JPS6317246A - Low specific gravity cement composition for high temperature - Google Patents
Low specific gravity cement composition for high temperatureInfo
- Publication number
- JPS6317246A JPS6317246A JP61158784A JP15878486A JPS6317246A JP S6317246 A JPS6317246 A JP S6317246A JP 61158784 A JP61158784 A JP 61158784A JP 15878486 A JP15878486 A JP 15878486A JP S6317246 A JPS6317246 A JP S6317246A
- Authority
- JP
- Japan
- Prior art keywords
- specific gravity
- cement
- low specific
- cement composition
- high temperature
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000004568 cement Substances 0.000 title claims description 44
- 230000005484 gravity Effects 0.000 title claims description 36
- 239000000203 mixture Substances 0.000 title claims description 18
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 36
- 239000000463 material Substances 0.000 claims description 31
- 239000000377 silicon dioxide Substances 0.000 claims description 8
- 239000000126 substance Substances 0.000 claims description 7
- 239000010881 fly ash Substances 0.000 claims description 6
- 239000003638 chemical reducing agent Substances 0.000 claims description 5
- 239000005909 Kieselgur Substances 0.000 claims description 3
- 239000011521 glass Substances 0.000 claims description 3
- 239000010451 perlite Substances 0.000 claims description 3
- 235000019362 perlite Nutrition 0.000 claims description 3
- -1 shirasu balloon Substances 0.000 claims description 3
- 239000006260 foam Substances 0.000 claims 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 19
- 230000035699 permeability Effects 0.000 description 14
- 239000002002 slurry Substances 0.000 description 14
- 239000002585 base Substances 0.000 description 12
- 238000011161 development Methods 0.000 description 7
- 235000012239 silicon dioxide Nutrition 0.000 description 6
- 238000010276 construction Methods 0.000 description 4
- 229910002026 crystalline silica Inorganic materials 0.000 description 4
- 239000000440 bentonite Substances 0.000 description 3
- 229910000278 bentonite Inorganic materials 0.000 description 3
- SVPXDRXYRYOSEX-UHFFFAOYSA-N bentoquatam Chemical compound O.O=[Si]=O.O=[Al]O[Al]=O SVPXDRXYRYOSEX-UHFFFAOYSA-N 0.000 description 3
- AXCZMVOFGPJBDE-UHFFFAOYSA-L calcium dihydroxide Chemical compound [OH-].[OH-].[Ca+2] AXCZMVOFGPJBDE-UHFFFAOYSA-L 0.000 description 3
- 239000000920 calcium hydroxide Substances 0.000 description 3
- 229910001861 calcium hydroxide Inorganic materials 0.000 description 3
- 235000011116 calcium hydroxide Nutrition 0.000 description 3
- 239000003795 chemical substances by application Substances 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 238000002156 mixing Methods 0.000 description 3
- 230000002265 prevention Effects 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 229910000831 Steel Inorganic materials 0.000 description 2
- 229910052681 coesite Inorganic materials 0.000 description 2
- 229910052906 cristobalite Inorganic materials 0.000 description 2
- 239000002270 dispersing agent Substances 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 239000010802 sludge Substances 0.000 description 2
- 239000003381 stabilizer Substances 0.000 description 2
- 239000010959 steel Substances 0.000 description 2
- 229910052682 stishovite Inorganic materials 0.000 description 2
- 229910052905 tridymite Inorganic materials 0.000 description 2
- BTBUEUYNUDRHOZ-UHFFFAOYSA-N Borate Chemical compound [O-]B([O-])[O-] BTBUEUYNUDRHOZ-UHFFFAOYSA-N 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 1
- 229920001732 Lignosulfonate Polymers 0.000 description 1
- 241000356114 Trachytes Species 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 239000001913 cellulose Substances 0.000 description 1
- 229920002678 cellulose Polymers 0.000 description 1
- 239000011362 coarse particle Substances 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 239000002178 crystalline material Substances 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000005553 drilling Methods 0.000 description 1
