JPS63173933A - Semiconductive pressure sensor - Google Patents

Semiconductive pressure sensor

Info

Publication number
JPS63173933A
JPS63173933A JP672387A JP672387A JPS63173933A JP S63173933 A JPS63173933 A JP S63173933A JP 672387 A JP672387 A JP 672387A JP 672387 A JP672387 A JP 672387A JP S63173933 A JPS63173933 A JP S63173933A
Authority
JP
Japan
Prior art keywords
pressure
temperature
measured
medium
pressure sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP672387A
Other languages
Japanese (ja)
Inventor
Yuji Kondo
祐司 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP672387A priority Critical patent/JPS63173933A/en
Publication of JPS63173933A publication Critical patent/JPS63173933A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/20Measuring force or stress, in general by measuring variations in ohmic resistance of solid materials or of electrically-conductive fluids; by making use of electrokinetic cells, i.e. liquid-containing cells wherein an electrical potential is produced or varied upon the application of stress
    • G01L1/22Measuring force or stress, in general by measuring variations in ohmic resistance of solid materials or of electrically-conductive fluids; by making use of electrokinetic cells, i.e. liquid-containing cells wherein an electrical potential is produced or varied upon the application of stress using resistance strain gauges
    • G01L1/2268Arrangements for correcting or for compensating unwanted effects
    • G01L1/2281Arrangements for correcting or for compensating unwanted effects for temperature variations

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Fluid Pressure (AREA)
  • Pressure Sensors (AREA)

Abstract

PURPOSE:To always output the pressure converted into the pressure at standard temp., by operationally calculating the pressure value at the standard temp. of a medium to be measured from the pressure value measured by a measuring means. CONSTITUTION:A bridge resistor part 1 detects pressure and a power source part 2 supplies the power source to the bridge resistor part 1. An operational amplifying part 5 has an operational amplifier 3 and a feedback resistor 4 and outputs the pressure value at the standard temp. of a medium to be measured from the measured pressure value. The characteristic of the operational amplifying part 5 is set by regulating the temp. characteristic of the feedback resistor 4.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は半導体圧力センサに関する。[Detailed description of the invention] (Industrial application field) The present invention relates to semiconductor pressure sensors.

(従来の技術) 従来の半導体圧力センサは、被測定時の温度での被測定
媒体の圧力を、正確に出力することを目的としていた(
例えば特開昭60−97230号公報)。
(Prior Art) The purpose of conventional semiconductor pressure sensors is to accurately output the pressure of the medium to be measured at the temperature at the time of measurement (
For example, Japanese Patent Application Laid-Open No. 60-97230).

この従来例の回路図を第2図に示す。図中のブリッジ抵
抗部21で被測定媒体の圧力を電気信号に変換し、増幅
部22で信号を増幅した後温度補償部23でブリッジ抵
抗部21の持つ温度誤差を補償していた。
A circuit diagram of this conventional example is shown in FIG. A bridge resistance section 21 in the figure converts the pressure of the medium to be measured into an electrical signal, an amplification section 22 amplifies the signal, and a temperature compensation section 23 compensates for the temperature error of the bridge resistance section 21.

従来例の温度補償は、被測定媒体の圧力PLが温度に関
して、第3図に示した様な特性を持つと仮定した場合、
ブリッジ抵抗部21は、抵抗自体が温度係数を持つため
真の圧力値PLに誤差を重畳した圧力値11 tを出力
する。この誤差α・(Pt−Pt)は温度補償部23の
特性Pどがptの誤差αと絶対値が同じで逆の符号の誤
差α゛・(P、−Pン°)・−(P′L−Pt)・−α
を持てば相殺される。
In the conventional temperature compensation, assuming that the pressure PL of the medium to be measured has the characteristics shown in Fig. 3 with respect to temperature,
Since the resistance itself has a temperature coefficient, the bridge resistance section 21 outputs a pressure value 11t obtained by superimposing an error on the true pressure value PL. This error α・(Pt−Pt) has the same absolute value as the error α of the temperature compensation section 23, but has the same absolute value as the error α of pt, but has the opposite sign. L-Pt)・-α
If you have it, it will be canceled out.

ブリッジ抵抗部21と温度補償部23のこの様な特性は
不純物抵抗を形成する半導体プロセスにおいて、不純物
濃度をコントロールすることにより容易に実現されてい
る。
Such characteristics of the bridge resistance section 21 and the temperature compensation section 23 are easily realized by controlling the impurity concentration in the semiconductor process for forming the impurity resistance.

この様に従来は、半導体圧力センサの回路が持つ温度誤
差を補償していた。
In this way, conventionally, temperature errors in the semiconductor pressure sensor circuit have been compensated for.

(発明が解決しようとする問題点) 上述した従来例の様な半導体圧力センサではそれぞれの
測定温度における圧力は求まったが、標準温度(To)
での圧力(Po)は求まらずこれらのデータから推定す
るしかなかった。
(Problems to be Solved by the Invention) In the semiconductor pressure sensor like the conventional example described above, the pressure at each measurement temperature can be determined, but the standard temperature (To)
The pressure (Po) could not be determined and could only be estimated from these data.

例えば自動車のタイヤの空気圧を考えた場合、必要なデ
ータは標準温度To (15〜20℃)での圧力POで
あるが、この標準圧力Poは従来の半導体圧力センサで
は直接求めることができないという問題点があった。
For example, when considering the air pressure of automobile tires, the necessary data is the pressure PO at a standard temperature To (15 to 20 degrees Celsius), but the problem is that this standard pressure Po cannot be directly determined using conventional semiconductor pressure sensors. There was a point.

(問題点を解決するための手段) 被測定媒体の圧力を測定する測定手段と前記測定手段に
より測定した圧力値より前記測定媒体の標準温度での圧
力値を演算により求める演算手段を有している。
(Means for Solving the Problem) A measuring means for measuring the pressure of a medium to be measured, and a calculating means for calculating a pressure value of the measuring medium at a standard temperature from the pressure value measured by the measuring means. There is.

(作用) 本発明では、被測定媒体の熱膨張係数を考慮した温度係
数を半導体圧力センサの演算回路に持たせることにより
測定時の媒体の温度が標準温度と異っていても、標準温
度時の媒体の圧力を直接求めることができる。これを第
4図を使用して説明する。
(Function) In the present invention, by providing the arithmetic circuit of the semiconductor pressure sensor with a temperature coefficient that takes into account the thermal expansion coefficient of the medium to be measured, even if the temperature of the medium at the time of measurement is different from the standard temperature, The pressure of the medium can be determined directly. This will be explained using FIG.

仮に被測定媒体の圧力が温度に関して第4図中のptに
示される特性を持つとする。図から温度T1の時圧力P
、=P、+βとなり、標準温度Toの時の圧力P、jよ
りβだけ大きくなっている。このとき半導体圧力センサ
が第4図中のPCで示すような温度特性、つまり媒体の
温度特性と逆の位相を持つ特性であれば、この媒体の温
度特性は相殺され、半導体圧力センサの出力P。utは
、温度には不感となり、常に媒体が標準温度T。の時の
圧力Poを出力する。
Assume that the pressure of the medium to be measured has the characteristic shown by pt in FIG. 4 with respect to temperature. From the figure, when the temperature is T1, the pressure P
, =P, +β, which is larger than the pressure P,j at the standard temperature To by β. At this time, if the semiconductor pressure sensor has a temperature characteristic as shown by PC in FIG. . ut becomes insensitive to temperature, and the medium is always at the standard temperature T. Outputs the pressure Po at the time of .

(実施例) 次に本発明について図面を参照して説明する。(Example) Next, the present invention will be explained with reference to the drawings.

第1図は本発明の一実施例の回路図である。ブリッジ抵
抗部1は、圧力を検出して電気信号に変換する。電源部
2は、ブリッジ抵抗部1に電源を供給する定電圧源であ
る。ブリッジ抵抗部1の出力は演算増幅器3で増幅され
る。
FIG. 1 is a circuit diagram of an embodiment of the present invention. The bridge resistance section 1 detects pressure and converts it into an electrical signal. The power supply unit 2 is a constant voltage source that supplies power to the bridge resistance unit 1. The output of the bridge resistor section 1 is amplified by an operational amplifier 3.

被測定媒体の圧力温度特性を第4図中のP、と仮定する
と、演算増幅部5の特性は第4図中のPCになるように
、帰還抵抗4の温度特性を調節する。
Assuming that the pressure-temperature characteristic of the medium to be measured is P in FIG. 4, the temperature characteristic of the feedback resistor 4 is adjusted so that the characteristic of the operational amplifier section 5 becomes PC in FIG.

調節の方法は、不純物抵抗が不純物濃度に依存した温度
特性を持つことを利用して、半導体製造プロセス上で帰
還抵抗4の不純物濃度を10”atm/c♂程度にすれ
ば実現できる。
The adjustment method can be realized by setting the impurity concentration of the feedback resistor 4 to about 10" atm/c♂ in the semiconductor manufacturing process by taking advantage of the fact that impurity resistance has temperature characteristics that depend on the impurity concentration.

この調節により半導体圧力センサの出力P。工、は測定
時の温度に関係なく、標準温度での圧力を出力すること
ができる。
This adjustment increases the output P of the semiconductor pressure sensor. can output pressure at standard temperature regardless of the temperature at the time of measurement.

第5図は、本発明の半導体圧力センサを作って実現でき
る自動車用圧力計の一実施例である。
FIG. 5 shows an embodiment of an automobile pressure gauge that can be realized by making the semiconductor pressure sensor of the present invention.

自動車用タイヤの空気圧は、通常15〜20℃程度の温
度での圧力が標準と指定されている。しかし走行等によ
り容易にタイヤの温度は上昇し標準温度での測定は困難
なものとなっている。
The standard air pressure for automobile tires is normally specified at a temperature of about 15 to 20 degrees Celsius. However, the temperature of the tire rises easily due to driving, etc., making measurement at standard temperature difficult.

しかし、本発明の半導体圧力センサを使用すれば測定時
の温度に関係なく、指定された標準温度での圧力を、容
易に知ることができる。
However, by using the semiconductor pressure sensor of the present invention, the pressure at a specified standard temperature can be easily determined regardless of the temperature at the time of measurement.

ソケット部51の内部に本発明の半導体圧力センサが内
蔵されている。出力信号は、表示窓52に表示され、本
体53には電源として電池が内蔵されている。
A semiconductor pressure sensor of the present invention is housed inside the socket portion 51. The output signal is displayed on the display window 52, and the main body 53 has a built-in battery as a power source.

(発明の効果) 以上説明したように本発明は被測定媒体が熱的な影響に
より圧力が変化した場合でも常に標準温度での圧力値に
換算した値を出力するという効果がある。
(Effects of the Invention) As described above, the present invention has the effect of always outputting a value converted to a pressure value at a standard temperature even if the pressure of the medium to be measured changes due to thermal effects.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の半導体圧力センサの一実施例の回路
図で、第2図は半導体圧力センサの従来例の回路図であ
る。第3図は従来の温度補償法を表した図で、第4図は
本発明の温度補償法を表した図である。第5図は、本発
明の半導体圧力センサを使用した自動車用圧力計の一実
施例の斜視図である。 1・・・ブリッジ抵抗部 2・・・電圧源3・・・演算
増幅器   4・・・帰還抵抗5・・・演算増幅部 21・・・ブリッジ抵抗部 22・・・増幅部23・・
・温度補償部 51・・・ソケット部   52・・・表示窓第1図 第2図 第3図 第4図
FIG. 1 is a circuit diagram of an embodiment of the semiconductor pressure sensor of the present invention, and FIG. 2 is a circuit diagram of a conventional example of the semiconductor pressure sensor. FIG. 3 is a diagram showing the conventional temperature compensation method, and FIG. 4 is a diagram showing the temperature compensation method of the present invention. FIG. 5 is a perspective view of an embodiment of an automobile pressure gauge using the semiconductor pressure sensor of the present invention. 1... Bridge resistance section 2... Voltage source 3... Operational amplifier 4... Feedback resistor 5... Operational amplifier section 21... Bridge resistance section 22... Amplification section 23...
・Temperature compensator 51...Socket part 52...Display window Fig. 1 Fig. 2 Fig. 3 Fig. 4

Claims (1)

【特許請求の範囲】[Claims] 被測定媒体の圧力を測定する測定手段と前記測定手段に
より測定した圧力値より前記測定媒体の標準温度での圧
力値を演算により求める演算手段とを有する半導体圧力
センサ。
A semiconductor pressure sensor comprising a measuring means for measuring the pressure of a medium to be measured, and a calculating means for calculating a pressure value of the measuring medium at a standard temperature from the pressure value measured by the measuring means.
JP672387A 1987-01-13 1987-01-13 Semiconductive pressure sensor Pending JPS63173933A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP672387A JPS63173933A (en) 1987-01-13 1987-01-13 Semiconductive pressure sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP672387A JPS63173933A (en) 1987-01-13 1987-01-13 Semiconductive pressure sensor

Publications (1)

Publication Number Publication Date
JPS63173933A true JPS63173933A (en) 1988-07-18

Family

ID=11646177

Family Applications (1)

Application Number Title Priority Date Filing Date
JP672387A Pending JPS63173933A (en) 1987-01-13 1987-01-13 Semiconductive pressure sensor

Country Status (1)

Country Link
JP (1) JPS63173933A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002148131A (en) * 2000-11-10 2002-05-22 Denso Corp Physical quantity detector

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002148131A (en) * 2000-11-10 2002-05-22 Denso Corp Physical quantity detector
US6724202B2 (en) 2000-11-10 2004-04-20 Denso Corporation Physical quantity detection device with temperature compensation

Similar Documents

Publication Publication Date Title
US5507171A (en) Electronic circuit for a transducer
US4798093A (en) Apparatus for sensor compensation
US20070295095A1 (en) Apparatus for providing an output proportional to pressure divided by temperature (P/T)
US20020067255A1 (en) Physical-quantity detection sensor
JPH0862055A (en) Method and equipment for thermometry
US4872349A (en) Microcomputerized force transducer
JPH0797010B2 (en) Semiconductor strain gage bridge circuit
US7347098B2 (en) Apparatus for providing an output proportional to pressure divided by temperature (P/T)
GB2201791A (en) Transducer signal conditioner
JPS58114199A (en) 2-wire type differential pressure transmitter
JPS63173933A (en) Semiconductive pressure sensor
JPH09105681A (en) Temperature measuring circuit
JP2003070750A (en) Temperature compensator for ear thermometer
JP3964037B2 (en) Pressure gauge calibration method and apparatus
JP2001183106A (en) Gap detecting device with temperature compensation
JPH0449527Y2 (en)
JPS5814617Y2 (en) Cooling temperature control circuit for small cooler
JPH0511479Y2 (en)
JPH0333630A (en) Semiconductor pressure sensor
JPS61243338A (en) Temperature compensation circuit for semiconductor prressure sensor
KR20010036293A (en) Apparatus for determining a temperature using a Bolometer type Ifrared Rays sensor and method for compensating a sensetivity of the same
EP0561976A1 (en) Temperature compensation of transducers
JPS61259134A (en) Semiconductive pressure sensor
JP2000241271A (en) Pressure detector
JPS60216213A (en) Measuring device using resistance bridge