JPH0717699B2 - Chlorination or chlorination and chlorosulfonation reaction method - Google Patents

Chlorination or chlorination and chlorosulfonation reaction method

Info

Publication number
JPH0717699B2
JPH0717699B2 JP331487A JP331487A JPH0717699B2 JP H0717699 B2 JPH0717699 B2 JP H0717699B2 JP 331487 A JP331487 A JP 331487A JP 331487 A JP331487 A JP 331487A JP H0717699 B2 JPH0717699 B2 JP H0717699B2
Authority
JP
Japan
Prior art keywords
reactor
reaction
chlorination
solvent
chlorosulfonation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP331487A
Other languages
Japanese (ja)
Other versions
JPS63172702A (en
Inventor
衛 鳴井
寿一 中田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tosoh Corp filed Critical Tosoh Corp
Priority to JP331487A priority Critical patent/JPH0717699B2/en
Publication of JPS63172702A publication Critical patent/JPS63172702A/en
Publication of JPH0717699B2 publication Critical patent/JPH0717699B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、ポリオレフィンないしゴムの塩素化または塩
素化およびクロロスルホン化物を製造する反応方法に関
する。
Description: TECHNICAL FIELD The present invention relates to a reaction method for producing a chlorinated or chlorinated polyolefin or rubber and a chlorosulfonate.

[従来の技術] ポリオレフィンやゴムの塩素化または塩素化およびクロ
ロスルホン化物は品質が均一な反応物が得られることか
ら多くはポリマーを溶媒に溶解して反応させる溶液法で
製造されている。
[Prior Art] Chlorinated or chlorinated polyolefins and rubbers and chlorosulfonates are mostly produced by a solution method in which a polymer is dissolved in a solvent for reaction because a reaction product having a uniform quality can be obtained.

この方法においては、反応を効率的に行うため反応によ
って副生する塩化水素や未反応ガスを連続的に系外へ排
出し、反応を進行させる必要がある。この時、副生ガス
とともに溶媒が蒸発するが、通常、反応器に付設したコ
ンデンサーで溶媒を還流させ反応器内に戻している。こ
の方法は、溶媒が系外に留出することによる反応系の組
成の変化により反応の進行が異常となることや、系の粘
度の上昇による攪拌力の低下などを防ぐために重要であ
る。この様なことを防ぐためには、コンデンサーでの温
度を可及的に低くして溶媒の系外への留出を防ぐ必要が
ある。この場合、冷却された溶媒が反応器内へ還流する
ため、反応器のジャッケットを加熱しないと、反応温度
を一定に保つことが困難となる。しかしながら、反応器
ジャケットからの加熱では、粘度の高い反応液を加熱す
ることは難しく、高温で加熱する必要があった。
In this method, in order to carry out the reaction efficiently, it is necessary to continuously discharge the hydrogen chloride and unreacted gas, which are by-products of the reaction, out of the system to allow the reaction to proceed. At this time, the solvent evaporates together with the by-product gas, but normally the solvent is refluxed by the condenser attached to the reactor and returned to the inside of the reactor. This method is important in order to prevent the progress of the reaction from being abnormal due to the change in the composition of the reaction system due to the solvent being distilled out of the system, and to prevent the stirring power from being lowered due to the increase in the viscosity of the system. In order to prevent such a thing, it is necessary to lower the temperature in the condenser as much as possible to prevent the solvent from being distilled out of the system. In this case, since the cooled solvent is refluxed into the reactor, it is difficult to keep the reaction temperature constant unless the jacket of the reactor is heated. However, it is difficult to heat the reaction liquid having a high viscosity by heating from the reactor jacket, and it is necessary to heat at a high temperature.

また、反応の進行とともにあるいは反応をくりかえして
行うことにより、反応器内壁に高粘度のポリマーが付着
するが、これらは、反応器ジャケットの加熱により劣化
し着色するとともにその一部が反応液中に混入し反応物
の品質を低下させてしまう。そのためこれらの付着物は
定期的に反応器を洗浄して除去したり、反応液中に混入
したものは、ストレーナー等により除去し、最終製品と
している。
Also, with the progress of the reaction or by repeating the reaction, a highly viscous polymer adheres to the inner wall of the reactor, but these are deteriorated by the heating of the reactor jacket and are colored, and a part of the polymer remains in the reaction solution. It mixes and deteriorates the quality of the reaction product. Therefore, these deposits are regularly removed by washing the reactor, and those mixed in the reaction solution are removed by a strainer or the like to obtain the final product.

したがって、ポリマーの塩素化または塩素化およびクロ
ロスルホン化反応は外部よりできるだけ加熱しないで反
応することが望ましいといえる。そのような方法の1つ
としては、反応熱のみで反応温度を一定にすることが考
えられる。すなわち、反応によって生ずる副生ガスの排
出をできるだけ押えるとともに溶媒の留出も少なくして
やることが考えられる。そのためには反応時の圧力を高
くする必要があるが、反応圧力の上昇により、反応速度
が変り、目的とする塩素,イオウ含量が得にくいという
欠点がある。
Therefore, it can be said that it is desirable that the chlorination or chlorination and chlorosulfonation reaction of the polymer is carried out without heating from the outside as much as possible. As one of such methods, it is considered that the reaction temperature is kept constant only by the heat of reaction. That is, it is conceivable to suppress the discharge of the by-product gas generated by the reaction as much as possible and reduce the amount of the solvent distilled. For that purpose, it is necessary to increase the pressure during the reaction, but there is a drawback that the reaction rate changes due to the increase in the reaction pressure, and it is difficult to obtain the desired chlorine and sulfur contents.

また、劣化ポリマーの生成が考えられる工程の一部を低
温で行うという試みも提案されている。(特開昭61−11
8408号)すなわち反応終了後、反応系内に残存する副生
ガスの除去操作において、ジャケットと内部の温度を同
等にして行う方法である。
In addition, an attempt has also been proposed in which a part of the process in which deterioration polymer is considered to be produced is carried out at a low temperature. (JP-A-61-11
No. 8408), that is, in the operation of removing the by-product gas remaining in the reaction system after the reaction is completed, the temperature inside the jacket is made equal to that inside.

しかしながら、これらの方法は目的とする製品が得られ
にくかったり、操作的に煩雑であるなどいずれにしても
完全なものとはいえない。
However, these methods cannot be said to be perfect in any case because it is difficult to obtain a desired product and operation is complicated.

[発明が解決しようとする問題点] 本発明はこのような塩素化または塩素化およびクロロス
ルホン化ポリオレフィンないしはゴムの製造において、
派生する劣化ポリマーの混入防止のための反応方法を提
供することにある。
[Problems to be Solved by the Invention] The present invention relates to the production of such a chlorinated or chlorinated and chlorosulfonated polyolefin or rubber.
It is an object of the present invention to provide a reaction method for preventing contamination of a deteriorating polymer.

[問題点を解決するための手段] 本発明では、ポリオレフィンないしゴムの塩素化または
塩素化およびクロロスルホン化反応を溶媒を用いて行う
場合に反応温度を保持するため、反応器ジャケットより
直接加熱することなく行う反応方法を提供することにあ
る。
[Means for Solving Problems] In the present invention, in order to maintain the reaction temperature when carrying out the chlorination or chlorination and chlorosulfonation reaction of a polyolefin or rubber, heating is carried out directly from the reactor jacket. It is to provide a reaction method to be carried out without.

即ち、本発明は上記反応において反応系より留出する溶
媒を熱交換器により加熱したのち、反応器内に導入して
反応温度を調節することにより、反応器の直接加熱によ
って派生する劣化ポリマーの発生を防止する反応方法に
ある。
That is, in the present invention, the solvent distilled from the reaction system in the above reaction is heated by a heat exchanger, and then introduced into the reactor to adjust the reaction temperature, thereby degrading the deteriorated polymer derived by direct heating of the reactor. It is a reaction method to prevent the generation.

本発明の反応方法に用いられる装置は反応器,反応器に
付着した還流コンデンサー,溶媒受槽,溶媒槽,溶媒用
熱交換器,ポンプ,調整弁などからなる。これらは反応
により生ずる腐蝕性ガスに対応するためグラスライニン
グ,カーベイト,テフロン系樹脂のライニングや金属材
料で耐蝕性を有するハステロイ,タンタル製のものが用
いられる。
The apparatus used in the reaction method of the present invention comprises a reactor, a reflux condenser attached to the reactor, a solvent receiving tank, a solvent tank, a solvent heat exchanger, a pump, a regulating valve and the like. These are made of glass lining, carbate, Teflon-based resin lining, or hastelloy or tantalum made of a metal material having corrosion resistance to cope with corrosive gas generated by the reaction.

溶媒用熱交換器の構造としては、多管式,二重管式,コ
イル式などが使用できる。
As the structure of the heat exchanger for solvent, a multi-tube type, a double-tube type, a coil type or the like can be used.

溶媒熱交換器を通じた溶媒の反応器への導入は、反応器
上部より噴霧して添加するか、反応液中に直接導入する
ことにより行う。
The solvent is introduced into the reactor through the solvent heat exchanger by spraying from the top of the reactor to add it, or by directly introducing it into the reaction solution.

また、必要に応じて、反応器に再導入する溶媒の量を調
節することにより、反応液の粘度を調節したり、反応液
を濃縮したりして、反応液中の溶媒の割合を変えること
ができる。このことは、反応液より、反応物を分離,乾
燥するために通常行われるドラムドライヤーやベント式
押出乾燥機等での処理能力を向上させることができる。
Also, if necessary, by adjusting the amount of the solvent to be re-introduced into the reactor, the viscosity of the reaction solution can be adjusted or the reaction solution can be concentrated to change the ratio of the solvent in the reaction solution. You can This can improve the processing ability in a drum dryer, a vented extruder, or the like, which is usually performed to separate and dry the reaction product from the reaction liquid.

本発明で反応の対象とする原料ポリオレフィンとしては
エチレンの単独重合体、エチレンおよびプロピレン,ブ
テン−1,ペンテン−1,ヘキセン−1, 4−メチル ペン
テン−1,酢酸ビニル,アクリル酸およびアルキルアクリ
レートなどとの共重合体が使用でき、ゴムとしては、ホ
リブタジエン,ポリイソプレン,ポリブチレン,スチレ
ン−ブタジエン共重合体,エチレン−プロピレン−ジエ
ン共重合体などが使用できる。
As the raw material polyolefin to be reacted in the present invention, ethylene homopolymer, ethylene and propylene, butene-1, pentene-1, hexene-1, 4-methylpentene-1, vinyl acetate, acrylic acid and alkyl acrylate, etc. As the rubber, for example, polybutadiene, polyisoprene, polybutylene, styrene-butadiene copolymer, ethylene-propylene-diene copolymer and the like can be used.

これらの重合体を溶解させるための反応溶媒としては、
ハロゲン化炭化水素である四塩化炭素,トリクロロエチ
レン,テトラクロロエタン,クロルベンゼンなどを単
独、ないしは混合して用いられる。
As a reaction solvent for dissolving these polymers,
Halogenated hydrocarbons such as carbon tetrachloride, trichloroethylene, tetrachloroethane and chlorobenzene may be used alone or in combination.

塩素化または塩素化およびクロロスルホン化剤としては
塩素、ならびに塩化スルフリル,塩素と亜硫酸ガス,塩
化スルフリル,塩素が用いられる。
As the chlorinating or chlorinating and chlorosulfonating agent, chlorine, sulfuryl chloride, chlorine and sulfurous acid gas, sulfuryl chloride and chlorine are used.

反応を開始させるための触媒としては、アゾビスイソブ
チロニトリル, 2,2′アゾビス2,4ジメチルウァレロニ
トリルのようなアゾ化合物,ベンゾイルパーオキサイ
ド,ジラウロイルパーオキサイドのような過酸化物が用
いられる。
As the catalyst for initiating the reaction, azo compounds such as azobisisobutyronitrile and 2,2′azobis2,4dimethylvaleronitrile, and peroxides such as benzoyl peroxide and dilauroyl peroxide can be used. Used.

また助触媒としてピリジン,キノリン等のアミン化合物
を用いる。
An amine compound such as pyridine or quinoline is used as a cocatalyst.

反応は、常法により、ポリオレフィンないしはゴムを溶
媒に溶解し、触媒,塩素化または塩素化およびクロロス
ルホン化剤を加えて反応し、所定の塩素ならびにイオウ
量を付加したのち、系内に残存する酸分を窒素のような
不活性ガスを用いて除去したのちビスフェノールA型の
エポキシ化合物などの安定剤を加え、次いで溶媒と反応
物をドラムドライヤーやベント式押出乾燥機などを用い
て分離し、塩素化または塩素化およびクロロスルホン化
ポリオレフィンないしゴムを得る。
The reaction is carried out by dissolving a polyolefin or rubber in a solvent by a conventional method, adding a catalyst, chlorination or a chlorination and a chlorosulfonating agent, reacting, adding a predetermined amount of chlorine and sulfur, and then remaining in the system. After removing the acid component with an inert gas such as nitrogen, a stabilizer such as a bisphenol A type epoxy compound is added, and then the solvent and the reaction product are separated using a drum dryer or a vented extruder, A chlorinated or chlorinated and chlorosulfonated polyolefin or rubber is obtained.

[作用] 本発明の方法による塩素化または塩素化およびクロロス
ルホン化反応は、反応器に付設した還流コンデンサーで
副生ガスと溶媒をできるだけ分離し、分離された還流溶
媒を別の容器に受けたのち、再び熱交換器で加熱し反応
器に導入することによって反応器のジャケットの加熱を
行うことなく一定温度で行うことができる。
[Operation] In the chlorination or chlorination and chlorosulfonation reaction by the method of the present invention, the reflux condenser attached to the reactor was used to separate the by-product gas and the solvent as much as possible, and the separated reflux solvent was received in another container. After that, by heating again with a heat exchanger and introducing it into the reactor, it can be carried out at a constant temperature without heating the jacket of the reactor.

この方法では、還流コンデンサーから留出する溶媒の反
応器に再導入する量を調節することが可能で、反応液か
ら反応物と溶媒を分離するに当り、その処理能力を大き
くすることができるという利点がある。
According to this method, it is possible to adjust the amount of the solvent distilled from the reflux condenser to be reintroduced into the reactor, and it is possible to increase the processing capacity in separating the reaction product and the solvent from the reaction solution. There are advantages.

[実施例] 以下実施例により本発明の態様を示すが、本発明はこれ
らに限定されるものではない。
[Examples] Examples of the present invention are shown below, but the present invention is not limited thereto.

実施例1 図−1に示したフローによるポリエチレンの反応例を示
す。1000の反応器に密度0.963でメルトフローレイシ
オ5.0を有する高密度ポリエチレン100kgを入れ次いで電
熱面積1.5m2を有する溶媒用熱交換器で110℃に加熱され
た四塩化炭素1000kgを入れ溶解した。次いでα,α′−
アゾビスイソブチロニトリルを四塩化炭素に溶解した液
を連続的に添加した。続いて塩化スルフリルを30/時
間の割合で反応器に導入し、またクロロスルホン化反応
の助触媒としてピリジン0.2kgを加えた。反応が始まる
と反応器圧力が上昇するため、圧力調整弁で圧力をゲー
ジ圧3.5kg/cm2に調整した。還流コンデンサーに四塩化
炭素が留出しこれを溶剤受槽に受け入れた。溶剤槽から
の送液量は、流量調整弁により調節した。四塩化炭素は
反応器より留出する量に見合う量を溶剤加熱器で反応温
度が100℃になるよう加熱し反応器に導入した。反応温
度100℃でのベントコンデンサーからの留出四塩化炭素
はおおよそ50/時間の量であった。
Example 1 A reaction example of polyethylene according to the flow shown in FIG. 1 is shown. In a 1000 reactor, 100 kg of high density polyethylene having a density of 0.963 and a melt flow ratio of 5.0 was placed, and then 1000 kg of carbon tetrachloride heated to 110 ° C. was dissolved in a solvent heat exchanger having an electric heating area of 1.5 m 2 . Then α, α'-
A solution of azobisisobutyronitrile dissolved in carbon tetrachloride was continuously added. Then, sulfuryl chloride was introduced into the reactor at a rate of 30 / hour, and 0.2 kg of pyridine was added as a cocatalyst for the chlorosulfonation reaction. Since the reactor pressure rises when the reaction starts, the pressure was adjusted to a gauge pressure of 3.5 kg / cm 2 with a pressure control valve. Carbon tetrachloride was distilled out to the reflux condenser and received in the solvent receiving tank. The amount of liquid sent from the solvent tank was adjusted by a flow rate adjusting valve. Carbon tetrachloride was heated in a solvent heater at an amount corresponding to the amount distilled from the reactor so that the reaction temperature was 100 ° C., and was introduced into the reactor. The amount of carbon tetrachloride distilled from the vent condenser at a reaction temperature of 100 ° C. was approximately 50 / hour.

反応中は、圧力調整弁により反応系の圧力を調整すると
ともに、反応器のジャケットの加熱を行うことなく、反
応温度を100℃に保った。塩素化およびクロロスルホン
化が所定の値(塩素含量35重量%,イオウ含量1.0重量
%)に達したら、塩化スルフリルおよび触媒液を止め圧
力調整弁で反応系の圧を下げた。圧力がゲージ圧0.5kg/
cm2程度になったら反応器底部より、窒素ガスを3Nm3/HR
で導入し、系内に残存する副生ガスの除去を行った。反
応器より還流する四塩化炭素は、反応中と同様にして、
溶媒熱交換器を通じて反応器内温度が70ないし80℃にな
るように加熱して交換器内へ導入した。この操作を3時
間行ったのち、安定剤としてビスフェノールA型のエポ
キシ樹脂2kgを添加し、常法によりドラムドライヤーで
クロロスルホン化ポリエチレンを分離乾燥した。この反
応操作を連続して30回実施したのち反応器内を点検した
ところ内部の壁面には付着したポリマーがほとんど見ら
れず着色したポリマーも見当らなかった。また分離乾燥
して得られた塩素化およびクロロスルホン化ポリエチレ
ンには着色したものは見られなかった。
During the reaction, the pressure of the reaction system was adjusted by the pressure control valve, and the reaction temperature was kept at 100 ° C. without heating the jacket of the reactor. When the chlorination and chlorosulfonation reached the predetermined values (chlorine content 35% by weight, sulfur content 1.0% by weight), sulfuryl chloride and the catalyst solution were stopped, and the pressure of the reaction system was lowered by the pressure control valve. Pressure is 0.5kg / gauge pressure
When it reaches about 2 cm3, nitrogen gas from the bottom of the reactor is 3 Nm 3 / HR.
Was introduced to remove the by-product gas remaining in the system. Carbon tetrachloride refluxed from the reactor, in the same manner as during the reaction,
It was heated to a temperature of 70 to 80 ° C. through a solvent heat exchanger and introduced into the exchanger. After carrying out this operation for 3 hours, 2 kg of a bisphenol A type epoxy resin was added as a stabilizer, and chlorosulfonated polyethylene was separated and dried by a drum dryer by a conventional method. After repeating this reaction operation 30 times continuously, the inside of the reactor was inspected. As a result, almost no adhering polymer was found on the inner wall surface and no colored polymer was found. In addition, the chlorinated and chlorosulfonated polyethylene obtained by separation and drying did not show any colored matter.

実施例2 実施例1において反応温度を110℃に、反応圧力を2.5kg
/cm2ゲージに設定し、アゾビスイソブチロニトリルの触
媒液の連続添加を始めたのち、反応器底部より塩素ガス
を5Nm2/HRの速度で添加し、塩素含量35重量%までポリ
エチレンの塩素化を行った。反応中に反応器より留出す
る四塩素化炭素量は単位時間当りおおよそ60であっ
た。これに見合う四塩化炭素を実施例1と同様に加熱し
て反応器に導入した。
Example 2 In Example 1, the reaction temperature was 110 ° C. and the reaction pressure was 2.5 kg.
/ cm 2 gauge, and after starting the continuous addition of the azobisisobutyronitrile catalyst solution, chlorine gas was added from the bottom of the reactor at a rate of 5 Nm 2 / HR to obtain a chlorine content of 35% by weight of polyethylene. Chlorination was performed. The amount of carbon tetrachloride distilled out of the reactor during the reaction was about 60 per unit time. Carbon tetrachloride suitable for this was heated in the same manner as in Example 1 and introduced into the reactor.

次いで実施例1と同様にこの反応をくりかえし、反応器
内および製品中の着色物,劣化ポリマーの付着,混入を
点検したが、実施例1と同様にこれら着色物の混入は見
られなかった。
Then, this reaction was repeated in the same manner as in Example 1 to check the adherence and mixing of the coloring matter and the deteriorated polymer in the reactor and the product, but as in Example 1, the mixing of these coloring matters was not observed.

実施例3 実施例2と同様にして反応器底部より塩素ガス5Nm2/HR
の速度で吹きこみポリエチレンの塩素含量17重量%まで
塩素化したのち、ピリジン0.2kgを添加し次いで実施例
1と同様に塩化スルフリルを添加し反応した。この時反
応圧力を4.5kg/cm2に保持したほかは、実施例1と同様
に反応処理し、塩素含量35重量%,イオウ含量1.0重量
%の塩素化およびクロロスルホン化ポリエチレンを得
た。
Example 3 As in Example 2, chlorine gas from the bottom of the reactor was 5 Nm 2 / HR.
After chlorinating polyethylene at a rate of 17% by weight to a chlorine content of 17% by weight, 0.2 kg of pyridine was added, and then sulfuryl chloride was added and reacted in the same manner as in Example 1. At this time, the reaction pressure was kept at 4.5 kg / cm 2 , and the reaction treatment was carried out in the same manner as in Example 1 to obtain chlorinated and chlorosulfonated polyethylene having a chlorine content of 35% by weight and a sulfur content of 1.0% by weight.

次いで実施例1と同様にこの反応をくりかえし反応器内
部の点検,生成塩素化およびクロロスルホン化ポリエチ
レン中の劣化ポリマーの着色を点検した結果は着色物,
劣化ポリマーの反応器への付着,ポリマーへの混入は見
られなかった。
Then, this reaction was repeated in the same manner as in Example 1 to inspect the inside of the reactor, to check the coloring of the deteriorated polymer in the produced chlorinated and chlorosulfonated polyethylene.
Degraded polymer was not attached to the reactor or mixed with the polymer.

比較例1 実施例1において反応器に付設した還流コンデンサーで
還流する四塩化炭素を反応器内へ直接還流させるように
し、ジャケットに150℃のスチームを導入することによ
ってポリエチレン100kgを四塩素化炭素1000kgに約1時
間かけて溶解し反応した。反応中は反応液を100℃に保
つためジャケットにスチームを入れて加熱した。反応液
温度を一定に保つにはジャケット温度を120〜150℃に保
つ必要があり反応器の圧力はゲージ圧でおよそ3.5kg/cm
2に保つ必要があった。
Comparative Example 1 Carbon tetrachloride which was refluxed by a reflux condenser attached to the reactor in Example 1 was directly refluxed into the reactor, and steam of 150 ° C. was introduced into a jacket to introduce 100 kg of polyethylene into 1000 kg of tetrachlorinated carbon. It was dissolved and reacted for about 1 hour. During the reaction, steam was put in the jacket and heated to keep the reaction solution at 100 ° C. In order to keep the temperature of the reaction solution constant, it is necessary to keep the jacket temperature at 120 to 150 ° C, and the reactor pressure is about 3.5 kg / cm in gauge pressure.
Had to keep to 2 .

反応終了後も実施例1と同様にして、反応液中の副生ガ
スの除去を行ったがこの時のジャケットの加熱も反応中
と同様に行わないと反応液の温度が低下した。実施例1
と同様にこの操作を30回くりかえし、同様に点検したと
ころ反応器内壁には厚さ約3mmの着色ポリマーが付着し
ており、このうちジャケットに接する部分約1mmは黒色
ないし褐色に変色していた。また得られた製品にはこれ
らの着色物が混入していた。
After the reaction was completed, the by-product gas in the reaction solution was removed in the same manner as in Example 1, but the temperature of the reaction solution decreased unless the jacket was heated at the same time as during the reaction. Example 1
This operation was repeated 30 times in the same manner as above, and the same inspection was carried out.A colored polymer with a thickness of about 3 mm was attached to the inner wall of the reactor, of which about 1 mm in contact with the jacket was discolored black or brown. . In addition, these colored substances were mixed in the obtained product.

比較例2 比較例1と同様に反応器に付設した還流コンデンサーよ
り還流する四塩化炭素を反応器内に直接戻すようにライ
ンを設定したほかは実施例2と同様に反応処理した。次
いで実施例1と同様に反応をくりかえし、反応器内部を
点検したところ内壁に約2mmのポリマーが付着してお
り、そのうちの約1mmは茶ないし褐色となっていた。
Comparative Example 2 As in Comparative Example 1, a reaction process was carried out in the same manner as in Example 2 except that a line was set so that the refluxing carbon tetrachloride was directly returned from the reflux condenser attached to the reactor into the reactor. Then, the reaction was repeated in the same manner as in Example 1, and when the inside of the reactor was inspected, about 2 mm of polymer adhered to the inner wall, of which about 1 mm was brown or brown.

[発明の効果] 異常の説明から明らかなように、本発明によればポリマ
ーの塩素化または塩素化およびクロロスルホン化反応に
おいて反応器内で発生する劣化,着色ポリマーの発生が
防止でき製品の品質が向上し、反応液濃度を変えること
により生産効率を向上させることができる。
[Effects of the Invention] As is apparent from the explanation of abnormalities, according to the present invention, it is possible to prevent deterioration occurring in the reactor in the chlorination of polymers or chlorination and chlorosulfonation reactions and generation of colored polymers, and product quality. And the production efficiency can be improved by changing the reaction solution concentration.

【図面の簡単な説明】[Brief description of drawings]

図−1は本発明に係る塩素化または塩素化およびクロロ
スルホン化反応装置の概念図を示す。 1……反応器 2……還流コンデンサー 3……溶媒受槽 4……溶媒槽 5……溶媒用熱交換器 6……除害塔 7……圧力調整弁 8,9……流量調整弁 10,11……溶媒ポンプ 12……レベル検出器 13,14……流量検出器
FIG. 1 shows a conceptual diagram of a chlorination or chlorination and chlorosulfonation reactor according to the present invention. 1 ... Reactor 2 ... Reflux condenser 3 ... Solvent receiving tank 4 ... Solvent tank 5 ... Solvent heat exchanger 6 ... Detoxification tower 7 ... Pressure adjusting valve 8, 9 ... Flow rate adjusting valve 10, 11 …… Solvent pump 12 …… Level detector 13,14 …… Flow rate detector

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】反応器内でポリオレフィンあるいはゴムを
溶媒に溶解し、塩化スルフリル,塩素ガス,亜硫酸ガ
ス、あるいはこれらのいづれかを併用して塩素化または
塩素化およびクロロスルホン化させる反応において、反
応器より留出する溶媒を熱交換器により加熱したのち、
反応器内に導入することを特徴とする、塩素化または塩
素化およびクロロスルホン化反応方法。
1. A reactor in which a polyolefin or a rubber is dissolved in a solvent in a reactor and sulfuryl chloride, chlorine gas, sulfurous acid gas, or a combination thereof is used for chlorination or chlorination and chlorosulfonation. After heating the solvent to be distilled off with a heat exchanger,
A chlorination or chlorination and chlorosulfonation reaction method, characterized by being introduced into a reactor.
【請求項2】反応器より留出する溶媒をコンデンサーで
凝縮させたのち、これを溶媒受槽に導入する特許請求の
範囲第1項記載の塩素化または塩素化およびクロロスル
ホン化反応方法。
2. The method for chlorination or chlorination and chlorosulfonation according to claim 1, wherein the solvent distilled from the reactor is condensed with a condenser and then introduced into a solvent receiving tank.
【請求項3】溶媒受槽より反応器に移送させる溶媒量お
よび溶媒槽より反応器に移送させる溶媒量を流量調節弁
により調節する特許請求の範囲第2項記載の塩素化また
は塩素化およびクロロスルホン化反応方法。
3. The chlorination or chlorination and chlorosulfone according to claim 2, wherein the amount of the solvent transferred from the solvent receiving tank to the reactor and the amount of the solvent transferred from the solvent tank to the reactor are controlled by a flow rate control valve. Reaction method.
JP331487A 1987-01-12 1987-01-12 Chlorination or chlorination and chlorosulfonation reaction method Expired - Fee Related JPH0717699B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP331487A JPH0717699B2 (en) 1987-01-12 1987-01-12 Chlorination or chlorination and chlorosulfonation reaction method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP331487A JPH0717699B2 (en) 1987-01-12 1987-01-12 Chlorination or chlorination and chlorosulfonation reaction method

Publications (2)

Publication Number Publication Date
JPS63172702A JPS63172702A (en) 1988-07-16
JPH0717699B2 true JPH0717699B2 (en) 1995-03-01

Family

ID=11553895

Family Applications (1)

Application Number Title Priority Date Filing Date
JP331487A Expired - Fee Related JPH0717699B2 (en) 1987-01-12 1987-01-12 Chlorination or chlorination and chlorosulfonation reaction method

Country Status (1)

Country Link
JP (1) JPH0717699B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105713117B (en) * 2016-03-02 2017-11-07 中国石油天然气股份有限公司吉林石化分公司 Improved chlorosulfonated polyethylene production system

Also Published As

Publication number Publication date
JPS63172702A (en) 1988-07-16

Similar Documents

Publication Publication Date Title
EP0057687B1 (en) Process for chlorination of poly(vinyl chloride) with liquid chlorine, and chlorinated poly(vinyl chloride) composition
JP2001501237A (en) Bromination of styrene polymer
US4197386A (en) Process for chlorinating ethylene polymers
US4425206A (en) Anhydrous process for preparing amorphous chlorinated polyethylene and product thereof
US3296222A (en) Process for continuously chlorosulfonating polyethylene at higher temperatures
US3299014A (en) Process for chlorosulfonating olefinic hydrocarbon polymers using sulfuryl chloride
US2890213A (en) Process for the production of polyethylene chlorination products
US4386189A (en) Process for the post-chlorination of vinyl chloride polymers
JPH0717699B2 (en) Chlorination or chlorination and chlorosulfonation reaction method
US4452953A (en) Process for the vapor phase chlorosulfonation of polyolefins in the presence of finely divided inorganic materials
KR840001755B1 (en) Process for preparing chlorinated p.v.c resin
USH1582H (en) Process for preparation of chlorinated and chlorosulfonated olefin polymers having low levels of residual monofluorobenzene reaction solvent and its chlorinated by-products
US3542747A (en) Continuous process for the chlorosulfonation and chlorination of polyethylene
US3362896A (en) Process for the post-chlorination of polymers of vinyl chloride using radiation
US4473451A (en) Vapor phase chlorination of polyolefins
JPS63254106A (en) Production of chlorinated and chlorosulfonated polyolefin
JPS6335162B2 (en)
CN106893009A (en) Using sulfonic acid chloride and co-catalyst in preparing chlorosulfonated polyethylene by gas-solid phase method method
US1544532A (en) Process of making chlorinated rubber
JPH0239444B2 (en)
AU7450481A (en) Process for chlorination of poly(vinyl chloride) with liquid chlorine and chlorinated poly(vinyl chloride) compositions
JPH0633324B2 (en) Method for producing chlorinated polyolefin
CN1167120A (en) Preparation of chloro-sulfonated polyvinyl by solid blend method
JP2595576B2 (en) Preparation of chlorosulfonated polyethylene
JPS58145704A (en) Production of chlorinated resin

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees