JPS63172702A - Method of chlorination or chlorination and chlorosulfonation - Google Patents

Method of chlorination or chlorination and chlorosulfonation

Info

Publication number
JPS63172702A
JPS63172702A JP331487A JP331487A JPS63172702A JP S63172702 A JPS63172702 A JP S63172702A JP 331487 A JP331487 A JP 331487A JP 331487 A JP331487 A JP 331487A JP S63172702 A JPS63172702 A JP S63172702A
Authority
JP
Japan
Prior art keywords
solvent
reactor
reaction
chlorination
heat exchanger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP331487A
Other languages
Japanese (ja)
Other versions
JPH0717699B2 (en
Inventor
Mamoru Narui
鳴井 衛
Juichi Nakada
寿一 中田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tosoh Corp filed Critical Tosoh Corp
Priority to JP331487A priority Critical patent/JPH0717699B2/en
Publication of JPS63172702A publication Critical patent/JPS63172702A/en
Publication of JPH0717699B2 publication Critical patent/JPH0717699B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a high-quality product with good production efficiency, which will not result in a deteriorated colored polymer, by dissolving a polyolefin or a rubber in a solvent in a reactor, by chlorinating and, if desired, chlorosulfonating and by circulating the distilled solvent under heating. CONSTITUTION:A polyolefin or a rubber (e.g., high-density PE) is introduced into a reactor 1 of equipment made of a corrosion-resistant material, for example, glass lining, Karbate, Teflon resin lining, or Hastelloy, and a solvent (e.g., CCl4) which has been heated to about 110 deg.C in a heat exchanger 5 for solvent is added to dissolve it, followed by continuous addition of a solution in which a catalyst, for example azobisisobutyronitrile, has been dissolved. Then, if desired, a chlorosulfonating cocatalyst (e.g., pyridine) is added, and sulfuryl chloride, chlorine gas or SO2 is introduced to effect the reaction of chlorination or the reactions of chlorination and chlorosulfonation. The distilled solvent is condensed by a reflux condenser 2, collected into a solvent reservoir 3 and a solvent tank 4, and a prescribed amount of it is transferred to a heat exchanger 5 via a flow control valve 9 etc. to be heated, and the circulated to the reactor 1.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、ポリオレフィンないしゴムの塩素化または塩
素化およびクロロスルホン化物を製造する反応方法に関
する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to chlorination of polyolefins or rubbers or a reaction method for producing chlorosulfonated products.

[従来の技術] ポリオレフィンやゴムの塩素化または塩素化およびクロ
ロスルホン化物は品質が均一な反応物が得られることか
ら多くはポリマーを溶媒に溶解して反応させる溶液法で
製造されている。
[Prior Art] Chlorinated or chlorinated and chlorosulfonated products of polyolefins and rubbers are often produced by a solution method in which a polymer is dissolved in a solvent and reacted because a reactant with uniform quality can be obtained.

この方法においては、反応を効率的に行うため反応によ
って副生ずる塩化水素や未反応ガスを連続的に系外へ排
出し、反応を進行させる必要がある。この時、副生ガス
とともにwIWが、IRするが、通常、反応器に付設し
たコンデンサーで溶媒を還流させ反応器内に戻している
。この方法は、溶媒が系外に留出することによる反応系
の組成の変化により反応の進行が異常となることや、系
の粘度の上昇による撹拌力の低下などを防ぐために重要
である。この様なことを防ぐためには、コンデンサーで
の温度を可及的に低くして溶媒の系外への留出を防ぐ必
要がある。この場合、冷却された溶媒が反応器内へ還流
するため、反応器のジャラケットを加熱しないと、反応
温度を一定に保つことが困難となる。しかしながら、反
応器ジャケットからの加熱では、粘度の高い反応液を加
熱することは難しく、高温で加熱する必要があった。
In this method, in order to carry out the reaction efficiently, it is necessary to continuously discharge hydrogen chloride produced by the reaction and unreacted gas to the outside of the system to allow the reaction to proceed. At this time, the wIW together with the by-product gas undergoes IR, but the solvent is usually refluxed in a condenser attached to the reactor and returned to the reactor. This method is important in order to prevent abnormal progression of the reaction due to changes in the composition of the reaction system due to distillation of the solvent out of the system, and to prevent a decrease in stirring power due to an increase in the viscosity of the system. In order to prevent this, it is necessary to keep the temperature in the condenser as low as possible to prevent the solvent from distilling out of the system. In this case, since the cooled solvent flows back into the reactor, it becomes difficult to keep the reaction temperature constant unless the jacket of the reactor is heated. However, it is difficult to heat a highly viscous reaction liquid by heating from the reactor jacket, and it is necessary to heat the reaction liquid at a high temperature.

