JPS63172939A - Analysis of composition of thin film - Google Patents

Analysis of composition of thin film

Info

Publication number
JPS63172939A
JPS63172939A JP62004086A JP408687A JPS63172939A JP S63172939 A JPS63172939 A JP S63172939A JP 62004086 A JP62004086 A JP 62004086A JP 408687 A JP408687 A JP 408687A JP S63172939 A JPS63172939 A JP S63172939A
Authority
JP
Japan
Prior art keywords
thin film
substrate
metals
material layer
backing material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62004086A
Other languages
Japanese (ja)
Inventor
Masahiko Murata
昌彦 村田
Kenji Mita
三田 賢志
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daicel Corp
Original Assignee
Daicel Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daicel Chemical Industries Ltd filed Critical Daicel Chemical Industries Ltd
Priority to JP62004086A priority Critical patent/JPS63172939A/en
Publication of JPS63172939A publication Critical patent/JPS63172939A/en
Pending legal-status Critical Current

Links

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)
  • Sampling And Sample Adjustment (AREA)

Abstract

PURPOSE:To directly analyze the compsn. distribution of the metal and nonmetal at the boundary face of a thin film by stripping the thin film formed on a substrate from the substrate. CONSTITUTION:Gold is formed on the surface of the thin film in direct contact with the plastic substrate 1 by a sputtering method to form a protective film 3. An epoxy adhesive agent is coated as a lining material layer 4 in the case of stripping the thin film from the substrate on the protective film 3 by using a brush. After the adhesive agent data sets completely, the test piece consisting of such epoxy adhesive agent, the protective to prepare a test piece for compsn. analysis by an AES method. The thin film is the film contg. the metal and nonmetal of four elements shown by B, C, D, E.

Description

【発明の詳細な説明】 (発明の利用分野) この発明は、基板上に形成された薄膜の組成分析法に関
するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Application of the Invention) The present invention relates to a method for analyzing the composition of a thin film formed on a substrate.

(発明の背景) 基板と接する薄膜の界面の組成分布は、一般的に薄膜の
表面からス・ぐツタイオンエツチングとAES (オー
ジェ電子分光)法、xps (X線光電子分光)法を併
用して分析を行なう方法が用いられている。
(Background of the Invention) The composition distribution at the interface of a thin film in contact with a substrate is generally determined from the surface of the thin film using a combination of ion etching, AES (Auger electron spectroscopy), and XPS (X-ray photoelectron spectroscopy). A method of conducting analysis is used.

しかし、2成分以上の金属・非金属を含む薄膜を通常用
いられているアルゴンイオンでス/4’ ツタイオンエ
ツチングを行なう場合、薄膜を構成する成分のスパッタ
率が異なり均一に膜の厚さ方向に掘れているか疑問が残
シ、真の界面の金属・非金属の組成分布の情報であるか
判らない。
However, when a thin film containing two or more components of metals and non-metals is subjected to S/4' ion etching using commonly used argon ions, the sputtering rate of the components that make up the thin film is different and the sputtering rate is uniform across the thickness of the film. There remains some doubt as to whether this information is well-known, and it is unclear whether this is information on the true compositional distribution of metals and non-metals at the interface.

(発明の目的) したがって本発明の目的は、基板上に形成された薄膜の
基板に接している薄膜の界面の金属・非金属の組成分布
を直接分析する技術を提供することにある。
(Objective of the Invention) Therefore, an object of the present invention is to provide a technique for directly analyzing the composition distribution of metals and non-metals at the interface of a thin film formed on a substrate and in contact with the substrate.

この目的を達成するために、本発明は基板上に形成され
た薄膜を基板から剥離することにょシ、薄膜の界面の金
属・非金属の組成分布を直接分析できることを発見し本
発明に到達した。
In order to achieve this objective, the present invention has been made by discovering that it is possible to directly analyze the composition distribution of metals and non-metals at the interface of the thin film by peeling the thin film formed on the substrate from the substrate, and this has led to the present invention. .