- 230000003631 expected effect Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000005188 flotation Methods 0.000 description 1
- 239000003673 groundwater Substances 0.000 description 1
- 239000010440 gypsum Substances 0.000 description 1
- 229910052602 gypsum Inorganic materials 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 239000005332 obsidian Substances 0.000 description 1
- 239000003129 oil well Substances 0.000 description 1
- 229910001562 pearlite Inorganic materials 0.000 description 1
- 239000003208 petroleum Substances 0.000 description 1
- 238000010248 power generation Methods 0.000 description 1
- 239000011435 rock Substances 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 239000000741 silica gel Substances 0.000 description 1
- 229910002027 silica gel Inorganic materials 0.000 description 1
- 239000002893 slag Substances 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02W—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
- Y02W30/00—Technologies for solid waste management
- Y02W30/50—Reuse, recycling or recovery technologies
- Y02W30/91—Use of waste materials as fillers for mortars or concrete
Landscapes
- Porous Artificial Stone Or Porous Ceramic Products (AREA)
- Curing Cements, Concrete, And Artificial Stone (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【発明の詳細な説明】
〔発明の分野〕
本発明は、高温下で優れた施工性および耐久性を有する
高温度用低比重セメント組成物に係わるものである。ざ
らに詳しくは、地熱井のセメンヂングにおいて、セメン
トスラリーの地層への逸泥を防止するための低比重セメ
ントにおいて、とくに250℃以上の高温領域で優れた
耐透水性および硬化特性を有する組成物に関するもので
ある。DETAILED DESCRIPTION OF THE INVENTION [Field of the Invention] The present invention relates to a high temperature low specific gravity cement composition that has excellent workability and durability at high temperatures. More specifically, the present invention relates to a composition having excellent water permeability and hardening properties, particularly in a high temperature region of 250°C or higher, in a low specific gravity cement for preventing cement slurry from leaking into the geological formation in cementing a geothermal well. It is something.
地熱井セメントは、地下数百m〜数千mに貯溜する熱水
あるいは蒸気を採掘するための井戸の掘削に使用される
。すなわち、坑井内に挿入したケーシング(鋼管)を固
定すると共に、地下水などの坑井内への流入を防止する
ことを主目的とし、坑壁とケーシングとの間隙部分(ア
ニユラス部分)に注入される。Geothermal well cement is used for drilling wells to extract hot water or steam stored several hundred meters to several thousand meters underground. That is, the main purpose is to fix the casing (steel pipe) inserted into the well and to prevent groundwater from flowing into the well, and it is injected into the gap between the well and the casing (annulus).
坑井内部は極めて高温高圧であるため、この種のセメン
トには高温の品質が要求される。すなわち、セメント・
スラリーは所定の施工個所に充填させるに必要な時間の
間には優れた流動性を維持することが要求され、通常、
遅硬剤の添加によつてその殿能が付与される。また、地
熱井の地層には一般に割目が多く、施工のざいにセメン
ト・スラリーが地層に流れ込む、所謂、逸泥が起こり易
く、このための対策も重要である。この防止対策として
は、低比重化材を添加してセメント・スラリーの比重を
小さくし、地層にかかるスラリー打圧を下げる方法が採
用されている。ざらに、施工個所に充填されたのちには
、鋼管を固定、維持するに充分な強度<70に’lf/
ctrt以上)を長期にわたって発現することが重要で
ある。ざらには、ケーシングの腐蝕、穿孔、破裂等を防
止するため、侵食成分を含有する地下水等に対して優れ
た耐透水性が要求される。通常、硬化後の透水率は0.
25md以下、好ましくは0,1md以下が望ましいと
されている。Because the inside of a well is extremely high temperature and pressure, this type of cement requires high-temperature quality. In other words, cement
Slurries are required to maintain good fluidity for the time required to fill a given application area;
The addition of a retardant imparts its hardening ability. Furthermore, the geological strata of geothermal wells generally have many cracks, and during construction, cement slurry is likely to flow into the strata, so-called slippage, so it is important to take measures to prevent this. To prevent this, a method has been adopted in which a specific gravity reducing agent is added to reduce the specific gravity of the cement slurry, thereby reducing the slurry impact force applied to the strata. Roughly, after filling the construction area, it has a strength of <70 to secure and maintain the steel pipe.
ctrt or higher) for a long period of time. In order to prevent corrosion, perforation, rupture, etc. of the casing, excellent water permeability is required against underground water containing corrosive components. Normally, the water permeability after curing is 0.
It is said that 25 md or less, preferably 0.1 md or less is desirable.
セメント・スラリーの地層への逸泥を防止するために、
特殊な低比重化材の添加あるいは気泡(空気、窒素など
)の導入によるセメント・スラリーの比重低減、あるい
は物理、化学的な手段による割目の閉塞などの方法が採
られている。To prevent cement slurry from leaking into the strata,
Methods used include reducing the specific gravity of cement slurry by adding special gravity-reducing materials or introducing air bubbles (air, nitrogen, etc.), or closing cracks by physical or chemical means.
このうち、粒度の比較的粗い無殿質中空バルーン、例え
ば、軽量フライアッシュ、シラスバルーン、パーライト
おるいはガラスバルーンなどは、上記のようなセメント
・スラリーの低比重化効果および割目の閉塞作用を共に
有するため、優れた逸泥防止材としてセメントに添加さ
れ使用されている。Among these, non-pretentious hollow balloons with relatively coarse particle size, such as lightweight fly ash, shirasu balloons, perlite, or glass balloons, have the effect of lowering the specific gravity of cement slurry and blocking the cracks as described above. Because of this, it is added to cement as an excellent sludge prevention material.
一方、高温高圧下での優れた強度発現性を確保するため
、通常の場合、ベースセメントにシリカ質混和材が添加
される。シリカ質混和材としては、5i02含有量が約
90%以上の結晶質物質の微粉末が使用される。On the other hand, in order to ensure excellent strength development under high temperature and high pressure, a siliceous admixture is usually added to the base cement. As the siliceous admixture, a fine powder of a crystalline material having a 5i02 content of about 90% or more is used.
・すなわち、逸泥を防止するためのセメントとしては、
主としてベースセメント、低比重化材およびシリカ質混
和材からなるものが使用されている。・In other words, as a cement to prevent slippage,
Mainly used are base cement, specific gravity reducing material and siliceous admixture.
このような低比重セメントは、坑井温度が約250℃ま
での温度領域では優れた施工性、硬化特性を示すもので
ある。しかし、坑井温度が約250℃を越える高温度の
地熱井においては、低比重化材とベースセメントとの反
応が促進され、硬化後の組織が粗となり、透水率の増加
、強度低下および収縮の増大が起こり、実用上の問題と
なっていた。Such a low specific gravity cement exhibits excellent workability and hardening properties in a wellbore temperature range of up to about 250°C. However, in high-temperature geothermal wells where the wellbore temperature exceeds approximately 250°C, the reaction between the specific gravity reducing material and the base cement is accelerated, resulting in a coarse structure after hardening, an increase in water permeability, a decrease in strength, and shrinkage. This has caused a practical problem.
本発明は、250℃を越えるような高温度の地熱条件下
において、逸泥防止効果、耐透水性および強度発現性に
優れた低比重セメント組成物を提供することを目的とす
る。An object of the present invention is to provide a low specific gravity cement composition that has excellent sludge prevention effects, water permeability resistance, and strength development under high-temperature geothermal conditions exceeding 250°C.
(発明の要旨)
本発明は、主としてベースセメント、低比重化材および
シリカ質混和材からなる低比重セメント組成物において
、シリカ質混和材の一部が非晶質シリカ物質であること
を特徴とする地熱井セメントに係わるものである。(Summary of the Invention) The present invention is characterized in that in a low specific gravity cement composition mainly consisting of a base cement, a specific gravity reducing agent, and a siliceous admixture, a part of the siliceous admixture is an amorphous silica substance. This relates to geothermal well cement.
(発明の詳細な記述)
本発明の組成物は、主としてベースセメント、低比重化
材およびシリカ質混和材からなる。ざらに必要に応じて
、低比重化材のスラリー中での分離防止材、強度安定材
および遅硬剤を添加することもできる。DETAILED DESCRIPTION OF THE INVENTION The composition of the present invention consists primarily of a base cement, a specific gravity reducer and a siliceous admixture. If necessary, a separation preventing agent, a strength stabilizer, and a slow hardening agent may be added to the slurry of the specific gravity reducing material.