また、反応の進行とともにあるいは反応をくりかえして
行うことにより、反応器内壁に高粘度のポリマーが付着
するが、これらは、反応器ジャケットの加熱により劣化
し着色するとともにその一部が反応液中に混入し反応物
の品質を低下させてしまう。そのためこれらの付着物は
定期的に反応器を洗浄して除去したり、反応液中に混入
したものは、ストレーナ−等により除去し、最終製品と
している。
In addition, as the reaction progresses or by repeating the reaction, highly viscous polymers adhere to the inner walls of the reactor.These polymers deteriorate and become colored due to heating of the reactor jacket, and some of them are added to the reaction solution. This will cause contamination and reduce the quality of the reactants. Therefore, these deposits are removed by periodically cleaning the reactor, and those mixed into the reaction solution are removed using a strainer or the like to produce the final product.

したがって、ポリマーの塩素化または塩素化およびクロ
ロスルホン化反応は外部よりできるだけ加熱しないで反
応することが望ましいといえる。
Therefore, it can be said that it is desirable that the chlorination or chlorination and chlorosulfonation reaction of the polymer be carried out with as little external heating as possible.

そのような方法の1つとしては、反応熱のみで反応温度
を一定にすることが考えられる。すなわち、反応によっ
て生ずる副生ガスの排出をできるだけ押えるとともに溶
媒の留出も少なくしてやることが考えられる。そのため
には反応時の圧力を高くする必要があるが、反応圧力の
上昇により、反応速度が変り、目的とする塩素、イオウ
含量が得にくいという欠点がある。
One such method is to keep the reaction temperature constant using only the reaction heat. That is, it is conceivable to suppress the discharge of by-product gases produced by the reaction as much as possible, and also to reduce the distillation of the solvent. For this purpose, it is necessary to increase the pressure during the reaction, but the increase in reaction pressure changes the reaction rate, making it difficult to obtain the desired chlorine and sulfur contents.

また、劣化ポリマーの生成が考えられる工程の一部を低
温で行うという試みも提案されている。
It has also been proposed to carry out some of the processes that are likely to produce degraded polymers at low temperatures.

(特開昭61−118408号)すなわち反応終了後、
反応系内に残存する副生ガスの除去操作において、ジャ
ケットと内部の温度を同等にして行う方法である。
(JP 61-118408) That is, after the reaction is completed,
This is a method in which by-product gases remaining in the reaction system are removed by keeping the jacket and internal temperatures the same.

しかしながら、これらの方法は目的とする製品が得られ
にくかったり、操作的に煩雑であるなどいずれにしても
完全なものとはいえない。
However, these methods cannot be said to be perfect either because it is difficult to obtain the desired product or because the operations are complicated.

[発明が解決しようとする問題点] 本発明はこのような塩素化または塩素化およびクロロス
ルホン化ポリオレフィンないしはゴムの製造において、
派生する劣化ポリマーの混入防止のための反応方法を提
供することにある。
[Problems to be Solved by the Invention] In the production of such chlorinated or chlorinated and chlorosulfonated polyolefins or rubbers, the present invention solves the following problems:
The object of the present invention is to provide a reaction method for preventing contamination of derived degraded polymers.

[問題点を解決するための手段J 本発明では、ポリオレフィンないしゴムの塩素化または
塩素化およびり00スルホン化反応を溶媒を用いて行う
場合に反応温度を保持するため、反応器ジャケットより
直接加熱することなく行う反応方法を提供することにあ
る。
[Means for Solving the Problems J] In the present invention, in order to maintain the reaction temperature when the chlorination or chlorination and sulfonation reactions of polyolefins or rubber are carried out using a solvent, direct heating is performed from the reactor jacket. The objective is to provide a reaction method that can be carried out without having to do so.

即ち、本発明は上記反応において反応系より留出する溶
媒を熱交換器により加熱したのち、反応器内に導入して
反応温度を調節することにより、反応器の直接加熱によ
って派生する劣化ポリマーの発生を防止する反応方法に
ある。
That is, the present invention heats the solvent distilled from the reaction system in the above reaction using a heat exchanger, and then introduces it into the reactor to adjust the reaction temperature, thereby reducing the amount of degraded polymer derived from direct heating of the reactor. There is a reaction method to prevent the occurrence.

本発明の反応方法に用いられる装置は反応器。The apparatus used in the reaction method of the present invention is a reactor.

反応器に付着した還流コンデンサー、溶媒受槽。Reflux condenser and solvent receiver attached to the reactor.

溶媒槽、溶媒用熱交換器、ポンプ、ll整弁などからな
る。これらは反応により生ずる腐蝕性ガスに対応するた
めグラスライニング、カーベイト、テフロン系樹脂のラ
イニングや金属材料で耐蝕性を有するハステロイ、タン
タル製のものが用いられる。
It consists of a solvent tank, a solvent heat exchanger, a pump, a 1/1 valve, etc. In order to cope with the corrosive gas generated by the reaction, glass lining, carbide, Teflon resin lining, and corrosion-resistant metal materials such as Hastelloy and tantalum are used.

溶媒用熱交換器の構造としては、多管式、二重管式、コ
イル式などが使用できる。
As the structure of the solvent heat exchanger, a multi-tube type, a double-tube type, a coil type, etc. can be used.

溶媒熱交換器を通じた溶媒の反応器への導入は、反応器
上部より噴霧して添加するか、反応液中に直接導入する
ことにより行う。
The solvent is introduced into the reactor through the solvent heat exchanger by spraying from the top of the reactor or by directly introducing it into the reaction solution.

また、必要に応じて、反応器に再導入する溶媒の量を調
節することにより、反応液の粘度を調節したり、反応液
を濃縮したりして、反応液中の溶媒の割合を変えること
がで覆る。このことは、反応液より、反応物を分離、乾
燥するために通常行われるドラムドライヤーやベント式
押出乾燥機等での処理能力を向上させることができる。
In addition, if necessary, by adjusting the amount of solvent reintroduced into the reactor, the viscosity of the reaction solution can be adjusted or the reaction solution can be concentrated, thereby changing the proportion of the solvent in the reaction solution. Cover with gas. This can improve the throughput of drum dryers, vented extrusion dryers, etc., which are commonly used to separate and dry the reactants from the reaction liquid.

本発明で反応の対象とする原料ポリオレフィンとしては
エチレンの単独重合体、エチレンおよびプロピレン、ブ
テン−1,ペンテン−1,ヘキセン−1,4−メチル 
ペンテン−1,酢酸ビニル、アクリル酸およびアルキル
アクリレートなどとの共重合体が使用でき、ゴムとして
は、ポリブタジェン、ポリイソプレン、ポリブチレン、
ズチレンーブタジエン共重合体、エチレン−プロピレン
−ジエン共重合体などが使用できる。
The raw material polyolefins to be reacted in the present invention include ethylene homopolymers, ethylene and propylene, butene-1, pentene-1, hexene-1,4-methyl
Copolymers of pentene-1, vinyl acetate, acrylic acid, and alkyl acrylates can be used, and as rubbers, polybutadiene, polyisoprene, polybutylene,
Dityrene-butadiene copolymer, ethylene-propylene-diene copolymer, etc. can be used.

これらの重合体を溶解させるための反応溶媒としては、
ハロゲン化炭化水素である四塩化炭素。
As a reaction solvent for dissolving these polymers,
Carbon tetrachloride, a halogenated hydrocarbon.

トリクロロエチレン、テトラクロロエタン、り0ルベン
ゼンなどを単独、ないしは混合して用いられる。
Trichlorethylene, tetrachloroethane, trichlorobenzene, etc. are used alone or in combination.

塩素化または塩素化およびクロ0スルホン化剤としては
塩素、ならびに塩化スルフリル、塩素と亜硫酸ガス、塩
化スルフリル、塩素が用いられる。
Chlorine, sulfuryl chloride, chlorine and sulfur dioxide gas, sulfuryl chloride, and chlorine are used as the chlorination or chlorinating and chlorosulfonating agent.

反応を開始させるための触媒としては、アゾビスイソブ
チロニトリル、2.2’アゾビス2゜4ジメチルウ?レ
ロニトリルのようなアゾ化合物。
Catalysts for starting the reaction include azobisisobutyronitrile, 2.2'azobis2.4dimethylu? Azo compounds like leronitrile.

ベンゾイルパーオキサイド、ジラウロイルパーオキサイ
ドのような過酸化物が用いられる。
Peroxides such as benzoyl peroxide and dilauroyl peroxide are used.

また助触媒としてピリジン、キノリン等のアミン化合物
を用いる。
Further, an amine compound such as pyridine or quinoline is used as a co-catalyst.

反応は、常法により、ポリオレフィンないしはゴムを溶
媒に溶解し、触媒、塩素化または塩素化およびクロロス
ルホン化剤を加えて反応し、所定のMA素ならびにイオ
ウ騒を付加したのち、系内に残存する酸分を窒素のよう
な不活性ガスを用いて除去したのち、ビスフェノールA
型のエポキシ化合物などの安定剤を加え、次いで溶媒と
反応物をドラムドライヤーやベント式押出乾燥機などを
用いて分離し、塩素化または塩素化およびクロロスルホ
ン化ポリオレフィンないしゴムを得る。
The reaction is carried out by dissolving the polyolefin or rubber in a solvent, adding a catalyst, chlorination or chlorinating and chlorosulfonating agent, and reacting to add the specified MA element and sulfur, and then dissolve the remaining in the system. After removing the acid content using an inert gas such as nitrogen, bisphenol A
A stabilizer such as a type epoxy compound is added, and then the solvent and reactant are separated using a drum dryer, vented extrusion dryer, etc. to obtain a chlorinated or chlorinated and chlorosulfonated polyolefin or rubber.

[作用] 本発明の方法による塩素化または塩素化およびクロロス
ルホン化反応は、反応器に付設した還流コンデンサーで
副生ガスと溶媒をできるだけ分離し、分離された還流溶
媒を別の容器に受けたのち、再び熱交換器で加熱し反応
器に導入することによって反応器のジャケットの加熱を
行うことなく一定温度で行うことができる。
[Operation] In the chlorination or chlorination and chlorosulfonation reaction according to the method of the present invention, by-product gas and solvent are separated as much as possible in a reflux condenser attached to the reactor, and the separated reflux solvent is received in another container. Thereafter, the reaction can be carried out at a constant temperature without heating the jacket of the reactor by heating it again in a heat exchanger and introducing it into the reactor.

この方法では、還流コンデンサーから留出する溶媒の反
応器に再導入する最を調節することが可能で、反応液か
ら反応物と溶媒を分離するに当り、その処理能力を大き
くすることができるという利点がある。
With this method, it is possible to control the amount of solvent distilled from the reflux condenser that is reintroduced into the reactor, and it is possible to increase the processing capacity when separating reactants and solvent from the reaction solution. There are advantages.

[実施例] 以下実施例により本発明の態様を示すが、本発明はこれ
らに限定されるものではない。
[Examples] Aspects of the present invention will be illustrated below using Examples, but the present invention is not limited thereto.

実施例1 図−1に示したフローによるポリエチレンの反応例を示
す。10001の反応器に密度0.963でメルトフロ
ーレイシ第5.0を有する高密度ポリエチレン100*
yを入れ次いで電熱面積1.5dを有する溶媒用熱交換
器で110℃に加熱された四塩化炭素1ooooを入れ
溶解した。次いでα、α′−アゾビスイソブチロニトリ
ルを四塩化炭素に溶解した液を連続的に添加した。
Example 1 An example of the reaction of polyethylene according to the flow shown in Figure 1 is shown. High density polyethylene 100* with a density of 0.963 and a melt flow rate of 5.0 in a 10001 reactor
Then, 1000 carbon tetrachloride heated to 110° C. using a solvent heat exchanger having an electric heating area of 1.5 d was added and dissolved. Next, a solution of α,α'-azobisisobutyronitrile in carbon tetrachloride was continuously added.