(発明の構成) 本発明は、各種基板上に形成された2成分以上の金属・
非金属を含む薄膜と基板が接する界面の上記薄膜の金属
・非金属の組成分布を分析する方法において、該薄膜の
表面に、必要に応じて保護膜を形成した後、裏打ち材層
を付着させ、この裏打ち材層と薄膜を基板から剥離する
ことによシ、薄膜の界面の金属・非金属の組成分布を直
接分析することを特徴とする薄膜の組成分析法である。
(Structure of the Invention) The present invention provides a method for forming metals of two or more components formed on various substrates.
In the method of analyzing the composition distribution of metals and nonmetals in the thin film mentioned above at the interface where a thin film containing a nonmetal and a substrate are in contact, a protective film is formed as necessary on the surface of the thin film, and then a backing material layer is attached. , is a thin film composition analysis method characterized by directly analyzing the composition distribution of metals and nonmetals at the interface of the thin film by peeling the backing material layer and the thin film from the substrate.

上記基板は金属、ガラス、プラスチ、り、紙、繊維等の
任意の材料からなる板、ディスク、テープ、カード、ウ
ェブ、フィルム、シート、ブロック等の任意の物品でよ
い。例えば、本発明が適用できる基板は、ポリカーゲネ
ート、ポリメチルメタクリレート、塩化ビニル、ポリエ
ステル、エポキシ等のプラスチ、り材料及びガラス、ア
ルミナ、シリコン等の無機材料によって作られている。
The substrate may be any article such as a plate, disk, tape, card, web, film, sheet, block, etc. made of any material such as metal, glass, plastic, paper, fiber, etc. For example, substrates to which the present invention is applicable are made of plastic materials such as polycargenate, polymethyl methacrylate, vinyl chloride, polyester, and epoxy, and inorganic materials such as glass, alumina, and silicon.

上記の薄膜を構成する金属は、周期表のIa族〜■族、
Ib族nb族、例えば鉄、コバルト、ニッケル、バナジ
ウム、チタン、銅、亜鉛等が挙げられる。また非金属は
、周期表の[[b族〜■b族例えば、炭素、アルミニウ
ム、−ケイ素、インジウム、スズ、セレン、テルル等が
挙げられる。しかし、これに限定されるものではない。
The metals constituting the above thin film are Groups Ia to Group II of the periodic table,
Examples of the Ib group and nb group include iron, cobalt, nickel, vanadium, titanium, copper, and zinc. Examples of the non-metal include groups B to B of the periodic table, such as carbon, aluminum, silicon, indium, tin, selenium, and tellurium. However, it is not limited to this.

基板上に形成された薄膜の平均の厚みは、50Xから1
0μとすることができる。
The average thickness of the thin film formed on the substrate is 50X to 1
It can be set to 0μ.

上記薄膜を基板から剥離するためには裏打ち材層を用い
る。この裏打ち材としては上記薄膜と基板との間の剥離
強度よシも薄膜と裏打ち材層との間の剥離強度が高くな
るような裏打ち材層であれば任意の材料が使える。一般
には室温で硬化する材料、例えばエポキシ系接着剤、U
v硬化あるいはEB硬化性樹脂が好ましい。裏打ち材を
塗布する方法は、へらはけハンドローラーを用いて手作
業で行なってもよいし、フローがンポールガン等の接着
剤塗付機器を用いて行なってもよい。この裏打ち材の厚
みは敷部程度でよい。
A backing material layer is used to peel the thin film from the substrate. As this backing material, any material can be used as long as the backing material layer has a higher peel strength between the thin film and the backing material layer than the peel strength between the thin film and the substrate. Generally, materials that cure at room temperature, such as epoxy adhesives,
V-curing or EB-curing resins are preferred. The backing material may be applied manually using a spatula hand roller, or may be applied using an adhesive application device such as a flow gun. The thickness of this lining material may be about the same as the thickness of the lining.

本発明においては、薄膜を基板から剥離する際、薄膜の
損傷を防ぐために上記薄膜上に裏打ち材を形成する前に
予め保護膜を形成しておくのが特に好ましい。この保護
膜としては、真空蒸着法、スミ4ツタリング法、イオン
ブレーティング法等のPVD (物理的堆積)法で薄膜
化可能な物質であればよい。例えば、金、銀、銅、白金
、炭素等が挙げられる。
In the present invention, in order to prevent damage to the thin film when peeling the thin film from the substrate, it is particularly preferable to form a protective film in advance before forming a backing material on the thin film. This protective film may be made of any material that can be made into a thin film by a PVD (physical deposition) method such as a vacuum evaporation method, a sumi 4 tsuttering method, or an ion blasting method. Examples include gold, silver, copper, platinum, carbon, and the like.

薄膜の表面上に保護膜を形成する方法は、一般的なPV
D (物理的堆積)法が適用できる。
The method of forming a protective film on the surface of a thin film is the general PV
D (physical deposition) method can be applied.

本発明では、上記のようにして、保護膜を介して、また
は介さずに、裏打ち材層上に転写された薄膜について組
成分布分析を行う。薄膜−裏打ち材層あるいは薄膜−保
護膜−裏打ち材層より成る試験片を基板から剥離するの
は容易にできる。通常は基板を固定した後、上記試験片
を片側から順次剥離すればよい。
In the present invention, a composition distribution analysis is performed on the thin film transferred onto the backing material layer with or without a protective film as described above. A specimen consisting of a thin film-backing material layer or a thin film-protective film-backing material layer can be easily peeled off from the substrate. Normally, after fixing the substrate, the test pieces may be peeled off from one side in sequence.

上記試験片に対する薄膜の組成分析は公知の任意分析法
が適用できる。本発明は特に薄膜の厚さ方向の組成分布
の分析に適している。この場合にはアルゴンガスエツチ
ングとオージェ電子分光(AES )法あるいはX線光
電子分光(xps )法とを併用するのが好ましい。以
下、具体例にょシ、本発明を説明する。
Any known analytical method can be applied to the thin film composition analysis for the above test piece. The present invention is particularly suitable for analyzing the composition distribution in the thickness direction of a thin film. In this case, it is preferable to use argon gas etching in combination with Auger electron spectroscopy (AES) or X-ray photoelectron spectroscopy (XPS). The present invention will be explained below using specific examples.

第1図に示した様に、プラスチック基板1に接している
薄膜20表面に、金をスパッタリング法で形成し、保護
膜3とした。
As shown in FIG. 1, gold was formed on the surface of the thin film 20 in contact with the plastic substrate 1 by sputtering to form a protective film 3. As shown in FIG.

この保護膜の上側に、薄膜を基板から剥離する場合の裏
打ち材層4として、エポキシ系接着剤を室温ではけで塗
布した。接着剤が完全に硬化した後、このエポキシ系接
着剤と保護膜と薄膜よ構成る試験片を基板から180度
剥離し、AES法による組成分析用試験片とした。
On the upper side of this protective film, an epoxy adhesive was applied with a brush at room temperature as a backing material layer 4 when the thin film was peeled off from the substrate. After the adhesive was completely cured, the test piece consisting of the epoxy adhesive, protective film, and thin film was peeled off from the substrate at 180 degrees to obtain a test piece for compositional analysis by AES method.

上記薄膜はB、C,D、Eで示した4元素の金属と非金
属を含む膜である。(なお、AESで検出される上記基
板1とエポキシ接着剤4の炭素は以下の第2,3図では
AおよびFで示しである)比較のために、従来法によっ
て、アルゴンガスエツチングとAES法とを併用して、
基板上に形成された薄膜をこの薄膜表面から深さ方向に
組成分布分析した結果を第2図に示す。
The above-mentioned thin film is a film containing metals and non-metals of four elements shown as B, C, D, and E. (The carbon in the substrate 1 and the epoxy adhesive 4 detected by AES is indicated by A and F in Figures 2 and 3 below.) For comparison, argon gas etching and AES etching were performed using the conventional method. In combination with
FIG. 2 shows the results of analyzing the composition distribution of a thin film formed on a substrate in the depth direction from the surface of the thin film.

この分析結果から、薄膜と基板の界面と考えられる位置
(すなわち薄膜のD成分のオージェ信号の強度が減少し
、基板のA成分のオージェ信号の強度が増加しはじめる
)で、薄膜のC成分が偏在している可能性を示している
が界面の位置が推定の域を出ないことと、C成分は薄膜
の他の成分と比較して、アルゴンガスに対するスパッタ
率が低くスパッタリング速度が遅いため、C成分のオー
ジェ信号が遅れる可能性があシ、界面の偏在を断定する
ことはできない。
From this analysis result, we can see that the C component of the thin film increases at a position considered to be the interface between the thin film and the substrate (i.e., the intensity of the Auger signal of the D component of the thin film decreases, and the intensity of the Auger signal of the A component of the substrate begins to increase). This indicates the possibility that the C component is unevenly distributed, but the location of the interface is only a guess, and the C component has a low sputtering rate for argon gas and a slow sputtering speed compared to other components of the thin film. There is a possibility that the Auger signal of the C component will be delayed, and it is not possible to determine the uneven distribution of the interface.

第3図は本発明方法によって上記薄膜を転写した上記試
験片について、アルゴンガスエツチングとAES法を併
用し、薄膜の界面からの深さ方向の組成分布令i′ある
FIG. 3 shows the composition distribution range i' in the depth direction from the interface of the thin film using a combination of argon gas etching and the AES method for the test piece to which the thin film was transferred by the method of the present invention.

会社聴者 この試料を用いた場合、スパッタリング時間が0の位置
が確かに薄膜が基板と接している界面であシ、界面にC
成分が偏在していることを確認することができる。
Company Auditor: When using this sample, the position where the sputtering time is 0 is certainly the interface where the thin film is in contact with the substrate, and there is C at the interface.
It can be confirmed that the components are unevenly distributed.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による分析用試験片の作成工程を示す概
念図、 第2図は従来法によって基板上に形成された薄膜をその
表面からアルゴンガスエツチングとAESを用いて分析
した膜厚方向の組成分布図で、B。 Ct D t Eは薄膜の構成元素、Aは基板の構成元
素(C)である。 第3図は本発明によシ転写した薄膜についてアルゴンエ
ツチングとAESを用いて分析した場合の第2図と同様
な図で、Fは裏打ち材層の構成元素(C)である。
Figure 1 is a conceptual diagram showing the process of creating an analytical test piece according to the present invention. Figure 2 is a film thickness direction analysis of a thin film formed on a substrate by a conventional method from its surface using argon gas etching and AES. In the composition distribution map of B. Ct D t E is a constituent element of the thin film, and A is a constituent element (C) of the substrate. FIG. 3 is a diagram similar to FIG. 2 in which a thin film transferred according to the present invention is analyzed using argon etching and AES, and F is a constituent element (C) of the backing material layer.

Claims (1)

【特許請求の範囲】 1)基板上に形成された2成分以上の金属・非金属を含
む薄膜と基板が接する界面の上記薄膜の金属・非金属の
組成分布を分析する方法において、上記薄膜上に裏打ち
材層を付着させ、この裏打ち材層と上記薄膜とが一体に
なった試験片を上記基板から剥離し、この試験片上の上
記薄板について上記の組成分布を分析をすることを特徴
とする方法。 2)上記薄膜上に保護膜を形成した後に、この保護膜上
に上記裏打ち材層を付着させ、これら裏打ち材層と保護
膜と上記薄膜とが一体になった試験片を上記基板から剥
離することを特徴とする特許請求の範囲第1項記載の方
法。 3)上記組成分析がスパッタイオンエッチングとオージ
ェ電子分光法および/またはX線光電子分光法とを併用
して行われることを特徴とする特許請求の範囲第1項ま
たは第2項に記載の方法。
[Scope of Claims] 1) A method for analyzing the composition distribution of metals and non-metals in the thin film formed on the substrate at an interface where the thin film containing two or more metals and non-metals is in contact with the substrate. A backing material layer is attached to the substrate, a test piece in which the backing material layer and the thin film are integrated is peeled off from the substrate, and the composition distribution of the thin plate on the test piece is analyzed. Method. 2) After forming a protective film on the above-mentioned thin film, the above-mentioned backing material layer is attached on this protective film, and a test piece in which the backing material layer, the protective film, and the above-mentioned thin film are integrated is peeled off from the above-mentioned substrate. A method according to claim 1, characterized in that: 3) The method according to claim 1 or 2, wherein the compositional analysis is performed using sputter ion etching in combination with Auger electron spectroscopy and/or X-ray photoelectron spectroscopy.
JP62004086A 1987-01-13 1987-01-13 Analysis of composition of thin film Pending JPS63172939A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62004086A JPS63172939A (en) 1987-01-13 1987-01-13 Analysis of composition of thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62004086A JPS63172939A (en) 1987-01-13 1987-01-13 Analysis of composition of thin film

Publications (1)

Publication Number Publication Date
JPS63172939A true JPS63172939A (en) 1988-07-16

Family

ID=11574976

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62004086A Pending JPS63172939A (en) 1987-01-13 1987-01-13 Analysis of composition of thin film

Country Status (1)

Country Link
JP (1) JPS63172939A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008134242A (en) * 2006-10-31 2008-06-12 Semiconductor Energy Lab Co Ltd Manufacturing method of analysis sample
JP2011247825A (en) * 2010-05-28 2011-12-08 Kyoto Univ Method for manufacturing neutron mirror, and neutron mirror

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008134242A (en) * 2006-10-31 2008-06-12 Semiconductor Energy Lab Co Ltd Manufacturing method of analysis sample
JP2011247825A (en) * 2010-05-28 2011-12-08 Kyoto Univ Method for manufacturing neutron mirror, and neutron mirror

Similar Documents

Publication Publication Date Title
Kim et al. Adhesion and interface studies between copper and polyimide
JPH08106629A (en) Thin film medium having carbon overcoat, forming method of carbon overcoat, and its production
TW533514B (en) Physical vapor deposition target/backing plate assemblies; and methods of forming physical vapor deposition target/backing plate assemblies
Wolf Modification of chemical surface properties by ion beam assisted deposition
GB2048958A (en) Production of firmly adhering metal layers on no-conductors
CA2065833C (en) Process for forming metal film, on surface of synthetic resin substrate
Lugscheider et al. On the coating of polymers–basic investigations
JPS63172939A (en) Analysis of composition of thin film
Suzuki et al. Abrasion of thin films deposited onto glass by the Taber test
Ferreira et al. Quantitative comparison of adhesion in metal-to-plastic systems
Ma et al. Use of high temperature and high humidity to test the adhesion of sputtered copper to a polyimide surface modified by an AC nitrogen glow discharge
Pukha et al. Formation of functional conductive carbon coating on Si by C 60 ion beam
Kinbara et al. Adhesion measurement of thin metal films by scratch, peel, and pull methods
Trakhtenberg et al. Effect of adhesion strength of DLC to steel on the coating erosion mechanism
US5902369A (en) Carbon coated metallic mold for making a glass plate
Uchida et al. Effect of preparation conditions on pinhole defect of TiN films by ion mixing and vapor deposition
Lee et al. Studies of N-ion-implanted stainless steels oriented for industrial applications
JP4138971B2 (en) Surface treatment method for plastic substrate and coated plastic article
Schneider et al. Impurity effects on the adhesion of aluminum films on sapphire substrates
Cho et al. Enhanced adhesion between polycarbonate substrates and tin-doped indium oxide films by ion-assisted reaction
Škorić et al. Influence of plasma nitriding on mechanical and tribological properties of steel with subsequent PVD surface treatments
JPS63274754A (en) Method for adhering thin film
JPH0371426A (en) Method for forming carbon film on surface of magnetic recording medium
JP2595033B2 (en) Decorative material
JP2899025B2 (en) Laminate