JPS6317202A - Catalytic combustion heating apparatus - Google Patents

Catalytic combustion heating apparatus

Info

Publication number
JPS6317202A
JPS6317202A JP15605986A JP15605986A JPS6317202A JP S6317202 A JPS6317202 A JP S6317202A JP 15605986 A JP15605986 A JP 15605986A JP 15605986 A JP15605986 A JP 15605986A JP S6317202 A JPS6317202 A JP S6317202A
Authority
JP
Japan
Prior art keywords
fuel
combustion
fuel supply
supply pipe
catalyst layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15605986A
Other languages
Japanese (ja)
Inventor
Yoshio Naganuma
永沼 義男
Kazunari Shimada
一成 島田
Ryokichi Yamada
山田 良吉
Shunsuke Nokita
舜介 野北
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP15605986A priority Critical patent/JPS6317202A/en
Publication of JPS6317202A publication Critical patent/JPS6317202A/en
Pending legal-status Critical Current

Links

Landscapes

  • Spray-Type Burners (AREA)
  • Hydrogen, Water And Hydrids (AREA)

Abstract

PURPOSE:To provide the titled compact and high-performance apparatus enabling uniform combustion, by inserting a fuel supply pipe having plural multi-hole nozzles into a combustion catalyst layer and providing a number of protrusions to the outer surface of the tube at intervals narrower than the diameter of the surrounding filled particle. CONSTITUTION:A gaseous fuel containing plural combustible components is catalytically burnt in the presence of an oxidation catalyst. In the above apparatus, a fuel supply tube 4 having plural nozzle holes 16 is inserted in a combustion catalyst layer and a number of protrusions 17 are attached to the outer surface of the fuel supply tube 4 at intervals narrower than the diameter of the surrounding filled particles 2. A space having high void ratio is formed around the supply tube 4 corresponding to the height of the protrusion attached to the fuel supply tube and the fuel ejected from the nozzle hole 16 is spread in the space and then distributed into the surrounding combustion catalyst layer. Accordingly, the fuel dispersion can be uniformized, the influence of the configuration (pitch and diameter) of the nozzle holes 16 on the temperature distribution can be reduced and the blocking of the nozzle hole 16 can be prevented.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、アルコール類や、炭化水素系燃料を水蒸気改
質して水素を生成する燃料改質装置に係り、特に、燃料
電池用及び半導体製造などで用いられるオンサイト型の
純水素製造装置用に好適な燃焼加熱装置に関する。
Detailed Description of the Invention [Field of Industrial Application] The present invention relates to a fuel reformer that generates hydrogen by steam reforming alcohol or hydrocarbon fuel, and is particularly applicable to fuel cells and semiconductors. The present invention relates to a combustion heating device suitable for on-site pure hydrogen production equipment used in manufacturing and the like.

〔従来の技術〕[Conventional technology]

従来の燃料改質装置は、特開昭53−78983号公報
の例に代表されるように、改質触媒を反応管に充填して
改質触媒層を形成し、この反応管を周囲から燃焼ガスや
熱媒体により加熱する外熱方式が主であった。この従来
方式では、多数の反応管を配置した反応部と反応管を加
熱する燃焼ガスや高温の熱媒体を得るための燃焼部が独
立しているため、加熱媒体の流路を確保する必要があっ
た。このため、改質装置の容積が大きくなり、小型装置
に不向きであった。一方、最近の燃料改質装置は燃料電
池や半導体製造用のオンサイト型に適用するため小型、
高性能化が求められている。この要求に対応するため、
特開昭59−18102号公報に例示されるような触媒
燃焼を利用して反応部に隣接して加熱できる形式の改質
装置が考案されている。
Conventional fuel reformers, as typified by the example of JP-A-53-78983, fill a reaction tube with a reforming catalyst to form a reforming catalyst layer, and then burn the reaction tube from the surroundings. The main method was external heat heating using gas or heat medium. In this conventional method, the reaction section with a large number of reaction tubes and the combustion section for obtaining combustion gas to heat the reaction tubes and high-temperature heat medium are independent, so it is necessary to secure a flow path for the heating medium. there were. For this reason, the volume of the reformer becomes large, making it unsuitable for small-sized equipment. On the other hand, recent fuel reformers are small,
Higher performance is required. In order to meet this demand,
A reformer of a type that can heat adjacent to a reaction section using catalytic combustion has been devised, as exemplified in Japanese Patent Application Laid-Open No. 59-18102.

