JPS6317350B2 - - Google Patents

Info

Publication number
JPS6317350B2
JPS6317350B2 JP58057005A JP5700583A JPS6317350B2 JP S6317350 B2 JPS6317350 B2 JP S6317350B2 JP 58057005 A JP58057005 A JP 58057005A JP 5700583 A JP5700583 A JP 5700583A JP S6317350 B2 JPS6317350 B2 JP S6317350B2
Authority
JP
Japan
Prior art keywords
effect element
josephson effect
magnetic flux
josephson
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP58057005A
Other languages
Japanese (ja)
Other versions
JPS59182587A (en
Inventor
Hiroshi Akaho
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP58057005A priority Critical patent/JPS59182587A/en
Publication of JPS59182587A publication Critical patent/JPS59182587A/en
Publication of JPS6317350B2 publication Critical patent/JPS6317350B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Superconductor Devices And Manufacturing Methods Thereof (AREA)

Description

【発明の詳細な説明】 本発明は、ジヨセフソン効果素子の磁束トラツ
プの除去方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for removing magnetic flux traps in Josephson effect elements.

近年、トンネル障壁層としての絶縁層の上下を
一対の超伝導薄膜で挟んで成るジヨセフソン効果
素子が、低消費電力、超高速計算素子として注目
され、これを集積化する研究が盛んになつてい
る。
In recent years, the Josephson effect device, which consists of a pair of superconducting thin films sandwiching the top and bottom of an insulating layer as a tunnel barrier layer, has attracted attention as a low-power, ultra-high-speed calculation device, and research into integrating this device has been active. .

こうしたジヨセフソン効果素子の集積化が進む
と、それに伴ない、一つの大きな問題として、磁
束トラツプという問題が起きてくる。
As the integration of Josephson effect elements progresses, a major problem arises: magnetic flux trap.

磁束トラツプとは、上記したジヨセフソン効果
素子の構造にあつて、一対の上下超伝導薄膜層中
に磁束が確率的に捕捉されることを言い、この磁
束トラツプが生じると、ジヨセフソン効果素子本
来のジヨセフソン効果を著しく損ない、集積化さ
れたジヨセフソン回路の動作領域を著しく狭めた
り、誤動作を起こさせたりする。
Magnetic flux trap refers to the stochastic trapping of magnetic flux in a pair of upper and lower superconducting thin film layers in the structure of the Josephson effect element described above. When this magnetic flux trap occurs, the original Josephson of the Josephson effect element This significantly impairs the effectiveness, significantly narrows the operating range of the integrated Josephson circuit, or causes malfunction.

この磁束トラツプは、原理的には、磁束が捕獲
されているジヨセフソン効果素子の温度を、一
旦、超伝導遷移温度以上に高めて常伝導状態に戻
してやることにより、除去できる。
In principle, this magnetic flux trap can be removed by once raising the temperature of the Josephson effect element in which the magnetic flux is trapped above the superconducting transition temperature and returning it to a normal conduction state.

然るに、従来は、上記原理に従うジヨセフソン
効果素子除去方法として、次の二種類の方法のい
づれかによつていた。
However, conventionally, one of the following two methods has been used to remove the Josephson effect element according to the above principle.

〔引上げ法〕 液体ヘリウム等の冷却媒体中に浸されていて超
伝導遷移を起しているジヨセフソン効果素子乃至
その集積回路を、一旦、冷却媒体中から引上げ、
自然な温度上昇により常伝導状態に戻す。
[Pull-up method] The Josephson effect element or its integrated circuit, which has been immersed in a cooling medium such as liquid helium and has undergone superconducting transition, is once pulled out of the cooling medium,
Returns to normal conduction state due to natural temperature rise.

〔抵抗加熱法〕 ジヨセフソン効果素子乃至その集積回路を保持
しているホルダを抵抗加熱して、間接的にジヨセ
フソン効果素子乃至その集積回路の全体を加熱
し、常伝導状態に遷移させる。
[Resistance heating method] Resistance heating is applied to the holder holding the Josephson effect element or its integrated circuit, thereby indirectly heating the Josephson effect element or the integrated circuit as a whole, and causing a transition to a normal conduction state.

然し、上記の方法は、その度毎にジヨセフソ
ン効果素子乃至その集積回路全体を冷却媒体中か
ら引上げなければならない機械的方法であるた
め、作業性も悪く、時間も掛かる欠点が有る。
However, the above-mentioned method is a mechanical method in which the Josephson effect element or its entire integrated circuit must be pulled out of the cooling medium each time, and therefore has the drawback of poor workability and being time-consuming.

また、上記の方法では、ホルダを介しての間
接的方法であるため、加熱熱源の熱量に無駄があ
り、周囲の冷却媒体をも加熱するため、冷却媒体
が例えば高価な液体ヘリウム等であると、コスト
的な損失も莫迦にできないものとなる。
In addition, in the above method, since it is an indirect method via a holder, the amount of heat from the heating heat source is wasted, and the surrounding cooling medium is also heated, so if the cooling medium is, for example, expensive liquid helium, etc. , the cost losses would be immeasurable.

本発明は、以上のような実情に鑑みて成された
もので、上記した従来例の欠点を伴なわない方
法、即ち、作業性良く、廉価で、且つ確実に磁束
トラツプを除去できるジヨセフソン効果素子の磁
束トラツプ除去方法の提供を主目的として成され
たものであある。
The present invention has been made in view of the above-mentioned circumstances, and provides a method that does not have the drawbacks of the conventional examples described above, that is, a Josephson effect element that is easy to work with, is inexpensive, and can reliably remove magnetic flux traps. The main purpose of this work was to provide a method for removing magnetic flux traps.

本発明においても、磁束トラツプ除去の原理は
従来例と同様であつて、ジヨセフソン効果素子を
一旦、常伝導状態に戻すことにより当該磁束トラ
ツプを除去しようとするものであるが、その手段
が勝るものである。
In the present invention, the principle of removing the magnetic flux trap is the same as in the conventional example, and the magnetic flux trap is removed by once returning the Josephson effect element to a normal conduction state, but this method is superior. It is.

本発明においては、ジヨセフソン効果素子を常
伝導状態に戻すための熱源として、光エネルギを
用いることに一つの特徴があり、処理すべきジヨ
セフソン効果素子を冷却容器中においたまま、こ
の光エネルギを当該ジヨセフソン効果素子の在る
所迄、導くものである。殊に、処理すべきジヨセ
フソン効果素子の表面直上において光エネルギを
放射するようにすれば、周囲の冷却媒体に対する
影響は最小限度に留めることができ、無駄に蒸発
させたりすることがない。勿論、このように、処
理すべきジヨセフソン効果素子に対して非接触で
処理が行なえるということは重要な要件でもあ
る。光エネルギとしては、ジヨセフソン効果素子
の当該接合部に対して良好な吸収が保証され、熱
変換効率の良いものが望ましいが、一般に厳しく
特定される性質のものではなく、遠赤外光領域か
ら可視光領域に亘る光やレーザ光が利用できる。
但し、集束性やエネルギ効率、制御性の点ではレ
ーザ光が便利ではある。
One feature of the present invention is that light energy is used as a heat source to return the Josephson effect element to a normal conduction state. This leads to the location of the Josephson effect element. In particular, if the light energy is radiated just above the surface of the Josephson effect element to be treated, the effect on the surrounding cooling medium can be kept to a minimum and no unnecessary evaporation occurs. Of course, it is an important requirement that the Josephson effect element to be processed be able to be processed in a non-contact manner. It is desirable that the light energy be one that guarantees good absorption at the relevant junction of the Josefson effect element and has good heat conversion efficiency, but it is generally not one with properties that are strictly specified, and can be anything from the far infrared light region to the visible range. Light or laser light covering an optical range can be used.
However, laser light is convenient in terms of focusing, energy efficiency, and controllability.

添付の図面は、本発明を実施する装置の一例を
示していて、この装置に就き本発明の一実施例を
説明すると、ジヨセフソン効果素子乃至その集積
回路は通常、この種の集積回路を担持する基板乃
至チツプ1上に形成され、冷却容器5中の適当な
ホルダ部分2にて支持されている。
The accompanying drawings show an example of an apparatus for carrying out the invention, and to describe an embodiment of the invention in this apparatus, Josephson effect elements or their integrated circuits typically carry integrated circuits of this type. It is formed on a substrate or chip 1 and supported in a suitable holder part 2 in a cooling container 5.

冷却容器5中には、液体ヘリウム等の冷却媒体
4が充填され、ジヨセフソン効果素子集積回路を
超伝導遷移温度以下に維持している。
A cooling medium 4 such as liquid helium is filled in the cooling container 5 to maintain the Josephson effect element integrated circuit at a temperature below the superconducting transition temperature.

ジヨセフソン効果素子乃至その集積回路の外部
への引出し線路8は、適当な保持部材9により支
持されているが、この場合、この保持部材はま
た、光導波路乃至光フアイバ3をも支持してい
る。光導波路の材質は、吸収、透過による損失が
なるべく少なく、従つて、周囲の冷却媒体に対す
る影響が少なく、極低温と室温との間の温度変化
にも良く耐えるものである必要が有るが、この点
において実用上、不足なく使うことのできる材質
の光導波路は結構、豊富にある。然し、中でも、
コア、クラツド共に石英製である光フアイバが最
も望ましい。光損失が少なく、従つて、それ自体
の発熱が少なく、微小径のものからバンドル上に
なつている比較的大径のものまで、所望の径のも
のが容易に入手できるからである。
The lead-out line 8 to the outside of the Josephson effect element or its integrated circuit is supported by a suitable holding element 9, which in this case also supports the optical waveguide or optical fiber 3. The material of the optical waveguide must have as little loss as possible due to absorption and transmission, therefore have little effect on the surrounding cooling medium, and must be able to withstand temperature changes between extremely low temperatures and room temperature. In this respect, there are quite a lot of optical waveguides made of materials that can be used without any shortage in practice. However, among others,
Optical fibers whose core and cladding are both made of quartz are most desirable. This is because it has low optical loss, therefore generates little heat itself, and can be easily obtained in any desired diameter, from minute diameters to relatively large diameter bundles.

光導波路3の一端は、冷却容器5の外方に伸び
出ており、適当な発光源6からの光の入力端とな
つている。一方、他端は、冷却容器5中に侵入
し、ジヨセフソン効果素子基板1の直上にて光エ
ネルギの出力端を構成している。
One end of the optical waveguide 3 extends outward from the cooling container 5 and serves as an input end for light from a suitable light source 6. On the other hand, the other end enters into the cooling container 5 and constitutes an output end of optical energy directly above the Josephson effect element substrate 1.

発光源乃至光エネルギ源6は、自然光や放電エ
ネルギ変換型の光発生源であつても良いが、適当
なレーザ発振源であることが望ましい。小型で大
きな出力を得ることができ、コヒーレンシの良好
なことに伴なう指向性の良いことや、径の縮小、
拡大操作が容易に行なえるためである。
The light emitting source or light energy source 6 may be a natural light source or a discharge energy conversion type light source, but is preferably a suitable laser oscillation source. It is possible to obtain large output with a small size, has good directivity due to good coherency, and has a reduced diameter.
This is because the enlargement operation can be easily performed.

本出願人の実用化例においても、この光エネル
ギ源6には連続発振He−Neレーザ発振器を用い
ており、集束レンズ7を介してその出力ビームを
石英光フアイバ3の入力端に導入するようにして
いる。
In the present applicant's practical example, a continuous wave He-Ne laser oscillator is used as the optical energy source 6, and its output beam is introduced into the input end of the quartz optical fiber 3 via the focusing lens 7. I have to.

上記実用化例における実際に即して述べると、
下部電極がPb/Au/In合金膜、トンネル障壁膜
がPb酸化物、上部電極がPb/Au合金膜であるジ
ヨセフソン効果素子を、液体ヘリウムを冷却媒体
とする冷却容器中に浸した状態において、出力
20mWの連続発振He−Neレーザ発振器6からの
レーザ光を、液体ヘリウム中でも使用可能である
コア径80μmの石英光フアイバ中に導入し、上記
ジヨセフソン効果素子の直上においてこのジヨセ
フソン効果素子に照射した。この出力端における
ジヨセフソン効果素子基板上においての光照射径
は約500μm、ジヨセフソン効果素子表面におけ
る光量は約3.8W/cm2であつた。
To describe the actual situation in the above practical example,
A Josephson effect element whose lower electrode is a Pb/Au/In alloy film, whose tunnel barrier film is a Pb oxide, and whose upper electrode is a Pb/Au alloy film is immersed in a cooling container using liquid helium as a cooling medium. output
Laser light from a 20 mW continuous wave He--Ne laser oscillator 6 was introduced into a quartz optical fiber with a core diameter of 80 μm, which can be used even in liquid helium, and was irradiated to the Josephson effect element directly above the Josephson effect element. The light irradiation diameter on the Josephson effect element substrate at this output end was about 500 μm, and the amount of light on the Josephson effect element surface was about 3.8 W/cm 2 .

この条件下において、光照射後、約数秒でジヨ
セフソン効果素子は超伝導状態から常伝導状態に
遷移した。また、これにより、既述の原理通り、
磁束トラツプの除去が行なわれたことを確認し
た。
Under these conditions, the Josephson effect device transitioned from a superconducting state to a normal conducting state within a few seconds after being irradiated with light. Also, according to the principle mentioned above,
It was confirmed that the magnetic flux trap had been removed.

本方法を実際のジヨセフソン効果素子の集積回
路の磁束トラツプの除去に応用する場合、出力ビ
ーム径を適当に設定することにより、例えば、十
分に絞つて特定のジヨセフソン効果素子乃至特定
のいくつかのジヨセフソン効果素子群をのみ、選
択的に処理しても良いし、逆にビーム径を広げ
て、基板1上の集積回路全体に対して一度に処理
するようにしても良い。光導波路の微動調整のた
めの機械系は、既存の技術で十分精度の良いもの
ができ、μm単位も可能である。また勿論、光ビ
ームの走査方式も考えられる。こうした走査によ
る場合、光導波路を機械的に振つても良いが、出
力端における光学系乃至電気光学系をを介して電
気信号により光ビームを振る方が望ましい。
When applying this method to the removal of magnetic flux traps in integrated circuits of actual Josephson effect elements, by appropriately setting the output beam diameter, it is possible to Only a group of effect elements may be selectively processed, or conversely, the beam diameter may be widened and the entire integrated circuit on the substrate 1 may be processed at once. Mechanical systems for fine adjustment of optical waveguides can be made with sufficient precision using existing techniques, and can even be done on the μm scale. Of course, a light beam scanning method can also be considered. In the case of such scanning, the optical waveguide may be mechanically swung, but it is preferable to sway the light beam using an electrical signal via an optical system or an electro-optical system at the output end.

以上のように、本発明によれば、ジヨセフソン
効果素子の磁束トラツプの除去方法として、従来
におけるような不合理乃至不経済な欠点を全て追
放することに成功した除去方法が提供でき、作業
性も良好で作業時間も極めて短く、冷却媒体に及
ぼす悪影響も最小限に留めることができるため、
ジヨセフソン効果素子回路網の実装状態において
の保守管理が行なえ、将来的に見てもこの種のジ
ヨセフソン効果素子を用いた超高速計算機の実現
に大きな貢献をするものとなる。
As described above, according to the present invention, it is possible to provide a method for removing magnetic flux traps in Josephson effect elements that successfully eliminates all the unreasonable and uneconomical drawbacks of the conventional methods, and also improves workability. It is good, the working time is extremely short, and the negative effects on the cooling medium can be kept to a minimum.
Maintenance and management of the Josephson effect element circuit network in its mounted state can be performed, and in the future it will make a major contribution to the realization of ultra-high-speed computers using this type of Josephson effect element.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明の磁束トラツプ除去方法を実施す
るために用いる装置の一例の概略構成図である。 図中、1はジヨセフソン効果素子乃至その集積
回路を担持する基板、3は光導波路、4は冷却媒
体、5は冷却容器、6は光エネルギ源、である。
The drawing is a schematic diagram of an example of an apparatus used to carry out the magnetic flux trap removal method of the present invention. In the figure, 1 is a substrate carrying the Josephson effect element or its integrated circuit, 3 is an optical waveguide, 4 is a cooling medium, 5 is a cooling container, and 6 is a light energy source.

