ水平
軸および直交水平軸の補正すべきベクトル量が小さくな
っている。これはす外わち直交水平軸の駆動角度範囲が
限定されていることを明示している。
Figure 4 shows the case where the vertical axis is driven in advance from an elevation angle of around 765° under the same conditions as Figure 2, and the vector amounts to be corrected for the horizontal axis and orthogonal horizontal axis are smaller than in Figure 2. . This clearly shows that the driving angle range of the orthogonal horizontal axes is limited.

第5図は垂直軸先行駆動時の最大仰角角度における水平
軸および直交水平軸の補正量を示すものである。第4図
に示される条件では衛星が天頂通過の軌道において直交
水平軸の制御範囲はモ5゜でよいことが分かる。なお、
第3図、第4図、および第5図において、ELは仰角を
、AZi方位角を、EL軸は水平軸を、Or OS 8
−E L軸は直交水平軸を示す。
FIG. 5 shows the correction amount of the horizontal axis and the orthogonal horizontal axis at the maximum elevation angle during vertical axis advance driving. It can be seen that under the conditions shown in FIG. 4, the control range of the orthogonal horizontal axes may be 5 degrees in the orbit in which the satellite passes through the zenith. In addition,
In Figures 3, 4, and 5, EL is the elevation angle, AZi is the azimuth angle, EL axis is the horizontal axis, and Or OS 8
-EL The L axis indicates the orthogonal horizontal axis.

〔発明の効果〕〔Effect of the invention〕

垂直軸の先行駆動にょゆ直交水平軸の駆動角度範囲を狭
くできるので、限定駆動が可能となり、その結果として
空中線装置における直交水平軸構造を簡略化する効果が
ある。さらに駆動に必要なモーターの容量は駆動範囲の
限定により、小さくすることができる効果がある。
Since the drive angle range of the orthogonal horizontal axes can be narrowed compared to the advance drive of the vertical axis, limited drive is possible, which has the effect of simplifying the orthogonal horizontal axis structure in the antenna device. Furthermore, the capacity of the motor required for driving can be reduced by limiting the driving range.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明実施例装置のブロック構成図。 第2図は追尾動作を示すフローチャート。 第3図は垂直軸データを補正しなかった場合の追尾軌跡
。 第4図は垂直軸データを補正した場合の追尾軌跡。 第5図は仰角最大角度管パラメーターとした水平軸およ
び直交水平軸の補正量。 1・・・空中線、2・・・追尾受信機、3.4.5・・
・制御回路、6.7.8・・・増幅器、9.10.11
・・・駆動用モーター、12.13.14・・・角度検
出器、15.16.17・・・機械系、18・・・天頂
追尾装置。 4?許出願人 日水電5気株式会社 代理人 弁理士 井 出 直 孝 第1図 第3図
FIG. 1 is a block diagram of an apparatus according to an embodiment of the present invention. FIG. 2 is a flowchart showing the tracking operation. Figure 3 shows the tracking trajectory when the vertical axis data is not corrected. Figure 4 shows the tracking trajectory when the vertical axis data is corrected. Figure 5 shows the amount of correction for the horizontal axis and orthogonal horizontal axis using the maximum elevation angle tube parameter. 1... Antenna, 2... Tracking receiver, 3.4.5...
・Control circuit, 6.7.8...Amplifier, 9.10.11
... Drive motor, 12.13.14... Angle detector, 15.16.17... Mechanical system, 18... Zenith tracking device. 4? Applicant: Nissui Denki Co., Ltd. Agent: Naotaka Ide, patent attorney Figure 1 Figure 3

Claims (1)

【特許請求の範囲】[Claims] (1) 方位角を変ヂできる垂直軸と、仰角を変更でき
る水平軸と、この水平軸上にありかつこの水平軸に直交
して取りつけられその角度を変更できる直交水平軸とを
備えた5@11により支持された空中線と、この空中線
に受信される衛星およびロケットを含む空間飛翔体から
の電波強度が最大になるように上記3軸のそれぞれ全制
御する衛星追尾空中線制御装置において、 外挿法による軌道予測を演算するように構成された天頂
追尾装置を備え、 この天頂追尾装置は、上記垂直軸の先行駆動を指令する
ように構成されたことを特徴とする衛星追尾空中線制御
装置。
(1) 5 having a vertical axis that can change the azimuth angle, a horizontal axis that can change the elevation angle, and an orthogonal horizontal axis that is located on the horizontal axis and is installed perpendicular to the horizontal axis and whose angle can be changed. In a satellite tracking antenna control system that fully controls each of the above three axes so that the antenna supported by @11 and the radio wave intensity received by this antenna from spacecraft including satellites and rockets are maximized, 1. A satellite tracking antenna control device comprising: a zenith tracking device configured to calculate an orbit prediction based on the method, the zenith tracking device being configured to command advance driving of the vertical axis.
JP13026683A 1983-07-19 1983-07-19 Controller of satellite tracking antenna Pending JPS6022803A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13026683A JPS6022803A (en) 1983-07-19 1983-07-19 Controller of satellite tracking antenna