このような触媒燃焼方式では供給燃料の燃焼が燃焼触媒
との接触により行われるため、局部加熱が起こりやすい
、これをなくし均一な加熱温度を得るには燃料供給の均
一化を図る必要がある。しかし、従来の例では、そのた
めの燃料分配法や燃料供給管の構造までは考慮されてい
なかった。
In such a catalytic combustion system, the combustion of the supplied fuel is carried out through contact with the combustion catalyst, so local heating is likely to occur.In order to eliminate this and obtain a uniform heating temperature, it is necessary to equalize the fuel supply. However, in the conventional example, the fuel distribution method and the structure of the fuel supply pipe have not been considered.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上記従来技術による触媒燃焼式燃料改質装置では改質部
に隣接して燃焼触媒を担持した燃焼部を一1供給燃料の
流路として使用する。このため、入り・・口から供給さ
れた燃料は流路に担持した燃焼触媒と接触しながら燃焼
し、発生した燃焼ガスを出口から排出する。しかし、こ
の間の燃焼による発熱反応は、大部分燃料入り口付近で
完了するため、入り口付近が非常に高温になる。この結
果、燃焼触媒の熱劣化が促進し、さらに、改質触媒層へ
の伝熱状態も不均一になり、改質反応に必要な熱を充分
に供給できなくなり、反応率の低下をまねく。
In the catalytic combustion type fuel reformer according to the prior art described above, a combustion section supporting a combustion catalyst adjacent to the reforming section is used as a flow path for the supplied fuel. Therefore, the fuel supplied from the inlet burns while contacting the combustion catalyst supported in the flow path, and the generated combustion gas is discharged from the outlet. However, most of the exothermic reaction due to combustion during this period is completed near the fuel inlet, resulting in a very high temperature near the inlet. As a result, thermal deterioration of the combustion catalyst is accelerated, and furthermore, the state of heat transfer to the reforming catalyst layer becomes non-uniform, making it impossible to sufficiently supply the heat necessary for the reforming reaction, leading to a reduction in the reaction rate.

また、メタノールを原料とする改質装置では、改質触媒
層の温度が250ないし300℃と燃焼部の温度に比較
して低いため、燃焼部における局部燃焼は改質反応部の
局部加熱につながり、改質触媒の熱劣化を促進する。
In addition, in a reformer that uses methanol as a raw material, the temperature of the reforming catalyst layer is 250 to 300°C, which is lower than the temperature of the combustion section, so local combustion in the combustion section leads to local heating of the reforming reaction section. , promotes thermal deterioration of the reforming catalyst.

本発明の目的は、触媒燃焼式改質装置における触媒層の
均一加熱のために、燃料供給時の燃料供給の分散をはか
り、均一な燃焼を可能とするコンパクトで高性能な触媒
燃焼加熱装置を提供することにある。
An object of the present invention is to provide a compact and high-performance catalytic combustion heating device that distributes the fuel supply during fuel supply and enables uniform combustion in order to uniformly heat the catalyst layer in a catalytic combustion reformer. It is about providing.

〔問題点を解決するための手段〕[Means for solving problems]

上記目的は、触媒燃焼式加熱装置における燃焼触媒層内
への供給燃料を分配し、均一燃焼状態を得るため、触媒
燃焼層に複数の多孔ノズルを設けた燃料供給管を挿入し
、燃料供給管の外表面に。
The above purpose is to distribute the fuel supplied to the combustion catalyst layer in a catalytic combustion heating device and to obtain a uniform combustion state, by inserting a fuel supply pipe with multiple porous nozzles into the catalytic combustion layer. on the outer surface of.

燃焼触媒など周囲の充填粒子径より小さい配列間隔(ピ
ッチ)に多数の突起を設けることにより達成される。ま
た、燃料供給管を通気性のある多孔質材料で構成したノ
ズル孔を持たないしみだし型とすることにより達成され
る。
This is achieved by providing a large number of protrusions at a pitch smaller than the diameter of surrounding packed particles such as combustion catalysts. Further, this can be achieved by making the fuel supply pipe a seepage type having no nozzle holes and made of a porous material with air permeability.

〔作用〕[Effect]

複数の燃料供給管により燃焼触媒層への供給燃料を分割
することは、−箇所光たりの供給燃料が燃焼触媒と接触
し反応する単位触媒量当たりの発熱量が少なくなり、し
かも、発熱位置が分割した燃料供給管ごとに触媒層に分
散されるため加熱側である燃焼部温度を均一にする作用
がある。さらに改質触媒層の吸熱量の大きさに応じて供
給する燃料量を部分的に調節できるため、均一温度分布
を得るための温度制御性がよくなる。
Dividing the fuel supplied to the combustion catalyst layer by multiple fuel supply pipes reduces the amount of heat generated per unit amount of catalyst when the supplied fuel contacts and reacts with the combustion catalyst, and moreover, the heat generation position is Since the fuel is dispersed in the catalyst layer for each divided fuel supply pipe, it has the effect of making the temperature of the combustion part, which is the heating side, uniform. Furthermore, since the amount of fuel to be supplied can be partially adjusted depending on the amount of heat absorbed by the reforming catalyst layer, temperature controllability for obtaining uniform temperature distribution is improved.

また、各燃料供給管の外表面に設けた突起は、燃料供給
管の近傍に周囲の燃焼触媒などによる充1□填層より空
隙の大きい空間を作る作用がある。こ゛、で れにより、燃料供給管のノズル孔から噴出した燃料は供
給管周囲の空隙部に分散し、各ノズルから噴出した燃料
間の混合が促進される。この結果、ノズル孔付近の燃焼
触媒層に生じる局部燃焼を抑制し、均一温度分布を作る
ことに効果がある。
Further, the protrusions provided on the outer surface of each fuel supply pipe have the effect of creating a space near the fuel supply pipe that has larger voids than the filling layer formed by the surrounding combustion catalyst and the like. Due to this, the fuel ejected from the nozzle hole of the fuel supply pipe is dispersed in the gap around the supply pipe, and mixing between the fuels ejected from each nozzle is promoted. As a result, it is effective in suppressing local combustion occurring in the combustion catalyst layer near the nozzle hole and creating a uniform temperature distribution.

〔実施例〕〔Example〕

以下、本発明の一実施例を第1図により説明する0本実
施例ではメタノールを原料とする改質装置に利用した場
合を説明する。改質触媒1には、銅−亜鉛系触媒を使用
し、燃焼触媒2にはパラジウム系触媒を使用している。
Hereinafter, one embodiment of the present invention will be described with reference to FIG. 1. In this embodiment, a case where the present invention is applied to a reformer using methanol as a raw material will be described. A copper-zinc catalyst is used as the reforming catalyst 1, and a palladium catalyst is used as the combustion catalyst 2.

これらの触媒により形成する触媒層は、隔壁2を介して
改質触媒層と燃焼触媒層を交互に配置し、全体として積
層構造のプレート熱交型改質装置を構成している0本装
置の大きさは、水素生成量約8ONm’/h  とする
と、改質触媒の必要量は約6012になり、一層当たり
の層の厚さを40mに設定すると触媒層部では燃焼触媒
層を含めて厚さ250+nw、横幅600■、高さ85
0mとなる。さらに、ヘッダ部や断熱材15などを含め
たケーシング14全体では、およそ、500X750X
1200+mの大きさになる。この規模の改質装置を燃
料電池用として使用する場合は、約70KW級のシステ
ムに相当する。これは、従来の反応管型の改質装置と比
較して数分の−の小型装置になっている。
The catalyst layer formed by these catalysts is one in which the reforming catalyst layer and the combustion catalyst layer are arranged alternately through the partition wall 2, and the entire plate heat exchanger type reformer has a laminated structure. Assuming that the amount of hydrogen produced is approximately 8 ONm'/h, the required amount of reforming catalyst is approximately 6012 mm, and if the thickness of each layer is set to 40 m, the thickness of the catalyst layer including the combustion catalyst layer is Size 250+nw, width 600■, height 85
It becomes 0m. Furthermore, the entire casing 14 including the header section, heat insulating material 15, etc. is approximately 500X750X.
The size will be 1200+m. When a reformer of this scale is used for a fuel cell, it corresponds to a system of approximately 70 KW class. This is a compact device that is several minutes smaller than a conventional reaction tube type reformer.

以下に本実施例の動作について説明する。この改質装置
では、改質部側で改質原料5をメタノールと水蒸気をS
/C(スチーム・カーボン比)=1.5 に混合し、気
化状態で原料供給ヘッダ10より供給される。このヘッ
ダ部に供給された改質原料はハニカム状の触媒支持板9
を通過し各改質触媒層に入る。改質触媒層では、隣接す
る燃焼触媒層で発生した熱を受は改質反応が進行する。
The operation of this embodiment will be explained below. In this reformer, the reforming raw material 5 is converted into methanol and steam by S on the reforming section side.
/C (steam/carbon ratio)=1.5, and is supplied from the raw material supply header 10 in a vaporized state. The reforming raw material supplied to this header is formed into a honeycomb-shaped catalyst support plate 9.
and enters each reforming catalyst layer. In the reforming catalyst layer, the reforming reaction proceeds as the heat generated in the adjacent combustion catalyst layer is received.

この改質反応は約300℃で行われる。ここで原料であ
るメタノールは水素を主成分とする改質ガスになり、改
質ガスへラダ11に集められ、生成した改質ガスは改質
ガス取り出し管13から取り出される。この改質ガスは
、用途に応じて燃料型部用燃料、あるいは、高純度水素
を得るためのPSA’装置の原料として利用される。一
方、燃焼部側では、加熱用燃料7は各燃料供給管を通し
て燃焼触媒層へ供給される。一般には、燃料として改質
原料の一部が用いられるが、改質装置と組み合わせた装
置から排出されるオフガス等も燃料として用いることも
できる。例えば、燃料電池と組み合わせたシステムでは
電池アノード極から排出される未反応水素を含んだ排ガ
スを燃料にすることができる。ただし、触媒燃焼で使用
される燃料は、あらかじめ燃焼用空気と混合した予混合
燃料とじて使用されることが均一燃焼に好ましい0本実
施例でも燃料7は、空気と予混合して供給するため、特
に、燃焼部への空気供給系を必要としない、燃料供給管
から燃焼触媒層に供給された燃料は、供給管周囲に充填
しである燃焼触媒との接触により燃焼反応が行われる。
This modification reaction takes place at about 300°C. Here, methanol, which is a raw material, becomes a reformed gas containing hydrogen as a main component, and the reformed gas is collected in the ladder 11, and the generated reformed gas is taken out from the reformed gas take-off pipe 13. This reformed gas is used as a fuel for a fuel mold section or as a raw material for a PSA' device to obtain high-purity hydrogen, depending on the purpose. On the other hand, on the combustion section side, heating fuel 7 is supplied to the combustion catalyst layer through each fuel supply pipe. Generally, a part of the reformed raw material is used as fuel, but off-gas etc. discharged from a device combined with a reformer can also be used as fuel. For example, in a system combined with a fuel cell, exhaust gas containing unreacted hydrogen discharged from the cell anode can be used as fuel. However, it is preferable for uniform combustion that the fuel used in catalytic combustion be used as a premixed fuel that has been mixed with combustion air in advance.In this embodiment, the fuel 7 is also supplied premixed with air. In particular, the fuel supplied to the combustion catalyst layer from the fuel supply pipe, which does not require an air supply system to the combustion section, undergoes a combustion reaction by contacting with the combustion catalyst filled around the supply pipe.

燃焼による発熱は各燃料供給管付近で生じるため1本実
施例では触媒層一層当たり三箇所が熱発生源になる。燃
焼ガスの流れは改質側の原料の流れと同様に触媒層の下
方から上方に向かって流れ、触媒層を出た後は、燃焼ガ
ス排気管12から装置外へ排出される。この燃焼部にお
いて、燃焼触媒層に挿入した燃料供給管に多数の突起を
設けたことが、本発明による特徴である。第1図の実施
例に示す燃料供給管の詳細構造を第2図に示す、燃料供
給管には燃料噴出のために複数のノズル孔16が設けら
れている。また。
Since heat generation due to combustion occurs near each fuel supply pipe, in this embodiment, three locations per catalyst layer become heat generation sources. The flow of combustion gas flows upward from below the catalyst layer in the same manner as the flow of the raw material on the reforming side, and after leaving the catalyst layer, it is discharged from the combustion gas exhaust pipe 12 to the outside of the apparatus. A feature of the present invention is that in this combustion section, a large number of protrusions are provided on the fuel supply pipe inserted into the combustion catalyst layer. FIG. 2 shows the detailed structure of the fuel supply pipe shown in the embodiment shown in FIG. 1. The fuel supply pipe is provided with a plurality of nozzle holes 16 for ejecting fuel. Also.

供給管の外表面には本発明の一実施例となる針状の突起
17を多数設けている。この燃料供給管構造により突起
高さの分だけ供給管周囲に空隙の大きい空間が生じる。
A large number of needle-shaped protrusions 17 according to an embodiment of the present invention are provided on the outer surface of the supply pipe. This fuel supply pipe structure creates a space with a large gap around the supply pipe by the height of the protrusion.

このため、ノズル孔から噴出した燃料は供給管周囲の突
起による空隙部に満たされた後に1周囲の燃焼触媒層に
分散する。この結果、従来の突起のない燃料供給管使用
の場合には、ノズル孔とノズル孔の間には燃料供給がさ
れにくく、ノズル孔付近のみが高温になる局部燃焼が娶
ったのに対し、本発明により燃料供給管から燃焼触媒層
への燃料分散が均一になり、ノズル孔配置(ピッチ、孔
径)の温度分布に与える影響を少なくすることができる
。また、燃料供給管に突−起を設けたため、燃料供給管
周囲の粒子によるノ’、C7,?1O17[□イう、わ
7.。オフゎ6、突起を設けることにより、周囲の粒子
が燃料供給管に直接接触出来なくなるため、ノズル孔を
閉塞することがなくなる。このように、ノズル孔を持つ
燃料供給管において、a料の分散供給の機能を高める突
起構造の他の実施例として、第3図に示す板状の突起1
8をもつ構造が考えられる。これは燃料供給管に円盤状
の板を供給管の軸方向に対して垂直に取り付けたもので
ある。ただし、この場合に取り付ける板の間隔は周囲の
粒子径より小さいピッチとすることが必要である。また
、ノズル孔間の燃料の流通をよくするため使用する板に
は、多数の穴をあけた多孔板を用いる。この板は開孔比
が大きいほど燃料の分散性が良くなる。燃料供給管に設
けた突起の強度は、周囲の充填粒子の自重による圧力に
対して押しつぶされない程度でよい。このため、通常は
供給管と同じくステンレス等の金属材料で作られる。第
4図は第1図に示す実施例の改質装置において、燃料供
給管を薄板状とした場合の実施例を燃焼触媒層1層に着
目して示したものである6本実施例の特徴は、燃料供給
管を燃焼触媒層の厚さに比較して、1/4ないし115
の薄板状の厚さにしたことにある。その詳細を第5図に
示す。断面は矩形であり、内部にバッフル板19を配置
している。ノズル孔は供給管の下面に付けられ本発明に
よる突起も下面にのみ付けられている。燃料は矢印のよ
うに供給され、バッフル板に沿って流れ、供給管先端で
折り返され、下方の各ノズル孔から噴出される1本実施
例の燃料供給管では供給した燃料が管内部を流れる間に
予熱され易い。これは燃料の流路がバッフル板により長
く取られていること、薄板状の矩形構造であるため単位
断面光たり周の表面積が大きく周囲からの伝熱が容易な
ことによる。このため、従来の燃料供給管からは予熱さ
れない燃料が燃焼触媒層に供給されていたため、燃料供
給後の燃焼温度の立ち上がりが悪くなる。また、二段目
以降の燃料供給管付近では上流の一段目で発生した高温
ガスを一時的に冷却するように作用する。
Therefore, the fuel ejected from the nozzle hole fills the void formed by the protrusion around the supply pipe, and then disperses into the surrounding combustion catalyst layer. As a result, when using conventional fuel supply pipes without protrusions, it was difficult to supply fuel between the nozzle holes, resulting in localized combustion where only the vicinity of the nozzle holes became hot. According to the invention, fuel can be uniformly distributed from the fuel supply pipe to the combustion catalyst layer, and the influence of nozzle hole arrangement (pitch, hole diameter) on temperature distribution can be reduced. In addition, since the fuel supply pipe is provided with a protrusion, particles around the fuel supply pipe may cause damage to the fuel supply pipe. 1O17[□I, 7. . 6. Providing the protrusion prevents surrounding particles from coming into direct contact with the fuel supply pipe, thereby eliminating the possibility of clogging the nozzle hole. As described above, as another example of a protrusion structure that enhances the function of distributing the a-material in a fuel supply pipe having a nozzle hole, a plate-shaped protrusion 1 shown in FIG.
A structure with 8 is considered. This is a fuel supply pipe in which a disk-shaped plate is attached perpendicularly to the axial direction of the supply pipe. However, in this case, the intervals between the attached plates must be smaller than the diameter of the surrounding particles. In addition, a perforated plate with a large number of holes is used for the plate used to improve the flow of fuel between the nozzle holes. The larger the aperture ratio of this plate, the better the fuel dispersibility. The strength of the protrusion provided on the fuel supply pipe may be such that it will not be crushed by the pressure due to the weight of the surrounding filling particles. For this reason, it is usually made of a metal material such as stainless steel, like the supply pipe. Figure 4 shows an example in which the fuel supply pipe is made into a thin plate in the reformer of the example shown in Figure 1, focusing on one combustion catalyst layer. 6 Features of this Example The thickness of the fuel supply pipe is 1/4 to 115 compared to the thickness of the combustion catalyst layer.
The reason is that it has a thin plate-like thickness. The details are shown in FIG. The cross section is rectangular, and a baffle plate 19 is arranged inside. The nozzle hole is attached to the lower surface of the supply pipe, and the protrusion according to the invention is also attached only to the lower surface. Fuel is supplied as shown by the arrow, flows along the baffle plate, is folded back at the tip of the supply pipe, and is ejected from each nozzle hole below.In the fuel supply pipe of this embodiment, while the supplied fuel flows inside the pipe, Easy to preheat. This is because the fuel flow path is long due to the baffle plate, and because it has a thin rectangular structure, it has a large unit cross-sectional area and a large circumferential surface area, making it easy to transfer heat from the surroundings. For this reason, since fuel that is not preheated is supplied to the combustion catalyst layer from the conventional fuel supply pipe, the combustion temperature rises slowly after the fuel is supplied. Further, near the fuel supply pipes in the second and subsequent stages, it acts to temporarily cool the high-temperature gas generated in the first stage upstream.

このため、第4図の温度分布で示されるように従来方式
の供給管では燃焼触媒層外表面の温度の不均一が大きい
、しかし、本発明による薄板状の燃料供給管を用いた改
質装置では改善され、はぼ、均一な温度分布を得ている
。なお、突起による燃料分散効果は先の実施例と同様で
ある。第6図は薄板状燃料供給管にエツジを付けた実施
例を示す。
For this reason, as shown in the temperature distribution in FIG. 4, in the conventional system supply pipe, the temperature nonuniformity on the outer surface of the combustion catalyst layer is large. However, the reformer using the thin plate-shaped fuel supply pipe according to the present invention Now we have an improved, more even temperature distribution. Note that the fuel dispersion effect by the protrusions is the same as in the previous embodiment. FIG. 6 shows an embodiment in which a thin plate fuel supply pipe is provided with an edge.

燃料供給管内部の構造は第5図の実施例と同様にバッフ
ル板を設けたタイプになっている。ノズル孔はエツジ部
の両側に設けられ、突起もノズル孔のあるエツジ面に設
けである。このため、供給管左右への燃料分散が均等に
行われ、左右均一量の燃料供給により燃焼温度の分布も
均一化できる。
The internal structure of the fuel supply pipe is of the type provided with a baffle plate, similar to the embodiment shown in FIG. The nozzle holes are provided on both sides of the edge portion, and the protrusions are also provided on the edge surface where the nozzle holes are located. Therefore, the fuel is evenly distributed to the left and right sides of the supply pipe, and the combustion temperature distribution can also be made uniform by supplying a uniform amount of fuel to the left and right sides.

さらに、本実施例ではノズル下流側(第6図の上方)も
エツジ状の断面構造にしているため、ノズルから左右に
噴出した燃料は供給管に沿って流れ。
Furthermore, in this embodiment, since the downstream side of the nozzle (the upper part of FIG. 6) also has an edge-shaped cross-sectional structure, the fuel ejected left and right from the nozzle flows along the supply pipe.

後流のエツジ部で円滑に合流する。このため供給管のす
ぐ下流に位置する燃焼触媒層でも供給燃料の淀み部がな
く十分に接触するので、良好な燃焼状態が得られる。
They merge smoothly at the edge of the wake. Therefore, even in the combustion catalyst layer located immediately downstream of the supply pipe, there is no stagnation of the supplied fuel and there is sufficient contact, so that a good combustion state can be obtained.

以上、ノズル孔をもつ燃料供給管に突起を設けることに
より、燃焼の均一化をはかったプレート熱交型改質装置
の実施例を二、三例示した。さらに、ノズル孔を小さく
し無数に設けた燃料供給管を考えると周囲粒子によるノ
ズル孔の閉塞の影響も小さく、供給管に突起を設けたこ
とと同様の燃料分散効果持つ方法として、燃料供給管を
多孔質材料で構成する例である。この場合、燃料は供給
管の全表面からしみ出すように噴出し、燃焼触媒層に供
給される。このため、従来のノズル孔を持つ燃料供給管
のように、ノズル位置が燃料分散時の不均一に与える影
響がな、くなり、局部加熱の無い均一な加熱部の温度分
布が得られる。
A few examples of plate heat exchange type reformers have been described above, in which a protrusion is provided on a fuel supply pipe having a nozzle hole to achieve uniform combustion. Furthermore, considering that the nozzle hole is small and the fuel supply pipe is installed in countless numbers, the influence of clogging of the nozzle hole by surrounding particles is small. This is an example in which the material is made of porous material. In this case, the fuel is ejected from the entire surface of the supply pipe and is supplied to the combustion catalyst layer. Therefore, unlike conventional fuel supply pipes with nozzle holes, the nozzle position does not affect unevenness during fuel dispersion, and a uniform temperature distribution in the heated portion without local heating can be obtained.

第7図は第1図に示す実施例の燃料改質装置において突
起を設けた燃料供給管の下流側に静止型混合器20を配
置した燃料改質装置の一実施例を示す、ここに配置した
静止型混合器は1例えば、第8図に示すようなものであ
る。この混合器は円管21の内部にねじれ方向の異なる
偏流板22を交互方向に数段取り付けたものを単位ユニ
ットとし、これを束ねて燃料供給管の長さ方向に沿って
配置したものである。この静止型混合器はガスを通過さ
せるだけで偏流板の枚数に応じた混合状態が得られる0
例えば、第8図の例では偏流板五枚を用い、混合器を通
過したガスは理論上玉十二分の−まで分割混合される。
FIG. 7 shows an embodiment of the fuel reformer in which a static mixer 20 is arranged downstream of the fuel supply pipe provided with a protrusion in the fuel reformer of the embodiment shown in FIG. One such static mixer is shown in FIG. 8, for example. This mixer is made up of a circular pipe 21 in which several stages of deflection plates 22 with different twist directions are attached in alternating directions, which are bundled and arranged along the length of the fuel supply pipe. . This static mixer can obtain a mixing state according to the number of drift plates just by passing the gas.
For example, in the example shown in FIG. 8, five drift plates are used, and the gas that has passed through the mixer is theoretically divided into 12 parts and mixed.

このような混合器を燃料供給管の下流に第7図のように
配置することにより、燃料供給管から噴出した燃料の一
部が上流で発生した燃焼ガスおよび過剰の空気と混合器
に入り、通過する間に混合して燃焼触媒層に供給される
。このため、燃焼触媒層の下流では供給燃料の濃度が触
媒層と接触するまえに不燃ガスと混合し、単位体積当た
りの燃料発熱量が小さくなり、局部燃焼による加熱の度
合いを小さくおさえることができる。また、本実施例は
燃焼触媒層内燃料混合部を持つので、予混合していない
燃料を供給管から供給し燃焼空気を別の供給系により供
給しても、燃焼触媒層では予混合燃料の燃焼と同様にな
る。
By arranging such a mixer downstream of the fuel supply pipe as shown in Fig. 7, a portion of the fuel ejected from the fuel supply pipe enters the mixer with the combustion gas and excess air generated upstream. While passing through, the mixture is mixed and supplied to the combustion catalyst layer. Therefore, in the downstream of the combustion catalyst layer, the concentration of the supplied fuel is mixed with non-flammable gas before it comes into contact with the catalyst layer, and the calorific value of the fuel per unit volume is reduced, making it possible to suppress the degree of heating caused by local combustion. . Furthermore, since this embodiment has a fuel mixing section within the combustion catalyst layer, even if non-premixed fuel is supplied from the supply pipe and combustion air is supplied by another supply system, the premixed fuel is not mixed in the combustion catalyst layer. It will be similar to combustion.

また1本発明は、実施例におけるような燃料改質装置用
の加熱装置に限られるものではなく1例えば、家庭用暖
房器、あるいは、ガスタービン燃焼器などの触媒燃焼器
として利用することもできる。
Furthermore, the present invention is not limited to a heating device for a fuel reformer as in the embodiments, but can also be used as a home heater or a catalytic combustor such as a gas turbine combustor. .

〔発明の効果〕〔Effect of the invention〕

本発明によれば、燃料供給管から燃焼触媒層に供給する
燃料の分配及び分散性を向上することができる。
According to the present invention, it is possible to improve the distribution and dispersibility of fuel supplied from the fuel supply pipe to the combustion catalyst layer.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例の断面図、第2図は第1図に
おける燃料供給管の断面図、第3図は燃料供給管の断面
図、第4図は本発明の燃焼触媒層の断面図とその温度分
布図、第5図及び第6図は本発明による燃料供給管の断
面図、第7図は本発明の断面図、第8図は第7図に示す
実施例の静止型混合器の断面構造図である。 第2図 (α) 第30 B−1 (久)  第S口 (cL)
Fig. 1 is a sectional view of an embodiment of the present invention, Fig. 2 is a sectional view of the fuel supply pipe in Fig. 1, Fig. 3 is a sectional view of the fuel supply pipe, and Fig. 4 is a combustion catalyst layer of the present invention. FIG. 5 and FIG. 6 are cross-sectional views of the fuel supply pipe according to the present invention, FIG. 7 is a cross-sectional view of the present invention, and FIG. 8 is a static view of the embodiment shown in FIG. 7. FIG. 3 is a cross-sectional structural diagram of a mold mixer. Figure 2 (α) No. 30 B-1 (ku) No. S opening (cL)

Claims (1)

【特許請求の範囲】 1、複数の可燃成分を含むガス状燃料を、酸化活性成分
を含む酸化触媒の存在のもとで触媒燃焼させる燃焼装置
において、 前記酸化触媒を充填した燃焼触媒層に、前記ガス状燃料
を供給するため、前記燃焼触媒層内に多孔ノズルをもつ
た燃料供給管を複数本配列し、前記燃料供給管の外表面
に周囲の充填粒子径より小さい配置間隔で多数の突起を
設けたことを特徴とする触媒燃焼加熱装置。2、特許請
求の範囲第1項において、 前記燃料供給管の外表面に、線材の溶接、あるいは、前
記燃料供給管の削り出し加工によつて、針状の突起を設
けたことを特徴とする触媒燃焼加熱装置。 3、特許請求の範囲第1項において、 前記燃料供給管の外表面に、多孔平板または網状の平板
をひれ状またまフィン形状に取り付けた板状の突起を設
けたことを特徴とする触媒燃焼加熱装置。 4、特許請求の範囲第1項において、前記燃料供給管は
通気性材料で構成したことを特徴とする触媒燃焼加熱装
置。 5、前記燃料供給管の下流に静止型混合器を配置したこ
とを特徴とする特許請求の範囲第1項または第4項記載
の触媒燃焼加熱装置。 6、炭化水素燃料を原料とし、水蒸気と反応させるため
の触媒を充填した改質触媒層と、前記改質触媒層を触媒
燃焼により加熱するため、燃焼触媒を充填した燃焼触媒
層から成る二層を、隔壁を介して交互に複数段配置した
プレート熱交型燃料改質装置における加熱部として利用
することを特徴とする特許請求の範囲第1項または第5
項に記載の触媒燃焼加熱装置。
[Claims] 1. In a combustion device that catalytically combusts a gaseous fuel containing a plurality of combustible components in the presence of an oxidation catalyst containing an oxidation active component, a combustion catalyst layer filled with the oxidation catalyst, In order to supply the gaseous fuel, a plurality of fuel supply pipes each having a porous nozzle are arranged in the combustion catalyst layer, and a large number of protrusions are arranged on the outer surface of the fuel supply pipe at intervals smaller than the diameter of the surrounding packed particles. A catalytic combustion heating device characterized by being provided with. 2. In claim 1, a needle-like protrusion is provided on the outer surface of the fuel supply pipe by welding a wire rod or machining the fuel supply pipe. Catalytic combustion heating device. 3. The catalytic combustion according to claim 1, characterized in that the outer surface of the fuel supply pipe is provided with a plate-like protrusion in which a porous flat plate or a net-like flat plate is attached in the shape of a fin. heating device. 4. The catalytic combustion heating device according to claim 1, wherein the fuel supply pipe is made of a breathable material. 5. The catalytic combustion heating device according to claim 1 or 4, characterized in that a static mixer is disposed downstream of the fuel supply pipe. 6. Two layers consisting of a reforming catalyst layer filled with a catalyst for reacting hydrocarbon fuel with water vapor and a combustion catalyst layer filled with a combustion catalyst for heating the reforming catalyst layer by catalytic combustion. Claim 1 or 5 is characterized in that the fuel reformer is used as a heating part in a plate heat exchange type fuel reformer in which a plurality of stages are arranged alternately through partition walls.
The catalytic combustion heating device described in .
JP15605986A 1986-07-04 1986-07-04 Catalytic combustion heating apparatus Pending JPS6317202A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15605986A JPS6317202A (en) 1986-07-04 1986-07-04 Catalytic combustion heating apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15605986A JPS6317202A (en) 1986-07-04 1986-07-04 Catalytic combustion heating apparatus

Publications (1)

Publication Number Publication Date
JPS6317202A true JPS6317202A (en) 1988-01-25

Family

ID=15619406

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15605986A Pending JPS6317202A (en) 1986-07-04 1986-07-04 Catalytic combustion heating apparatus

Country Status (1)

Country Link
JP (1) JPS6317202A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006256886A (en) * 2005-03-16 2006-09-28 Renaissance Energy Research:Kk Gas reforming system for fuel cell

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006256886A (en) * 2005-03-16 2006-09-28 Renaissance Energy Research:Kk Gas reforming system for fuel cell

Similar Documents

Publication Publication Date Title
US6746650B1 (en) Compact, light weight methanol fuel gas autothermal reformer assembly
US6428758B1 (en) Reformation reactor and operating method
US6969411B2 (en) Compact light weight autothermal reformer assembly
US6872379B2 (en) Method for the reformation of fuels, in particular heating oil
US7862631B2 (en) Fuel processor primary reactor and combustor startup via electrically-heated catalyst
WO2010087791A1 (en) Distributively cooled, integrated water-gas shift reactor and vaporizer
US20060096297A1 (en) Method and apparatus for operating a burner of a heat engine, in particular of a gas turbine installation
US20010018140A1 (en) Catalytic burner element inside a fuel cell with structured catalytic coated surfaces
US20080127553A1 (en) Mehtod and system for vaporization of liquid fuels
JP2000058096A (en) Plant having high-temperature fuel cell
US20090258259A1 (en) Catalytic heat exchangers and methods of operation
JP3440551B2 (en) Fuel reformer and method of operating fuel reformer
US20080050634A1 (en) Micro Channel Heater for Even Heating
EP1602627B1 (en) Steam reformer
JP3572395B2 (en) Combustor for fuel reformer
JPH06219705A (en) Fuel reformer
JP3582062B2 (en) Fuel evaporator warm-up device
JPH0154820B2 (en)
US6805553B2 (en) Catalytic burner for a fuel gas generating stack system
KR102315289B1 (en) Steam Reformer with Multi Reforming Reactor
JP2006327904A (en) Hydrogen manufacturing apparatus and fuel cell system provided with the hydrogen manufacturing apparatus
KR20180102335A (en) Hydrogen reformer using exhaust gas
JPS6317202A (en) Catalytic combustion heating apparatus
TWI626784B (en) Gas fuel reformer and the integrated system for power generation
US7481856B2 (en) Reactor for autothermal reforming of hydrocarbons