Claims (1)

【特許請求の範囲】 1 冷却容器中において超伝導遷移温度以下に冷
却されているジヨセフソン効果素子の磁束トラツ
プの除去方法であつて、 上記冷却容器の外部に設けた光エネルギ源の発
する光エネルギを、光導波路を介して上記冷却容
器中に導いて上記ジヨセフソン効果素子の表面に
照射し、該光エネルギを加熱源として、該ジヨセ
フソン効果素子を常伝導状態に遷移させることを
特徴とするジヨセフソン効果素子の磁束トラツプ
の除去方法。
[Scope of Claims] 1. A method for removing magnetic flux traps in a Josephson effect element cooled to below the superconducting transition temperature in a cooling container, the method comprising: A Josephson effect element, characterized in that the light energy is guided into the cooling container through an optical waveguide and irradiated onto the surface of the Josephson effect element, and the optical energy is used as a heating source to transition the Josephson effect element to a normal conduction state. How to remove magnetic flux traps.
JP58057005A 1983-04-01 1983-04-01 Method for removing magnetic flux trap of josephson effect element Granted JPS59182587A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58057005A JPS59182587A (en) 1983-04-01 1983-04-01 Method for removing magnetic flux trap of josephson effect element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58057005A JPS59182587A (en) 1983-04-01 1983-04-01 Method for removing magnetic flux trap of josephson effect element

Publications (2)

Publication Number Publication Date
JPS59182587A JPS59182587A (en) 1984-10-17
JPS6317350B2 true JPS6317350B2 (en) 1988-04-13

Family

ID=13043342

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58057005A Granted JPS59182587A (en) 1983-04-01 1983-04-01 Method for removing magnetic flux trap of josephson effect element

Country Status (1)

Country Link
JP (1) JPS59182587A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0272835U (en) * 1988-11-22 1990-06-04

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0272835U (en) * 1988-11-22 1990-06-04

Also Published As

Publication number Publication date
JPS59182587A (en) 1984-10-17

Similar Documents

Publication Publication Date Title
CN103551738B (en) Laser beam machining method and laser beam machining device
CN101412154B (en) Laser processing method
JP3155717B2 (en) Laser processing method for micro lens
Toratani et al. Self-fabrication of void array in fused silica by femtosecond laser processing
Baseman et al. Minimum fluence for laser blow‐off of thin gold films at 248 and 532 nm
EP0244460A1 (en) Integrated fiber optic coupler for vhsic/vlsi interconnects
CN109590288B (en) Method for cleaning impurities on transmission surface of light-transmitting medium by laser
JP2001156017A5 (en) Laser device and processing method
JPS6317350B2 (en)
CN208945379U (en) A kind of device using laser peeling optical fibre coat
CN113176628A (en) Large-scale photonic integrated chip rapid manufacturing method based on thin film material
US5299213A (en) Solid state laser apparatus
JPS5681993A (en) Semiconductor laser element
Kashyap et al. Photoconduction in germanium and phosphorus doped silica waveguides
Lagu et al. Fabrication of single mode glass waveguides by electrolytic release of silver ions
Cho et al. Self-fabricated single mode waveguide in fluoride glass excited by self-channeled plasma filaments
Siekman Cutting of thin metal films with a CO2-gas laser beam
Levinson et al. Laser processing of thin films
Ramanathan et al. Laser micromachining using liquid optics
Dutta et al. Use of laser annealing to achieve low loss in Corning 7059 glass, ZnO, Si3N4, Nb205, and Ta205 optical thin-film waveguides
Liu et al. Optical ridge waveguides in Nd3+‐doped fluorophosphate glasses fabricated by carbon ion implantation and femtosecond laser ablation
Khoo et al. Nonlinear liquid‐crystal fiber‐fiber coupler for optical switching and gating operations
JP2554864B2 (en) Method for recrystallizing semiconductor thin film
Ródenas et al. Femtosecond laser induced micromodifications in Nd: SBN crystals: Amorphization and luminescence inhibition
Shubert et al. Plane Waveguide Mode Effects in the Visible Spectrum