ベースセメントは、3CaO・SiO2および2CaO
aS i 02が主成分であるセメントが望ましい。例
えば、3CaO−3i02および2CaO−5i 02
が主成分で3CaO−3i02が45〜651ffi%
、または2CaO−3iO2が主成分であってその含有
量が80重量%以上のものがあげられる。これらのベー
スセメントには必要に応じて石こうが添加され、ブレー
ン値2000〜4500Cr7t/3程度に粉砕された
ものが使用できる。Base cement is 3CaO・SiO2 and 2CaO
A cement whose main component is aS i 02 is preferred. For example, 3CaO-3i02 and 2CaO-5i02
is the main component and 3CaO-3i02 is 45-651ffi%
, or 2CaO-3iO2 as a main component and the content thereof is 80% by weight or more. Gypsum may be added to these base cements as necessary, and those pulverized to a Blaine value of about 2000 to 4500 Cr7t/3 can be used.
低比重化材としては、見掛は比重が約0.8以下の無機
質中空バルーンが使用できる。具体的には、火力発電所
で発生する特殊な軽量フライアッシュ(中空フライアッ
シュ)、粗面岩、真珠岩あるいは黒曜石を焼成したパー
ライト、シラスバルーン、ガラスバルーン等を使用でき
る。なお、これらの低比重化材はS ! 02 、A
1203等を主成分とする非晶質物質である場合が多い
。低比重化材は、平均粒度が20μm以上、好ましくは
100μm以上のものが望ましく、その配合量は要求さ
れるスラリー比重に応じて調節されるが、通常、45重
量%以内である。これを越えると強度発現性の低下が大
きくなるため、好ましくない。As the specific gravity reducing material, an inorganic hollow balloon having an apparent specific gravity of about 0.8 or less can be used. Specifically, special lightweight fly ash (hollow fly ash) generated at thermal power plants, perlite made from calcined trachyte, pearlite, or obsidian, shirasu balloons, glass balloons, etc. can be used. In addition, these low specific gravity materials are S! 02, A
It is often an amorphous substance whose main component is 1203 or the like. The specific gravity reducing material desirably has an average particle size of 20 μm or more, preferably 100 μm or more, and its amount is adjusted depending on the required specific gravity of the slurry, but is usually within 45% by weight. Exceeding this is not preferable because strength development deteriorates significantly.
シリカ質混和材としては、珪石粉などの結晶質シリカお
よび非晶質シリカ物質を使用する。非晶質シリカ物質と
しては、シリカフエーム、ホワイトカーボン、珪藻土、
シリカゲルなどが挙げられる。これらの非晶質シリカ物
質は、シリカ質混和材中に5〜80重量%含有すること
が望ましい。As siliceous admixtures, crystalline silica and amorphous silica materials such as silica powder are used. Examples of amorphous silica substances include silica flame, white carbon, diatomaceous earth,
Examples include silica gel. It is desirable that these amorphous silica substances be contained in the siliceous admixture in an amount of 5 to 80% by weight.
5重量%未満では、耐透水性に期待されるほどの効果は
認められず、また80重量%を越えると流動性あるいは
強度発現性が低下する場合があり好ましくない。シリカ
質混和材の配合量は、低比重セメント組成物から低比重
化材を除いた成分中のCaO/SiO2モル比が0.5
〜1.3の範囲にすることが好ましい様態である。If it is less than 5% by weight, the expected effect on water permeation resistance will not be observed, and if it exceeds 80% by weight, fluidity or strength development may deteriorate, which is not preferable. The content of the siliceous admixture is such that the CaO/SiO2 molar ratio in the low specific gravity cement composition excluding the specific gravity reducing agent is 0.5.
A preferred embodiment is a range of 1.3 to 1.3.
なお、本願のセメント組成物は、上記のベースセメント
、低比重化材およびシリカ質混合材のほかに、必要に応
じて低比重化材のスラリー中での浮上分離防止剤(ベン
トナイト、セルロース、重炭酸アルカリなど)、強度安
定材(消石灰、高炉スラグ)、分散剤および遅硬剤を添
加することもできる。In addition to the above-mentioned base cement, specific gravity reducing material and siliceous mixed material, the cement composition of the present application also contains a flotation prevention agent (bentonite, cellulose, (alkali carbonate, etc.), strength stabilizers (slaked lime, blast furnace slag), dispersants and retardants can also be added.
従来の低比重セメントは、250’C以上の高温高圧下
において耐透水性の低下あるいは強度発現性の低下など
、硬化後の特性が低下するとの問題がみられた。このよ
うな現象は、おもに低比重化材とベースセメントの反応
による硬化体組織の多孔化に起因するものであった。Conventional low-density cements have had problems in that their properties after hardening deteriorate, such as a decrease in water permeability or a decrease in strength development under high temperature and high pressure conditions of 250'C or higher. This phenomenon was mainly caused by the porous structure of the hardened material due to the reaction between the specific gravity reducing material and the base cement.
これについて鋭意研究を行なった結果、シリカ質混和材
として従来使用されてきた結晶質シリカ物質の一部を非
結晶質シリカ物質で代替することにより、上記の欠点が
著しく改善されることを見出した。As a result of conducting intensive research on this issue, it was discovered that the above drawbacks could be significantly improved by substituting a part of the crystalline silica material conventionally used as a siliceous admixture with an amorphous silica material. .
次に実施例により本願発明を説明するが、本願発明はこ
れに限定されない。Next, the present invention will be explained with reference to Examples, but the present invention is not limited thereto.
高温高圧養生はアメリカ石油協会(API)規定の装置
を使用して行い、また硬化体の透水率は同協会規定の装
置を使用して測定した。The high temperature and high pressure curing was performed using equipment specified by the American Petroleum Institute (API), and the water permeability of the cured product was measured using equipment specified by the same association.
〔実施例1〜4、店較例1.2〕
ベースセメント(3CaO−5i0262%、2CaO
−3!0217%、3CaO−A12031%、4Ca
O−A l2o3 * Fe2 o314%、5032
%)、軽量フライアッシュ(見掛比重0.65、平均粒
径109μm)、シリカ質混和材、ベントナイトおよび
消石灰を用い、これらの配合割合(重量基準)をそれぞ
れ、50%、25%、20%、4%および1%一定とし
、シリカ質混和材中の結晶質シリカ物質とシリカフエー
ムとの割合をかえて低比重セメント組成物を調製した。[Examples 1 to 4, store comparison example 1.2] Base cement (3CaO-5i0262%, 2CaO
-3!0217%, 3CaO-A12031%, 4Ca
O-A l2o3 * Fe2 o3 14%, 5032
%), lightweight fly ash (apparent specific gravity 0.65, average particle size 109 μm), siliceous admixture, bentonite, and slaked lime, and the blending ratios (weight basis) of these were 50%, 25%, and 20%, respectively. , 4% and 1% constant, and low specific gravity cement compositions were prepared by varying the proportions of crystalline silica material and silica flame in the siliceous admixture.
これらのセメント組成物100重1部に対して、水を6
8重量部、リグニンスルフォン酸塩系分散剤を0.5重
ff1部添加してスラリーを調製し、350°C121
0に’jf /ctit条件下で養生を行い、各養生日
数の硬化体の透水率を測定した。これらの結果を第1表
に示す。Add 6 parts of water to 1 part by weight of these cement compositions.
A slurry was prepared by adding 8 parts by weight and 1 part by weight of a lignin sulfonate dispersant, and heated at 350°C 121
The cured material was cured under the condition of 'jf/ctit at 0, and the water permeability of the cured material was measured for each number of days of curing. These results are shown in Table 1.
(実施例5.6)
非晶質シリカ物質としてのシリカフエームの代りに、珪
藻土を]0%、ホワイトカーボンを5%添加したほかは
実施例1と同様の組成物を調製し、そのスラリーを35
0’C1210に9f /ci条件下で呑生を行い、各
養生日数の硬化体の透水率を測〔実施例7〜9〕
実施例3と同様の組成物を調製し、そのスラリーを10
0℃、200℃、300℃、210Kzf/crA条件
下で養生を行い、各養生日数の硬化体の透水率を測定し
た。結果を第3表に示す。(Example 5.6) A composition similar to Example 1 was prepared except that 0% of diatomaceous earth and 5% of white carbon were added instead of silica flame as the amorphous silica material, and the slurry was
The water permeability of the cured product was measured at 0'C1210 under 9f/ci conditions. [Examples 7 to 9] The same composition as in Example 3 was prepared, and the slurry was
Curing was performed under conditions of 0° C., 200° C., 300° C., and 210 Kzf/crA, and the water permeability of the cured material was measured for each number of days of curing. The results are shown in Table 3.