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13026683A JPS6022803A (en) 1983-07-19 1983-07-19 Controller of satellite tracking antenna

Publications (1)

Publication Number Publication Date
JPS6022803A true JPS6022803A (en) 1985-02-05

Family

ID=15030166

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13026683A Pending JPS6022803A (en) 1983-07-19 1983-07-19 Controller of satellite tracking antenna

Country Status (1)

Country Link
JP (1) JPS6022803A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0246635A2 (en) * 1986-05-21 1987-11-25 Nec Corporation Tracking controller for three-axis mount antenna systems
JPS62274801A (en) * 1986-05-21 1987-11-28 Nec Corp Three-axis control antenna system
JPS6451309U (en) * 1987-09-24 1989-03-30
JPH02190005A (en) * 1989-01-18 1990-07-26 Mitsubishi Electric Corp Antenna directivity controller for artificial satellite
WO2006055246A1 (en) * 2004-10-28 2006-05-26 Seaspace Corporation Antenna positioner system with dual operational mode
JP2010231371A (en) * 2009-03-26 2010-10-14 Toshiba Corp Apparatus and method for tracking of moving object image
CN105379013A (en) * 2013-07-03 2016-03-02 三菱电机株式会社 Tracking system, tracking method, and program
CN113917949A (en) * 2021-10-22 2022-01-11 广州辰创科技发展有限公司 Ship-borne three-axis antenna satellite automatic tracking method, system, equipment and storage medium

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0246635A2 (en) * 1986-05-21 1987-11-25 Nec Corporation Tracking controller for three-axis mount antenna systems
JPS62274801A (en) * 1986-05-21 1987-11-28 Nec Corp Three-axis control antenna system
JPS6451309U (en) * 1987-09-24 1989-03-30
JPH02190005A (en) * 1989-01-18 1990-07-26 Mitsubishi Electric Corp Antenna directivity controller for artificial satellite
WO2006055246A1 (en) * 2004-10-28 2006-05-26 Seaspace Corporation Antenna positioner system with dual operational mode
US7259724B2 (en) 2004-10-28 2007-08-21 Seaspace Corporation Antenna positioner system with dual operational mode
JP2010231371A (en) * 2009-03-26 2010-10-14 Toshiba Corp Apparatus and method for tracking of moving object image
CN105379013A (en) * 2013-07-03 2016-03-02 三菱电机株式会社 Tracking system, tracking method, and program
CN105379013B (en) * 2013-07-03 2017-11-03 三菱电机株式会社 Tracking system and tracking
US10234532B2 (en) 2013-07-03 2019-03-19 Mitsubishi Electric Corporation Tracking system, tracking method, and non-transitory computer-readable recording medium storing program
CN113917949A (en) * 2021-10-22 2022-01-11 广州辰创科技发展有限公司 Ship-borne three-axis antenna satellite automatic tracking method, system, equipment and storage medium
CN113917949B (en) * 2021-10-22 2022-10-28 广州辰创科技发展有限公司 Ship-borne three-axis antenna satellite automatic tracking method, system, equipment and storage medium

Similar Documents

Publication Publication Date Title
US7324046B1 (en) Electronic beam steering for keyhole avoidance
US6191734B1 (en) Satellite tracking apparatus and control method for vehicle-mounted receive antenna system
JPH08279713A (en) Equipment and method for correcting aiming error of gauge mounted on space craft
JPS6022803A (en) Controller of satellite tracking antenna
CN110775302A (en) Emergency sun-checking method based on solar panel output current information
US4994815A (en) Tracking controller for three-axis mount antenna systems
JP2024003118A (en) Observation system, communication satellite, observation satellite, and ground installation
US4463297A (en) Controller for mechanically actuated device
GB2173643A (en) Automatically tracking satellite by receiving antenna
US6283415B1 (en) Simplified yaw steering method for satellite antenna beam control
JPH07202541A (en) Three-axis control antenna system
JPS63271182A (en) Automatic controller for antenna beam direction
EP3913737A1 (en) Pedestal including tilted azimuth axis
CN111891402A (en) Mars detection ground antenna pointing recovery method based on autonomous maneuvering
US6676087B2 (en) Spacecraft methods and structures with beacon-receiving field-of-view matched to beacon station window
JPS63174406A (en) Tracking antenna system
CA1252194A (en) Device and method for automatically tracking satellite by receiving antenna
JPS5886472A (en) Tracking system for space airframe
JPH02126733A (en) Method for tracking satellite
JPH05150834A (en) Antenna driving controller
JP3157976B2 (en) Mobile antenna mount
JPS63129702A (en) Three-axis antenna control system
JPH0149204B2 (en)
WO2023146930A1 (en) Track highly inclined satellites with noise affected signals
JP2842963B2 (en) Mobile antenna device