続いて塩化スルフリルを301/時間の割合で反応器に
導入し、またクロロスルホン化反応の助触媒としてピリ
ジン0.2鱈を加えた。反応が始まると反応器圧力が上
昇するため、圧力調整弁で圧力をゲージ圧3.5Ky/
dに調整した。還流コンデンサーに四塩化炭素が留出し
これを溶剤受槽に受は入れた。溶剤槽からの送液mは、
流量調整弁により調節した。四塩化炭素は反応器より留
出する量に見合う量を溶剤加熱器で反応温度が100℃
になるよう加熱し反応器に導入した。反応温度100℃
でのベントコンデンサーからの留出四塩化炭素はおおよ
そ501/時間の量であった。
Subsequently, sulfuryl chloride was introduced into the reactor at a rate of 301/hour, and 0.2 cod of pyridine was added as a cocatalyst for the chlorosulfonation reaction. When the reaction starts, the reactor pressure increases, so the pressure is adjusted to 3.5Ky/gauge pressure using the pressure regulating valve.
Adjusted to d. Carbon tetrachloride was distilled into the reflux condenser and received into the solvent receiving tank. The liquid flow m from the solvent tank is
The flow rate was controlled by a flow control valve. Carbon tetrachloride is heated to a reaction temperature of 100°C using a solvent heater in an amount corresponding to the amount distilled from the reactor.
The mixture was heated to a temperature of Reaction temperature 100℃
The amount of carbon tetrachloride distilled from the vent condenser was approximately 50 l/hr.

反応中は、圧力調整弁により反応系の圧力を調整すると
ともに、反応器のジャケットの加熱を行うことなく、反
応温度を100℃に保った。塩素化およびクロロスルホ
ン化が所定の値(MA素含聞35f!量%、イオウ含量
1.0重昂%)に達したら、塩化スルフリルおよび触媒
液を止め圧力調整弁で反応系の圧を下げた。圧力がゲー
ジ圧0.5Kg/cl11¥度になったら反応器底部よ
り、窒素ガスを3Nd/HRで導入し、県内に残存する
副生ガスの除去を行った。反応器より還流する四塩化炭
素は、反応中と同様にして、溶媒熱交換器を通じて反応
器内温度が70ないし80℃になるように加熱して交換
器内へ導入した。この操作を3時間行ったのち、安定剤
としてビスフェノールA型のエポキシ樹脂2 K’Jを
添加し、常法によりドラムドライヤーでクロロスルホン
化ポリエチレンを分離乾燥した。この反応操作を連続し
て30回実施したのち反応器内を点検したところ内部の
壁面には付着したポリマーがほとんど見られず着色した
ポリマーも見当らなかった。また分離乾燥して得られた
塩素化およびりOロスルホン化ポリエチレンには着色し
たものは見られなかった。
During the reaction, the pressure of the reaction system was adjusted using a pressure regulating valve, and the reaction temperature was maintained at 100° C. without heating the reactor jacket. When chlorination and chlorosulfonation reached predetermined values (MA element content 35 f! mass%, sulfur content 1.0 mass%), the sulfuryl chloride and catalyst liquid were stopped and the pressure of the reaction system was lowered with a pressure regulating valve. . When the pressure reached a gauge pressure of 0.5 kg/cl11 yen, nitrogen gas was introduced from the bottom of the reactor at 3 Nd/HR to remove any by-product gas remaining within the prefecture. Carbon tetrachloride refluxed from the reactor was heated through a solvent heat exchanger so that the temperature inside the reactor was 70 to 80° C. and introduced into the exchanger in the same manner as during the reaction. After this operation was carried out for 3 hours, bisphenol A type epoxy resin 2K'J was added as a stabilizer, and the chlorosulfonated polyethylene was separated and dried using a drum dryer in a conventional manner. After carrying out this reaction operation 30 times in succession, the interior of the reactor was inspected, and it was found that almost no polymer was found adhering to the interior walls, and no colored polymer was found. Moreover, no colored material was observed in the chlorinated and peroxysulfonated polyethylene obtained by separation and drying.

実施例2 実施例1において反応温度を110℃に、反応圧力を2
.5Kg/cdゲージに設定し、アゾビスイソブチロニ
トリルの触媒液の連続添加を始めたのち、反応器底部よ
り塩素ガスを5NTIt/HRの速度で添加し、塩素含
量35重量%までポリエチレンの塩素化を行った。反応
中に反応器より留出する四基素化炭素量は単位時間当り
おおよそ601であった。これに見合う四塩化炭素を実
施例1と同様に加熱して反応器に導入した。
Example 2 In Example 1, the reaction temperature was 110°C and the reaction pressure was 2
.. After setting the gauge to 5Kg/cd and starting the continuous addition of the azobisisobutyronitrile catalyst solution, chlorine gas was added from the bottom of the reactor at a rate of 5NTIt/HR until the chlorine content of polyethylene was 35% by weight. . The amount of tetraradical carbon distilled out from the reactor during the reaction was approximately 601 per unit time. An appropriate amount of carbon tetrachloride was heated as in Example 1 and introduced into the reactor.

次いで実施例1と同様にこの反応をくりかえし、反応器
内および製品中の着色物、劣化ポリマーの付着、混入を
点検したが、実施例1と同様にこれら着色物の混入は見
られなかった。
Next, this reaction was repeated in the same manner as in Example 1, and the inside of the reactor and the product were inspected for adhesion and contamination of colored substances and degraded polymers, but as in Example 1, no contamination of these colored substances was observed.

実施例3 実施例2と同様にして反応器底部より塩素ガス5Nd/
HRの速度で吹きこみポリエチレンの塩素含量17重量
%まで塩素化したのち、ピリジン0.2Kyを添加し次
いで実施例1と同様に塩化スルフリルを添加し反応した
。この時反応圧力を4.5Ky/cdに保持したほかは
、実施例1と同様に反応処理し、塩素含量35重山気、
イオウ含量1.0重量%の塩素化およびクロロスルホン
化ポリエチレンを得た。
Example 3 In the same manner as in Example 2, 5Nd/chlorine gas was supplied from the bottom of the reactor.
After chlorinating the blown polyethylene at a rate of HR to a chlorine content of 17% by weight, 0.2 Ky of pyridine was added, and then sulfuryl chloride was added and reacted in the same manner as in Example 1. The reaction treatment was carried out in the same manner as in Example 1 except that the reaction pressure was maintained at 4.5 Ky/cd.
Chlorinated and chlorosulfonated polyethylene with a sulfur content of 1.0% by weight was obtained.

次いで実施例1と同様にこの反応をくりかえし反応器内
部の点検、生成塩素化およびりOロスルホン化ポリエチ
レン中の劣化ポリマーの着色を点検した結果は着色物、
劣化ポリマーの反応器への付着、ポリマーへの混入は見
られなかった。
Next, this reaction was repeated in the same manner as in Example 1, and the inside of the reactor was inspected, and the coloration of the degraded polymer in the chlorinated and polysulfonated polyethylene was inspected.As a result, colored substances,
No adhesion of degraded polymer to the reactor or contamination with the polymer was observed.

比較例1 実施例1において反応器に付設した還流コンデンサーで
還流する四塩化炭素を反応器内へ直接速流させるように
し、ジャケットに150℃のスチームを導入することに
よってポリエチレン100Klを四基素化炭素100(
lに約1時間かけて溶解し反応した。反応中は反応液を
100℃に保つためジャケットにスチームを入れて加熱
した。反応液温度を一定に保つにはジャケット湯境を1
20〜150℃に保つ必要があり反応器の圧力はゲージ
圧でおよそ3.5Ng/cslに保つ必要があった。
Comparative Example 1 In Example 1, refluxing carbon tetrachloride was made to flow directly into the reactor through the reflux condenser attached to the reactor, and 150°C steam was introduced into the jacket, thereby converting 100Kl of polyethylene into tetracarbons. Carbon 100 (
The mixture was dissolved and reacted in 1 hour for about 1 hour. During the reaction, steam was introduced into the jacket to heat the reaction solution to maintain it at 100°C. To keep the temperature of the reaction solution constant, set the jacket temperature to 1.
It was necessary to maintain the temperature between 20 and 150°C, and the pressure in the reactor had to be maintained at approximately 3.5 Ng/csl gauge pressure.

反応終了後も実施例1と同様にして、反応液中の副生ガ
スの除去を行ったがこの時のジャケットの加熱も反応中
と同様に行わないと反応液の温度が低下した。実施例1
と同様にこの操作を30回くりかえし、同様に点検した
ところ反応器内壁には厚さ約3履の着色ポリマーが付着
しており、このうちジャケットに接する部分的1JII
Iは黒色ないし褐色に変色していた。また得られた製品
にはこれらの着色物が混入していた。
After the reaction was completed, the by-product gas in the reaction solution was removed in the same manner as in Example 1, but the temperature of the reaction solution decreased unless the jacket was heated in the same manner as during the reaction. Example 1
This operation was repeated 30 times, and when inspected in the same way, it was found that the inner wall of the reactor was coated with a colored polymer about 3 feet thick, of which 1 JII layer was attached to the inner wall of the reactor.
I was discolored to black or brown. In addition, these colored substances were mixed into the obtained product.

比較例2 比較例1と同様に反応器に付設した還流コンデンサーよ
り還流する四塩化炭素を反応器内に直接戻すようにライ
ンを設定したほかは実施例2と同様に反応処理した。次
いで実施例1と同様に反応をくりかえし、反応器内部を
点検したところ内壁に約2jlllIのポリマーが付着
しており、そのうちの約1amは茶ないし褐色となって
いた。
Comparative Example 2 A reaction treatment was carried out in the same manner as in Example 2, except that, as in Comparative Example 1, a line was set to directly return the carbon tetrachloride refluxing from the reflux condenser attached to the reactor into the reactor. Next, the reaction was repeated in the same manner as in Example 1, and when the inside of the reactor was inspected, it was found that about 2jlllI of polymer had adhered to the inner wall, and about 1 am of it was brown to brown in color.

[発明の効果] 以上の説明から明らかなように、本発明によればポリマ
ーの塩素化または塩素化およびクロロスルホン化反応に
おいて反応器内で発生する劣化。
[Effects of the Invention] As is clear from the above description, according to the present invention, deterioration occurs in the reactor during polymer chlorination or chlorination and chlorosulfonation reactions.

着色ポリマーの発生が防止でき製品の品質が向上し、反
応液濃度を変えることにより生産効率を向上させること
ができる。
The generation of colored polymers can be prevented, resulting in improved product quality, and production efficiency can be improved by changing the concentration of the reaction solution.

【図面の簡単な説明】[Brief explanation of the drawing]

図−1は本発明に係る塩素化または塩素化およびクロロ
スルホン化反応装置の概念図を示す。 1・・・反応器 2・・・還流コンデンサー 3・・・溶媒受槽 4・・・溶媒槽 5・・・溶媒用熱交換器 6・・・除害塔 7・・・圧力調整弁 8.9・・・流憬調整弁 io、’+i・・・溶媒ポンプ 12・・・レベル検出器 13.14・・・流口検出器 特許出願人  東洋曹達工業株式会社 図−1
FIG. 1 shows a conceptual diagram of the chlorination or chlorination and chlorosulfonation reaction apparatus according to the present invention. 1... Reactor 2... Reflux condenser 3... Solvent receiving tank 4... Solvent tank 5... Solvent heat exchanger 6... Harm removal tower 7... Pressure adjustment valve 8.9 ...Flow control valve io,'+i...Solvent pump 12...Level detector 13.14...Flow port detector Patent applicant Toyo Soda Kogyo Co., Ltd. Figure-1

Claims (1)

【特許請求の範囲】 1)反応器内でポリオレフィンあるいはゴムを溶媒に溶
解し、塩化スルフリル、塩素ガス、亜硫酸ガス、あるい
はこれらのいづれかを併用して塩素化または塩素化およ
びクロロスルホン化させる反応において、反応器より留
出する溶媒を熱交換器により加熱したのち、反応器内に
導入することを特徴とする、塩素化または塩素化および
クロロスルホン化反応方法。 2)反応器より留出する溶媒をコンデンサーで凝縮させ
たのち、これを溶媒受槽に導入する特許請求の範囲第1
項記載の塩素化または塩素化およびクロロスルホン化反
応方法。
[Claims] 1) In a reaction in which polyolefin or rubber is dissolved in a solvent in a reactor and chlorinated or chlorinated and chlorosulfonated using sulfuryl chloride, chlorine gas, sulfur dioxide gas, or a combination of these. , a chlorination or chlorination and chlorosulfonation reaction method, characterized in that the solvent distilled from the reactor is heated with a heat exchanger and then introduced into the reactor. 2) Claim 1, in which the solvent distilled from the reactor is condensed in a condenser and then introduced into the solvent receiving tank.
Chlorination or chlorination and chlorosulfonation reaction method described in Section 1.
JP331487A 1987-01-12 1987-01-12 Chlorination or chlorination and chlorosulfonation reaction method Expired - Fee Related JPH0717699B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP331487A JPH0717699B2 (en) 1987-01-12 1987-01-12 Chlorination or chlorination and chlorosulfonation reaction method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP331487A JPH0717699B2 (en) 1987-01-12 1987-01-12 Chlorination or chlorination and chlorosulfonation reaction method

Publications (2)

Publication Number Publication Date
JPS63172702A true JPS63172702A (en) 1988-07-16
JPH0717699B2 JPH0717699B2 (en) 1995-03-01

Family

ID=11553895

Family Applications (1)

Application Number Title Priority Date Filing Date
JP331487A Expired - Fee Related JPH0717699B2 (en) 1987-01-12 1987-01-12 Chlorination or chlorination and chlorosulfonation reaction method

Country Status (1)

Country Link
JP (1) JPH0717699B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105713117A (en) * 2016-03-02 2016-06-29 中国石油天然气股份有限公司吉林石化分公司 Improved chlorosulfonated polyethylene production system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105713117A (en) * 2016-03-02 2016-06-29 中国石油天然气股份有限公司吉林石化分公司 Improved chlorosulfonated polyethylene production system

Also Published As

Publication number Publication date
JPH0717699B2 (en) 1995-03-01

Similar Documents

Publication Publication Date Title
US4377459A (en) Process for chlorination of poly(vinyl chloride) with liquid chlorine, and chlorinated poly(vinyl chloride) composition
JPS5811526A (en) Manufacture of arylene sulfide polymer and apparatus
US3299014A (en) Process for chlorosulfonating olefinic hydrocarbon polymers using sulfuryl chloride
US3296222A (en) Process for continuously chlorosulfonating polyethylene at higher temperatures
EP0129593B1 (en) Anhydrous process for preparing amorhpous chlorinated polyethylene and product thereof
US3935181A (en) Process for chlorinating ethylene polymers
US3280090A (en) Removal of catalyst residues from olefin polymers
US4145491A (en) Chlorination or chlorosulfonation of polyethylene in mixed solvent
JPS63172702A (en) Method of chlorination or chlorination and chlorosulfonation
US4386189A (en) Process for the post-chlorination of vinyl chloride polymers
US7776289B2 (en) Method and apparatus for producing decabromodiphenyl alkanes
KR840001755B1 (en) Process for preparing chlorinated p.v.c resin
US4770821A (en) Method for preparing β-chloropivaloyl chloride
JPS5941308A (en) Polyolefin chlorosulfonation
US4473451A (en) Vapor phase chlorination of polyolefins
JP2600165B2 (en) Preparation of chlorinated and chlorosulfonated polyolefins
US3542747A (en) Continuous process for the chlorosulfonation and chlorination of polyethylene
US4602068A (en) Chlorination of polymers
JPS61134343A (en) Photo-chlorination of acrylic acid or acrylic acid ester
JPH0239444B2 (en)
JPS6335162B2 (en)
US4260752A (en) Chlorination process
JPS60144306A (en) Production of chlorosulfonated polyethylene excellent in low-temperature resistance
CN1167120A (en) Preparation of chloro-sulfonated polyvinyl by solid blend method
JPS61138603A (en) Production of chlorosulfonated polyethylene

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees