JPS63173381A - Semiconductor laser device - Google Patents

Semiconductor laser device

Info

Publication number
JPS63173381A
JPS63173381A JP571787A JP571787A JPS63173381A JP S63173381 A JPS63173381 A JP S63173381A JP 571787 A JP571787 A JP 571787A JP 571787 A JP571787 A JP 571787A JP S63173381 A JPS63173381 A JP S63173381A
Authority
JP
Japan
Prior art keywords
laser
wavelength
light
quantum well
semiconductor laser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP571787A
Other languages
Japanese (ja)
Other versions
JPH0824207B2 (en
Inventor
Yasuki Tokuda
徳田 安紀
Noriaki Tsukada
塚田 紀昭
Kenzo Fujiwara
藤原 賢三
Teruhito Matsui
松井 輝仁
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP571787A priority Critical patent/JPH0824207B2/en
Publication of JPS63173381A publication Critical patent/JPS63173381A/en
Publication of JPH0824207B2 publication Critical patent/JPH0824207B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/09Processes or apparatus for excitation, e.g. pumping
    • H01S3/091Processes or apparatus for excitation, e.g. pumping using optical pumping
    • H01S3/094Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light
    • H01S3/0941Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light of a laser diode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/1021Coupled cavities
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/04Processes or apparatus for excitation, e.g. pumping, e.g. by electron beams
    • H01S5/041Optical pumping
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/06Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
    • H01S5/0607Arrangements for controlling the laser output parameters, e.g. by operating on the active medium by varying physical parameters other than the potential of the electrodes, e.g. by an electric or magnetic field, mechanical deformation, pressure, light, temperature
    • H01S5/0608Arrangements for controlling the laser output parameters, e.g. by operating on the active medium by varying physical parameters other than the potential of the electrodes, e.g. by an electric or magnetic field, mechanical deformation, pressure, light, temperature controlled by light, e.g. optical switch
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/34Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers
    • H01S5/3418Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers using transitions from higher quantum levels

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Plasma & Fusion (AREA)
  • Biophysics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Semiconductor Lasers (AREA)

Abstract

PURPOSE:To make it possible to switch a wavelength by an external signal and to radiate, from both end-surfaces, laser lights whose wavelengths are different from each other, by a method wherein the change-over of oscillation wavelength is performed by pumping a quantum well laser capable of switching wavelength with the other laser light. CONSTITUTION:When a constant bias current is made to flow through a laser A, a quantum well laser, it radiates a laser light with a longer wavelength lambda1 which can be oscillated. Then a laser B is made to oscillate by supplying a current, and the laser A subjected to a pumping of a laser light 7. When the intensity of the laser light 7 exceeds a specified value, the laser A is subjected to a light-pumping by the laser light 7 as well as a pumping by bias current injection, so that the gain is increased to generate a light of short wavelength lambda2. Thus the wavelength of the laser light generated by the laser A can be switched between lambda1, and lambda2, by changing the current supplied to the laser B. In the case where the same substrate is used, the manufacture is facilitated by a method wherein the laser A and the laser B are so cut off by dry etching that the length of a resonator of the laser A is made short.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は半導体レーザを2つ以上集積化することで1
つの入力信号で様々な発振状態をとる半導体レーザ装置
に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] This invention provides a single laser diode by integrating two or more semiconductor lasers.
This invention relates to a semiconductor laser device that takes various oscillation states with one input signal.

〔従来の技術〕[Conventional technology]

本発明者らの発明にがかる先願明細書(特願昭61−1
75967号)に記されたレーザは活性層中に形成され
る量子準位n=lとn=2の発振をそのレーザに流す注
入電流量によりスイッチできるものである。
The specification of the earlier application relating to the invention of the present inventors (Japanese Patent Application No. 61-1
75967) is capable of switching the oscillation of quantum levels n=l and n=2 formed in the active layer by the amount of current injected into the laser.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながら従来の波長スイッチレーザでは波長をきり
かえるためにはそのレーザに流す注入電流をコントロー
ルしなければならず他の外部信号によりスイッチできな
かった。またレーザの両端面からは、同一の波長の光し
か出射することができず、利用範囲が限定される等の問
題点があった。
However, in conventional wavelength switching lasers, in order to switch the wavelength, the current injected into the laser must be controlled, and switching cannot be performed using other external signals. Further, there are problems in that only light of the same wavelength can be emitted from both end faces of the laser, which limits the range of use.

この発明は上記のような問題点を解消するためになされ
たもので、外部信号により、波長をスイソチできかつ、
両端面からそれぞれ波長の異なるレーザ光を出射するこ
とも可能な半導体レーザ装置を得ることを目的とする。
This invention was made to solve the above-mentioned problems, and it is possible to switch the wavelength using an external signal, and
It is an object of the present invention to obtain a semiconductor laser device that can also emit laser beams of different wavelengths from both end faces.

〔問題点を解決するための手段〕[Means for solving problems]

この発明に係る半導体レーザ装置は単一又は複数の波長
のレーザ光を出射する半導体レーザ素子と、該半導体レ
ーザ素子の前端面或いは後端面の少なくとも一方の近傍
に上記半導体レーザ素子の出射光がその活性層に入射す
るように設置された2つ以上の波長のレーザ光が出射可
能である量子井戸レーザとを備えたものである。
A semiconductor laser device according to the present invention includes a semiconductor laser element that emits laser light of a single wavelength or a plurality of wavelengths, and a position where the emitted light of the semiconductor laser element is located near at least one of the front end face and the rear end face of the semiconductor laser element. The device includes a quantum well laser that is installed so as to be incident on the active layer and is capable of emitting laser beams of two or more wavelengths.

〔作用〕[Effect]

この発明における半導体レーザ装置は単一又は複数の波
長のレーザ光を出射する半導体レーザ素子と、該半導体
レーザ素子の前端面或いは後端面の少なくとも一方の近
傍に上記半導体レーザ素子の出射光がその活性層に入射
するように設置された2つ以上の波長のレーザ光が出射
可能である量子井戸レーザとを備えた構成としたから上
記量子井戸レーザが上記半導体レーザ素子により光ポン
ピングされ、そのポンピング強度に応じて発振波長をか
えることができる。
A semiconductor laser device according to the present invention includes a semiconductor laser element that emits laser light of a single wavelength or a plurality of wavelengths; Since the configuration includes a quantum well laser that is installed so as to be incident on the layer and is capable of emitting laser beams of two or more wavelengths, the quantum well laser is optically pumped by the semiconductor laser element, and its pumping intensity is The oscillation wavelength can be changed depending on the

〔実施例〕〔Example〕

以下、この発明の一実施例を図について説明する。第1
図は本発明の一実施例による半導体レーザ装置の構成を
示す図であり、図においてレーザAは例えば特願昭61
−175967号に記された様な発振波長のスイッチが
可能な量子井戸レーザ、レーザBは通常のレーザのよう
にただ1つの光を発振するレーザであり、1は電極、2
はp−AβGaAsクラッド層、3は量子井戸活性層、
3′は一般に3と同一の活性層(ただし3と異なっても
よい)、4はn−AjIC;aAsクラッド層、5はn
−GaAs基板、6はリード線である。このチップはヒ
ートシンク台上にポンディングされアースされる。
An embodiment of the present invention will be described below with reference to the drawings. 1st
The figure is a diagram showing the configuration of a semiconductor laser device according to an embodiment of the present invention.
-A quantum well laser capable of switching the oscillation wavelength as described in No. 175967, Laser B is a laser that oscillates only one light like a normal laser, 1 is an electrode, 2
is a p-AβGaAs cladding layer, 3 is a quantum well active layer,
3' is generally the same active layer as 3 (but may be different from 3), 4 is n-AjIC; aAs cladding layer, 5 is n
-GaAs substrate; 6 is a lead wire; This chip is bonded to a heat sink and grounded.

また7はレーザBから放出されるレーザ光でありその強
度はレーザBに流す電流量によりコントロールする。8
はレーザAから放出されるレーザ光である。
Further, 7 is a laser beam emitted from the laser B, and its intensity is controlled by the amount of current flowing through the laser B. 8
is the laser light emitted from laser A.

また第3図は上記レーザAとして用いられる。Moreover, FIG. 3 is used as the laser A mentioned above.

例えば特願昭61−175967号に記載された発振波
長の切り換えが可能な量子井戸レーザを示す構成図、第
4図は第3図のA−A断面を示す図である。図において
10は上部電極、12は5in2電流阻止層、13はp
−QaAsコンタクト層、14はp−A/!GaAsク
ラッド層、15はp−AnAs−GaAs超格子グレー
ディソドインデソクスウェイブガイド層、16は100
人のGaAs活性層、17はn−A#As−GaAs超
格子グレーディソドインデソクスウエイブガイド層、1
8はn−Ajl!GaAsクラッド層、19はn−Ga
As基板、20は下部電極、11はZn拡散部(斜線部
)である。
For example, FIG. 4 is a block diagram showing a quantum well laser whose oscillation wavelength can be switched, as described in Japanese Patent Application No. 175967/1982, and FIG. 4 is a cross-sectional view taken along line AA in FIG. In the figure, 10 is an upper electrode, 12 is a 5in2 current blocking layer, and 13 is a p
-QaAs contact layer, 14 is p-A/! GaAs cladding layer, 15 p-AnAs-GaAs superlattice graded index waveguide layer, 16 100
human GaAs active layer, 17 is n-A#As-GaAs superlattice graded index waveguide layer, 1
8 is n-Ajl! GaAs cladding layer, 19 is n-Ga
An As substrate, 20 is a lower electrode, and 11 is a Zn diffusion part (shaded part).

また第4図に示すように、活性層ストライプのエッヂは
多少凹凸になっている。
Further, as shown in FIG. 4, the edges of the active layer stripes are somewhat uneven.

また第5図はこの量子井戸レーザにおける活性層でのエ
ネルギーバンド構造を示す図であり、曲線部は該エネル
ギーバンドがGRlN−3CH構造により放物状に変化
している部分である。
Further, FIG. 5 is a diagram showing the energy band structure in the active layer of this quantum well laser, and the curved portion is a portion where the energy band changes parabolically due to the GRIN-3CH structure.

この量子井戸レーザは、上記のように活性層の上下クラ
ッド層の間に超格子グレーディソドインデソクスウェイ
プガイド層15.17を設けてGRI rl−3CH構
造を構成し、厚み方向の光の閉じ込めをしている。また
上下のクラッド層のバンドギャップは十分に高いもので
あり、かつ活性層16の層厚を100人と十分薄く形成
しているので、活性層16は量子井戸構造を形成し、該
活性層内において注入されたキャリアは量子化されたエ
ネルギーバンドを持つ。またZn拡散領域11はバンド
ギャップも高く、屈折率が低いので活性層内のキャリア
及び発生した光はZnが拡散されていない図示Wの巾に
横とじこめされる。
As mentioned above, this quantum well laser has a GRI rl-3CH structure by providing superlattice graded insode wave guide layers 15 and 17 between the upper and lower cladding layers of the active layer, and confines light in the thickness direction. doing. Furthermore, the band gap between the upper and lower cladding layers is sufficiently high, and the layer thickness of the active layer 16 is formed sufficiently thin by 100 layers, so that the active layer 16 forms a quantum well structure, and the active layer 16 forms a quantum well structure. The carriers injected at have a quantized energy band. Furthermore, since the Zn diffusion region 11 has a high band gap and a low refractive index, the carriers in the active layer and the generated light are confined laterally within the width W in the figure where Zn is not diffused.

上記のように構成された量子井戸レーザにキャリアを注
入してやると、電子とホールは活性層16内で注入され
たキャリアの数に応じて量子準位間で遷移を行い、それ
ぞれの量子重位置に対応した波長の光を発生する。そし
て電流による利得が共振器損失より大きくなるとレーザ
発振をする。
When carriers are injected into the quantum well laser configured as described above, electrons and holes transition between quantum levels in the active layer 16 according to the number of injected carriers, and reach their respective quantum heavy positions. Generates light of the corresponding wavelength. Then, when the gain due to the current becomes larger than the resonator loss, laser oscillation occurs.

第4図に示すように活性層ストライブのエソヂは凹凸に
なっているため、発生した光はこの部分で大きく散乱さ
れて、これは共振器内部ロスになる。さらにこのストラ
イプ幅をせまくすることによっても共振器内部ロスは高
くなる。いまこのストライプ幅を約4μとして、共振器
内部ロスを十分に高めてやれば、注入される電子とボー
ルの数が少ない間、すなわち注入電流が小さい間は、第
5図に示される活性層内の量子重位置n=lの遷移でn
=1の景子準位置に対応した波長λ、のレーザ発振が生
じ、λ1の光を出す。しかし注入電流を増してやるとn
=2の量子重位置でのキャリアの状態密度の方がn=1
の量子重位置でのそれよりも大きいため、利得はn=2
の遷移によるものの方が大きくなり、n=2の量子重位
置に対応した波長λ2の光を出す。これによってn=1
での発振はおさえられるが、共振器内部損失の大きさを
所定の値に設定し、所定の電流を流すことによって同時
に上記λ1とλ2の光を出すことができる。
As shown in FIG. 4, the active layer stripe has irregularities, so the generated light is largely scattered at this portion, resulting in loss inside the resonator. Furthermore, by narrowing the stripe width, the resonator internal loss also increases. Now, if we set this stripe width to about 4μ and sufficiently increase the internal loss of the resonator, while the number of injected electrons and balls is small, that is, while the injected current is small, the inside of the active layer shown in Fig. At the transition of quantum weight position n=l, n
Laser oscillation with a wavelength λ corresponding to the Keiko quasi-position of =1 occurs, and light of λ1 is emitted. However, if the injection current is increased, n
The density of states of the carrier at the quantum gravity position of =2 is n = 1
Since it is larger than that at the quantum gravity position, the gain is n=2
The light due to the transition becomes larger and emits light with a wavelength λ2 corresponding to the quantum gravity position of n=2. This allows n=1
However, by setting the magnitude of the resonator internal loss to a predetermined value and flowing a predetermined current, it is possible to simultaneously emit the light of λ1 and λ2.

次に第1図に示す本実施例の動作について説明する。Next, the operation of this embodiment shown in FIG. 1 will be explained.

上述のような動作を行う量子井戸レーザであるレーザA
にあらかじめ一定のバイアス電流を流すとレーザAはま
ずその発振しうる光のうち長い方の波長λ1のレーザ光
を放出する。
Laser A is a quantum well laser that operates as described above.
When a constant bias current is applied in advance to the laser A, the laser A first emits a laser beam having the longer wavelength λ1 among the lights that can be oscillated.

次にこのような状態でレーザBに電流を流しレーザ発振
をさせ、レーザ光7でレーザAをボンピングする。レー
ザ光7の強度がある一定以上になると、レーザAは上記
バイアス電流注入によるボンピングに加えて、レーザ光
7による光ポンピングもうけるため、利得が上昇し、短
波長の光λ2を出す。
Next, in this state, a current is applied to the laser B to cause laser oscillation, and the laser A is bombed with the laser beam 7. When the intensity of the laser beam 7 exceeds a certain level, the laser A performs optical pumping by the laser beam 7 in addition to the bombing by the bias current injection, so that the gain increases and emits light λ2 with a short wavelength.

このようにレーザBに流す電流をかえ・ることでレーザ
Aの出すレーザ光の波長をλ、とλ2の間で切り換える
ことができる。
By changing the current flowing through laser B in this way, the wavelength of the laser light emitted by laser A can be switched between λ and λ2.

このような本実施例の半導体レーザ装置の作製はたとえ
ば同一ウェハを用いる場合レーザAとレーザBの共振器
長をかえる(レーザAの共振器長を短くする)ようにド
ライエツチングでレーザAとレーザBを切りはなす事に
より容易に作製できる。
For example, when manufacturing the semiconductor laser device of this embodiment using the same wafer, lasers A and B are formed by dry etching to change the cavity lengths of lasers A and B (to shorten the cavity length of laser A). It can be easily manufactured by cutting B.

なお、上記実施例ではレーザAはあらかじめλ1の光を
出す状態にしておいたが、発振しない状態にしでおけば
、レーザBに流す電流量により、発振しない状態2 λ
1を出す状態λ2を出す状態の3つの状態が得られる。
Note that in the above embodiment, laser A was set in advance to emit light of λ1, but if it was left in a non-oscillating state, the amount of current flowing through laser B would change to non-oscillating state 2 λ
Three states are obtained: a state that produces 1 and a state that produces λ2.

さらにレーザAは特願昭61−175967号にも記載
される様に、λ1.λ2を同時にも出せるため、それを
加えれば4つの状態が得られる。
Furthermore, as described in Japanese Patent Application No. 61-175967, the laser A has a wavelength of λ1. Since λ2 can be produced at the same time, four states can be obtained by adding them.

また、上記実施例ではレーザBの片側にのみ波長スイッ
チが可能な量子井戸レーザを設置したが、レーザBは後
方からもレーザ光を出すため、第2図に示す様に波長ス
イッチが可能な量子井戸レザであるレーザCを後方にも
設置し、その波長かきりかわるしきい値をレーザAと例
えばバイアス電流を異なるものとするなどして違えてお
けば左右から出る波長をコントロールすることにより、
より様々な状態が1チツプで得られる。
In addition, in the above embodiment, a wavelength-switchable quantum well laser was installed only on one side of laser B, but since laser B also emits laser light from the rear, a wavelength-switchable quantum well laser is installed on only one side of laser B. If we install Laser C, which is a well laser, at the rear, and set the threshold for changing the wavelength to be different from Laser A, for example by using different bias currents, we can control the wavelengths emitted from the left and right sides.
More various states can be obtained with one chip.

さらにレーザBも注入電流で波長をスイッチできる量子
井戸レーザとすればもっと様々な状態が期待できる。
Furthermore, if laser B is also a quantum well laser whose wavelength can be switched by injection current, more various states can be expected.

〔発明の効果〕〔Effect of the invention〕

以上のようにこの発明によれば波長スイッチできる量子
井戸レーザを他のレーザで光ボンピングすることで発振
波長の切りかえを行うように構成したから、ボンピング
レーザに流す電流量をコントロールして1チツプで色々
な発振状態をとらせることができる効果がある。即ちこ
れは将来的な光による論理集積回路の基本構成要素とな
る可能性を提供する効果がある。
As described above, according to the present invention, the wavelength-switchable quantum well laser is configured to switch the oscillation wavelength by optically bombing it with another laser. This has the effect of allowing various oscillation states to be taken. That is, this has the effect of providing the possibility of becoming a basic component of future optical logic integrated circuits.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の一実施例による半導体レーザ装置を
示す構成図、第2図はこの発明の他の実施例による半導
体レーザ装置を示す構成図、第3図は本発明に用いる量
子井戸レーザの一例を示す構成図、第4図は第3図のA
−A断面を示す図、第5図は第3図のレーザのエネルギ
ーバンド構造を示す図である。 1は電極、2はp−Aj!GaAsクラッド層、3は量
子井戸活性層、4はn−AβGaAsクラソド層、5は
n−GaAs基板、6はリード線、7はレーザBの出射
光、8はレーザAの出射光、8′はレーザCの出射光。
FIG. 1 is a block diagram showing a semiconductor laser device according to one embodiment of the invention, FIG. 2 is a block diagram showing a semiconductor laser device according to another embodiment of the invention, and FIG. 3 is a quantum well laser used in the invention. A configuration diagram showing an example of the configuration, Fig. 4 is A of Fig. 3.
-A cross section, and FIG. 5 is a diagram showing the energy band structure of the laser of FIG. 3. 1 is an electrode, 2 is p-Aj! GaAs cladding layer, 3 quantum well active layer, 4 n-AβGaAs cladding layer, 5 n-GaAs substrate, 6 lead wire, 7 light emitted from laser B, 8 light emitted from laser A, 8' Output light of laser C.

Claims (3)

【特許請求の範囲】[Claims] (1)単一又は複数の波長のレーザ光を出射する半導体
レーザ素子と、 該半導体レーザ素子の前端面或いは後端面の少なくとも
一方の近傍に上記半導体レーザ素子の出射光がその活性
層に入射するように設置された2つ以上の波長のレーザ
光が出射可能である量子井戸レーザとを備えたことを特
徴とする半導体レーザ装置。
(1) A semiconductor laser element that emits laser light of a single wavelength or a plurality of wavelengths, and the emitted light of the semiconductor laser element enters an active layer near at least one of the front end face or the rear end face of the semiconductor laser element. What is claimed is: 1. A semiconductor laser device comprising: a quantum well laser which can emit laser light of two or more wavelengths;
(2)上記半導体レーザ素子と上記量子井戸レーザが同
一基板上に形成されていることを特徴とする特許請求の
範囲第1項記載の半導体レーザ装置。
(2) The semiconductor laser device according to claim 1, wherein the semiconductor laser element and the quantum well laser are formed on the same substrate.
(3)上記半導体レーザ素子の両端面近傍にそれぞれ上
記量子井戸レーザを備えるとともに該2つの量子井戸レ
ーザのしきい値をそれぞれ異なるものとしたことを特徴
とする特許請求の範囲第1項記載の半導体レーザ装置。
(3) The quantum well laser is provided near both end faces of the semiconductor laser device, and the threshold values of the two quantum well lasers are different from each other. Semiconductor laser equipment.
JP571787A 1987-01-12 1987-01-12 Semiconductor laser device Expired - Lifetime JPH0824207B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP571787A JPH0824207B2 (en) 1987-01-12 1987-01-12 Semiconductor laser device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP571787A JPH0824207B2 (en) 1987-01-12 1987-01-12 Semiconductor laser device

Publications (2)

Publication Number Publication Date
JPS63173381A true JPS63173381A (en) 1988-07-16
JPH0824207B2 JPH0824207B2 (en) 1996-03-06

Family

ID=11618869

Family Applications (1)

Application Number Title Priority Date Filing Date
JP571787A Expired - Lifetime JPH0824207B2 (en) 1987-01-12 1987-01-12 Semiconductor laser device

Country Status (1)

Country Link
JP (1) JPH0824207B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005217401A (en) * 2004-01-30 2005-08-11 Bayerische Motoren Werke Ag Laser diode system, method of arranging laser diode, and optical arrangement of laser diode
US6944197B2 (en) * 2001-06-26 2005-09-13 University Of Maryland, Baltimore County Low crosstalk optical gain medium and method for forming same
JP2007250650A (en) * 2006-03-14 2007-09-27 Sharp Corp Nitride semiconductor laser element and its manufacturing method

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6944197B2 (en) * 2001-06-26 2005-09-13 University Of Maryland, Baltimore County Low crosstalk optical gain medium and method for forming same
JP2005217401A (en) * 2004-01-30 2005-08-11 Bayerische Motoren Werke Ag Laser diode system, method of arranging laser diode, and optical arrangement of laser diode
JP2007250650A (en) * 2006-03-14 2007-09-27 Sharp Corp Nitride semiconductor laser element and its manufacturing method
US7804878B2 (en) 2006-03-14 2010-09-28 Sharp Kabushiki Kaisha Nitride semiconductor laser device and method of producing the same
JP4660400B2 (en) * 2006-03-14 2011-03-30 シャープ株式会社 Manufacturing method of nitride semiconductor laser device
US8059691B2 (en) 2006-03-14 2011-11-15 Sharp Kabushiki Kaisha Nitride semiconductor laser device and method of producing the same
US8124431B2 (en) 2006-03-14 2012-02-28 Sharp Kabushiki Kaisha Nitride semiconductor laser device and method of producing the same

Also Published As

Publication number Publication date
JPH0824207B2 (en) 1996-03-06

Similar Documents

Publication Publication Date Title
RU2142665C1 (en) Injection laser
US6167073A (en) High power laterally antiguided semiconductor light source with reduced transverse optical confinement
US4603421A (en) Incoherent composite multi-emitter laser for an optical arrangement
US20050083982A1 (en) Surface emitting and receiving photonic device
US5914977A (en) Semiconductor laser having a high-reflectivity reflector on the laser facets thereof, an optical integrated device provided with the semiconductor laser, and a manufacturing method therefor
JP2000269600A (en) High-power broad-band optical source and optical amplifier device
US6792025B1 (en) Wavelength selectable device
JPS63173381A (en) Semiconductor laser device
JPS60102789A (en) Distributed feedback semiconductor laser
JPS63116489A (en) Optical integrated circuit
US4468772A (en) Bistable optical device
US4833510A (en) Semiconductor laser array with independently usable laser light emission regions formed in a single active layer
US4380075A (en) Mode stable injection laser diode
US5727016A (en) Spatially coherent diode laser with lenslike media and feedback from straight-toothed gratings
US4633477A (en) Semiconductor laser with blocking layer
US4764937A (en) Semiconductor laser array device
GB2298958A (en) Optical integrated semiconductor laser and waveguide
JPS59152683A (en) Surface light emitting semiconductor laser
Takamori et al. Lasing characteristics of a continuous‐wave operated folded‐cavity surface‐emitting laser
JPS6155276B2 (en)
JPS6332979A (en) Semiconductor laser
JP2606838B2 (en) Distributed feedback semiconductor laser
JPS63276289A (en) Semiconductor laser and using method thereof
JPH04302481A (en) Semiconductor optical element
JPH01238082A (en) Semiconductor laser