〔実施例10〜13〕
ベースセメント(実施例1に同じ)、低比重材(軽量フ
ライアッシュ)結晶性シリカ質物質、非晶質シリカ質物
質(シリカフエーム)、ベントナイト、消石灰の配合割
合をかえて、種々の比重のスラリーを調製し、350℃
で養生した場合について、各養生日数の硬化体の透水率
および圧縮強度を測定した。試料の配合割合を第4表、
透水率および圧縮強さ試験結果を第5表に示す。なお、
無機系遅硬剤(硼酸塩)を添加した場合についても実験
したが、硬化体の透水率および圧縮強さは遅硬剤無添加
時のそれらと大差なかった。[Examples 10 to 13] Changing the blending ratio of base cement (same as Example 1), low specific gravity material (light fly ash), crystalline siliceous material, amorphous siliceous material (silica flame), bentonite, and slaked lime , prepare slurries with various specific gravities and heat at 350°C.
The water permeability and compressive strength of the cured material were measured for each number of days of curing. Table 4 shows the mixing ratio of the sample.
The water permeability and compressive strength test results are shown in Table 5. In addition,
Experiments were also conducted with the addition of an inorganic retardant (borate), but the water permeability and compressive strength of the cured product were not significantly different from those obtained without the retardant.
(発明の効果)
従来の低比重セメントは、250℃以上の高温高圧下に
おいて耐透水性の低下あるいは強度発現性の低乍なと、
硬化後の特性が低下するとの問題がみられた。このよう
な現象は、おもに低比重化材とベースセメントの反応に
よる硬化体組織の多孔化に起因するものであった。(Effects of the invention) Conventional low specific gravity cements suffer from decreased water permeability or poor strength development under high temperature and high pressure conditions of 250°C or higher.
A problem was observed in which the properties after curing deteriorated. This phenomenon was mainly caused by the porous structure of the hardened material due to the reaction between the specific gravity reducing material and the base cement.
これについて鋭意研究を行なった結果、シリカ質混和材
として従来使用されてきた結晶質シリカ物質の一部を非
結晶質シリカ物質で代替することにより、上記の欠点が
著しく改善されることを見出した。As a result of conducting intensive research on this issue, it was discovered that the above drawbacks could be significantly improved by substituting a part of the crystalline silica material conventionally used as a siliceous admixture with an amorphous silica material. .
本願のセメント組成物は、油井、地熱井のセメチング材
料として、100℃以上の高温高圧下、とりわけ250
℃を、越えるような高温度の坑共に優れた硬化特性を示
すものである。現在、技術開発が進められている高温岩
体発電用の注水弁あるいは生産井などにも、十分使用で
きる。The cement composition of the present application can be used as a cementing material for oil wells and geothermal wells at high temperatures and pressures of 100°C or higher, especially at 250°C.
It exhibits excellent hardening properties even at high temperatures exceeding ℃. It can also be used in water injection valves and production wells for high-temperature rock power generation, which are currently undergoing technological development.
また、本願のセメント組成物は耐熱性および保温性が要
求される温泉工事、一般の土木建築工事にも使用するこ
とができる。Furthermore, the cement composition of the present application can be used for hot spring construction and general civil engineering and construction work that require heat resistance and heat retention.
Claims (4)
材からなり、かつシリカ質混和材の一部が非晶質シリカ
物質であることを特徴とする高温度用低比重セメント組
成物。(1) A low specific gravity cement composition for high temperatures, comprising a base cement, a specific gravity reducing agent, and a siliceous admixture, and a part of the siliceous admixture is an amorphous silica substance.
重量%含有されている特許請求範囲第(1)項記載の高
温度用低比重セメント組成物。(2) Amorphous silica substance in siliceous admixture is 5 to 80%
% by weight of the high temperature low specific gravity cement composition according to claim (1).
土である特許請求範囲第(1)項記載の高温度用低比重
セメント組成物。(3) The low specific gravity cement composition for high temperatures according to claim (1), wherein the amorphous silica material is silica foam or diatomaceous earth.
ン、パーライトあるいはガラスバルーンである特許請求
範囲第(1)項記載の高温度用低比重セメント組成物。(4) The low specific gravity cement composition for high temperatures according to claim (1), wherein the specific gravity reducing material is lightweight fly ash, shirasu balloon, perlite, or glass balloon.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP15878486A JPH0699171B2 (en) | 1986-07-08 | 1986-07-08 | Geothermal well cement composition |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP15878486A JPH0699171B2 (en) | 1986-07-08 | 1986-07-08 | Geothermal well cement composition |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6317246A true JPS6317246A (en) | 1988-01-25 |
JPH0699171B2 JPH0699171B2 (en) | 1994-12-07 |
Family
ID=15679261
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP15878486A Expired - Fee Related JPH0699171B2 (en) | 1986-07-08 | 1986-07-08 | Geothermal well cement composition |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0699171B2 (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0731253A3 (en) * | 1995-03-06 | 1997-10-15 | Halliburton Co | Combating lost circulation during the drilling of wells |
US6502636B2 (en) * | 1999-09-07 | 2003-01-07 | Halliburton Energy Services, Inc. | Methods and compositions for grouting heat exchange pipe |
JP2003506527A (en) * | 1999-07-29 | 2003-02-18 | ソフィテック、ナムローゼ、フェンノートシャップ | Low density and low porosity cementing slurries for oil wells, etc. |
WO2003074443A1 (en) * | 2002-03-06 | 2003-09-12 | Halliburton Energy Services, Inc. | Lightweight well cement compositions and methods |
JP2008239403A (en) * | 2007-03-27 | 2008-10-09 | Taiheiyo Cement Corp | Hydraulic composition |
JP2009530220A (en) * | 2006-03-21 | 2009-08-27 | ハルリブルトン エネルギ セルビセス インコーポレーテッド | Low hydration thermal cement composition and method of using the composition |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS51146524A (en) * | 1975-05-30 | 1976-12-16 | Gaf Corp | Wood reinforced cement materials and method of manufacturing thereof |
JPS5345322A (en) * | 1976-10-07 | 1978-04-24 | Ube Industries | Production of ultralighttweight concrete of high strength |
JPS5423937A (en) * | 1977-07-22 | 1979-02-22 | Toshiba Ray O Vac | Alkaline cell |
JPS5549112A (en) * | 1978-10-04 | 1980-04-09 | Toshiba Corp | Control method of gravity type filtering basin |
JPS566381A (en) * | 1979-06-28 | 1981-01-22 | Toshiba Battery Co Ltd | Manufacturing method of alkaline cell |
JPS5748499A (en) * | 1980-08-29 | 1982-03-19 | Tanaka Precious Metal Ind | Method of boring spinning mouthpiece |
JPS58131600A (en) * | 1981-11-10 | 1983-08-05 | ソシエテ・アンデユストリエル・ドウ・ストカ−ジユ・エ・ダサニスマン | Method of storing radioactive waste in underground |
JPS60112660A (en) * | 1983-11-21 | 1985-06-19 | 松下電工株式会社 | Manufacture of inorganic hardened body |
-
1986
- 1986-07-08 JP JP15878486A patent/JPH0699171B2/en not_active Expired - Fee Related
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS51146524A (en) * | 1975-05-30 | 1976-12-16 | Gaf Corp | Wood reinforced cement materials and method of manufacturing thereof |
JPS5345322A (en) * | 1976-10-07 | 1978-04-24 | Ube Industries | Production of ultralighttweight concrete of high strength |
JPS5423937A (en) * | 1977-07-22 | 1979-02-22 | Toshiba Ray O Vac | Alkaline cell |
JPS5549112A (en) * | 1978-10-04 | 1980-04-09 | Toshiba Corp | Control method of gravity type filtering basin |
JPS566381A (en) * | 1979-06-28 | 1981-01-22 | Toshiba Battery Co Ltd | Manufacturing method of alkaline cell |
JPS5748499A (en) * | 1980-08-29 | 1982-03-19 | Tanaka Precious Metal Ind | Method of boring spinning mouthpiece |
JPS58131600A (en) * | 1981-11-10 | 1983-08-05 | ソシエテ・アンデユストリエル・ドウ・ストカ−ジユ・エ・ダサニスマン | Method of storing radioactive waste in underground |
JPS60112660A (en) * | 1983-11-21 | 1985-06-19 | 松下電工株式会社 | Manufacture of inorganic hardened body |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0731253A3 (en) * | 1995-03-06 | 1997-10-15 | Halliburton Co | Combating lost circulation during the drilling of wells |
JP2003506527A (en) * | 1999-07-29 | 2003-02-18 | ソフィテック、ナムローゼ、フェンノートシャップ | Low density and low porosity cementing slurries for oil wells, etc. |
JP4731773B2 (en) * | 1999-07-29 | 2011-07-27 | ソフィテック、ナムローゼ、フェンノートシャップ | Low density and low porosity cementing slurry for oil wells etc. |
US6502636B2 (en) * | 1999-09-07 | 2003-01-07 | Halliburton Energy Services, Inc. | Methods and compositions for grouting heat exchange pipe |
WO2003074443A1 (en) * | 2002-03-06 | 2003-09-12 | Halliburton Energy Services, Inc. | Lightweight well cement compositions and methods |
JP2009530220A (en) * | 2006-03-21 | 2009-08-27 | ハルリブルトン エネルギ セルビセス インコーポレーテッド | Low hydration thermal cement composition and method of using the composition |
JP2008239403A (en) * | 2007-03-27 | 2008-10-09 | Taiheiyo Cement Corp | Hydraulic composition |
Also Published As
Publication number | Publication date |
---|---|
JPH0699171B2 (en) | 1994-12-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6656265B1 (en) | Cementation product and use for cementing oil wells or the like | |
US5346012A (en) | Fine particle size cement compositions and methods | |
US7282093B2 (en) | Cement compositions with improved mechanical properties and methods of cementing in subterranean formations | |
US7892352B2 (en) | Well treatment compositions and methods utilizing nano-particles | |
US7806183B2 (en) | Well treatment compositions and methods utilizing nano-particles | |
US8157009B2 (en) | Cement compositions and associated methods comprising sub-micron calcium carbonate and latex | |
US8327939B2 (en) | Settable compositions comprising cement kiln dust and rice husk ash and methods of use | |
US6644405B2 (en) | Storable water-microsphere suspensions for use in well cements and methods | |
US6457523B1 (en) | Delayed thixotropic cement compositions and methods | |
US9346711B2 (en) | Geopolymer cement compositions and methods of use | |
US20050247238A1 (en) | Cement compositions with improved mechanical properties and methods of cementing in a subterranean formation | |
US20020157575A1 (en) | High temperature flexible cementing compositions and methods for using same | |
WO2021162712A1 (en) | Geopolymer cement for use in subterranean operations | |
CN111362656A (en) | Well cementing oil well cement composition and preparation method thereof | |
JPS6317246A (en) | Low specific gravity cement composition for high temperature | |
US8997866B2 (en) | Cement compositions comprising lignite-based grafted copolymers and methods of use | |
Agista et al. | Zonal Isolation Material for Low-Temperature Shallow-Depth Application: Evaluation of Early Properties Development | |
US20230111521A1 (en) | Design For Fluid Loss Requirement Of A Cement Slurry Using Bulk Blend Materials | |
Gaurina-Međimurec et al. | Effect of microblock on the compressive strength of portland cement at elevated temperatures | |
Salehi et al. | Laboratory investigation of high performance geopolymer based slurries | |
US11453816B2 (en) | Accelerated cement compositions and methods for treating lost circulation zones | |
NO337272B1 (en) | Lightweight cement mix and method for cementing in underground zone penetrated by drill well | |
WO2020217967A1 (en) | Borehole cement slurry additive, method for storing same, borehole cement slurry, and borehole cementing method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |