JPS6317201B2 - - Google Patents
Info
- Publication number
- JPS6317201B2 JPS6317201B2 JP56031856A JP3185681A JPS6317201B2 JP S6317201 B2 JPS6317201 B2 JP S6317201B2 JP 56031856 A JP56031856 A JP 56031856A JP 3185681 A JP3185681 A JP 3185681A JP S6317201 B2 JPS6317201 B2 JP S6317201B2
- Authority
- JP
- Japan
- Prior art keywords
- mol
- humidity
- sintered body
- resistance value
- moisture
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 239000000203 mixture Substances 0.000 claims description 19
- 229910044991 metal oxide Inorganic materials 0.000 claims description 16
- CPLXHLVBOLITMK-UHFFFAOYSA-N magnesium oxide Inorganic materials [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 claims description 11
- 239000000395 magnesium oxide Substances 0.000 claims description 11
- 229910000416 bismuth oxide Inorganic materials 0.000 claims description 2
- TYIXMATWDRGMPF-UHFFFAOYSA-N dibismuth;oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[Bi+3].[Bi+3] TYIXMATWDRGMPF-UHFFFAOYSA-N 0.000 claims description 2
- -1 metal oxides magnesium oxide Chemical class 0.000 claims description 2
- WGLPBDUCMAPZCE-UHFFFAOYSA-N Trioxochromium Chemical compound O=[Cr](=O)=O WGLPBDUCMAPZCE-UHFFFAOYSA-N 0.000 claims 1
- 229910000423 chromium oxide Inorganic materials 0.000 claims 1
- FUJCRWPEOMXPAD-UHFFFAOYSA-N lithium oxide Chemical compound [Li+].[Li+].[O-2] FUJCRWPEOMXPAD-UHFFFAOYSA-N 0.000 claims 1
- 229910001947 lithium oxide Inorganic materials 0.000 claims 1
- 150000004706 metal oxides Chemical class 0.000 description 14
- 229910015902 Bi 2 O 3 Inorganic materials 0.000 description 10
- 239000011651 chromium Substances 0.000 description 10
- 229910018068 Li 2 O Inorganic materials 0.000 description 9
- AXZKOIWUVFPNLO-UHFFFAOYSA-N magnesium;oxygen(2-) Chemical compound [O-2].[Mg+2] AXZKOIWUVFPNLO-UHFFFAOYSA-N 0.000 description 9
- 230000032683 aging Effects 0.000 description 7
- 238000010586 diagram Methods 0.000 description 7
- 238000010438 heat treatment Methods 0.000 description 5
- 238000005245 sintering Methods 0.000 description 5
- 229910052596 spinel Inorganic materials 0.000 description 4
- 239000011029 spinel Substances 0.000 description 4
- 239000002245 particle Substances 0.000 description 3
- 239000000843 powder Substances 0.000 description 3
- 238000010521 absorption reaction Methods 0.000 description 2
- WMWLMWRWZQELOS-UHFFFAOYSA-N bismuth(iii) oxide Chemical compound O=[Bi]O[Bi]=O WMWLMWRWZQELOS-UHFFFAOYSA-N 0.000 description 2
- 229910052804 chromium Inorganic materials 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 239000007772 electrode material Substances 0.000 description 2
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 2
- 239000010931 gold Substances 0.000 description 2
- 229910052737 gold Inorganic materials 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 1
- 239000004372 Polyvinyl alcohol Substances 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000003795 desorption Methods 0.000 description 1
- QDOXWKRWXJOMAK-UHFFFAOYSA-N dichromium trioxide Chemical compound O=[Cr]O[Cr]=O QDOXWKRWXJOMAK-UHFFFAOYSA-N 0.000 description 1
- XUCJHNOBJLKZNU-UHFFFAOYSA-M dilithium;hydroxide Chemical compound [Li+].[Li+].[OH-] XUCJHNOBJLKZNU-UHFFFAOYSA-M 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 229920002451 polyvinyl alcohol Polymers 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 230000002123 temporal effect Effects 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Landscapes
- Compositions Of Oxide Ceramics (AREA)
- Non-Adjustable Resistors (AREA)
- Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)
Description
本発明は、金属酸化物からなり湿度の変化を電
気抵抗の変化として検出する感湿素子に関する。
一般に金属酸化物は吸水性に優れているため、
この性質を利用して感湿素子として利用しうるこ
とが知られている。すなわち、Fe2O3、、Fe3O4、
Al2O3、Cr2O3などの金属酸化物の微粉末を無機
質絶縁基板の表面に塗布して感湿膜を形成し、こ
の膜の電気抵抗の湿度に対する変化を利用したも
のである。この種の感湿素子は、物理的、化学
的、熱的に安定であるが、概して固有抵抗が高い
ため吸脱湿現象によつて多少の抵抗変化があつて
もこれを電気的に高精度に検出することは難し
い。また、スピネル構造酸化物の半導体性を利用
したものは抵抗値が比較的低く、相対湿度0〜
100%の全領域の湿度を検出することができる。
しかしながら、室温で放置すると抵抗値が増加し
再現性が得にくい。この欠点をなくすために加熱
することが考えられているが、加熱によつて再現
性は得られても繰返し加熱による電極材の経時特
性に難点があり、信頼性に欠け、かつ構造が複雑
になる欠点があつた。
本発明は上記のような事情に鑑みてなされたも
ので、金属酸化物の酸化マグネシウム(MgO)、
酸化クロム(Cr2O3)、酸化ビスマス(Bi2O3)お
よび酸化リチウム(Li2O)に換算してそれぞれ
69.95〜30モル%、29.95〜50モル%、0.05〜10モ
ル%および0.05〜10モル%の組成を有する焼結体
で構成することによつて、抵抗値が比較的低く室
温放置で加熱しなくとも抵抗値は安定で、経時特
性も優れており、しかも湿度ヒステリシスの小さ
い85℃の高温に放置しても安定な感湿素子の得ら
れることがわかつた。したがつて、本発明は焼結
体で安定性が良好で信頼性の高い感湿素子を提供
せんとするものである。
以下、本発明を詳細に説明する。
実施例 1
本発明は、金属酸化物のMgO、Cr2O3、
Bi2O3、Li2Oに換算してそれぞれ69.95〜30モル
%、29.95〜50モル%、0.05〜10モル%、0.05〜10
モル%の組成を有する焼結体からなることを特徴
とするものであつて、例えば第1図に示すように
構成し使用される。図中1は本発明に係る素子の
感湿部で金属酸化物であるMgO−Cr2O3−Bi2O3
−Li2Oを焼結した焼結体である。2,3は電極
で焼結体1とよく密着して接触抵抗が小さく耐湿
性のよい電極材料、例えば金ペーストまたは銀ペ
ーストで形成される。4,5は電極2,3に取着
した端子である。
このような本発明の感湿素子は、例えば次のよ
うな方法によつて製造できる。すなわち、金属酸
化物であるMgO47.5モル%、Cr2O342.5モル%、
Bi2O35モル%、Li2O5モル%を秤取し、これをボ
ールミルでよく混合する。次いでこれらの混合物
を850℃の温度で2時間予備焼成して、これをさ
らにボールミルで粉砕した。しかるのち、この粉
体に粘結剤としてポリビニルアルコールを添加混
合し1ton/cm2の圧力で厚さ1mm×直径10mmの円板
に成形する。次いでこの成形体を1300℃の温度で
空気雰囲気中で1時間焼結する。この焼結体1
は、この焼結によつて前記金属酸化物が互いに反
応してできていると予想されるMgCr2O4からな
るスピネルやLiMgBi2O4などから構成されてい
るものと思われる。この焼結体1の両面を研摩し
て厚さ0.3mmとし、この両面に第1図のように金
ペーストを塗布焼付けして電極2,3を形成し、
該電極2,3にそれぞれ端子4,5を接続する。
このようにして得られた本発明の実施例Aによ
る感湿素子と従来の参考例Bによる感湿素子との
湿度−抵抗特性、経時特性およびヒステリシスの
比較を第2図〜第5図に示す。参考例Bはスピネ
ル構造酸化物からなるMgCr2O4系感湿素子であ
るが、いずれも実施例Aの方が優れた結果を示し
ている。すなわち第2図の湿度−抵抗特性におい
て、参考例Bは抵抗値が高く変化桁も3桁程度で
大きいという欠点がある。これに対して実施例A
は抵抗値が低く変化桁も2桁程度で、参考例Bと
比較して計測回路とのマツチングに大きな利点を
もつている。第3図〜第5図は、実施例Aの感湿
素子と参考例Bの感湿素子との経時特性の比較を
示したもので、温度35℃、湿度90%RHの雰囲気
中で1000時間経過したのち各素子を温度25℃、湿
度50%RH、70%RH、90%RHの抵抗値を初期値
と比較して湿度に換算し、湿度変化率として示し
たものである。第3図が湿度50%RHの場合、第
4図が湿度70%RHの場合、第5図が湿度90%
RHの場合の変化率である。これによれば実施例
Aはほとんど変化せず安定であるが、参考例Bは
変化率が大きくマイナス方向に変化する。第6図
〜第8図は実施例Aの感湿素子の高温85℃におけ
る経時特性を示したもので、1000時間経過したの
ち温度25℃、湿度50%RH、70%RH、90%RHの
抵抗値を初期値と比較して湿度に換算し湿度変化
率として示したものである。
これらから実施例Aの感湿素子は高温雰囲気中
で安定であり、高温でも十分使用できることを示
している。
実施例 2
次に本発明におけるMgO、Cr2O3、Bi2O3およ
びLi2Oの組成比の限定理由について第9図〜第
12図によつて説明する。第9図は焼結体を金属
酸化物にそれぞれ換算したとき、焼結体に占める
MgOの組成比と焼結体の平均粒径との関係を示
したもので、この実施例の組成は表1のとおりで
あり、素子の作製は実施例1と同様の条件で行つ
た。
The present invention relates to a humidity sensing element made of metal oxide and detecting changes in humidity as changes in electrical resistance. Metal oxides generally have excellent water absorption, so
It is known that this property can be used as a moisture-sensitive element. That is, Fe 2 O 3 ,, Fe 3 O 4 ,
A moisture-sensitive film is formed by applying fine powder of a metal oxide such as Al 2 O 3 or Cr 2 O 3 to the surface of an inorganic insulating substrate, and the change in electrical resistance of this film with respect to humidity is utilized. This type of moisture sensing element is physically, chemically, and thermally stable, but because it generally has a high specific resistance, even if there is a slight change in resistance due to moisture absorption and desorption, this can be electrically processed with high accuracy. difficult to detect. In addition, those that utilize the semiconducting properties of spinel structure oxides have a relatively low resistance value, and the relative humidity ranges from 0 to
Can detect humidity of 100% entire area.
However, if left at room temperature, the resistance value increases and reproducibility is difficult to obtain. Heating has been considered to eliminate this drawback, but even though heating can improve reproducibility, repeated heating has problems with the aging characteristics of the electrode material, resulting in a lack of reliability and a complicated structure. There was a drawback. The present invention was made in view of the above circumstances, and uses metal oxide magnesium oxide (MgO),
Converted to chromium oxide (Cr 2 O 3 ), bismuth oxide (Bi 2 O 3 ) and lithium oxide (Li 2 O), respectively.
By being composed of sintered bodies with compositions of 69.95 to 30 mol%, 29.95 to 50 mol%, 0.05 to 10 mol%, and 0.05 to 10 mol%, the resistance value is relatively low and it can be left at room temperature without heating. In both cases, it was found that a humidity-sensitive element with stable resistance values, excellent aging characteristics, and low humidity hysteresis that is stable even when left at a high temperature of 85°C was obtained. Therefore, it is an object of the present invention to provide a moisture-sensitive element which is a sintered body, has good stability, and is highly reliable. The present invention will be explained in detail below. Example 1 The present invention uses metal oxides such as MgO, Cr 2 O 3 ,
69.95-30 mol%, 29.95-50 mol%, 0.05-10 mol%, 0.05-10 in terms of Bi 2 O 3 and Li 2 O, respectively.
It is characterized by being made of a sintered body having a composition of mol%, and is used, for example, in the structure shown in FIG. In the figure, 1 is the moisture sensitive part of the device according to the present invention, which is a metal oxide MgO-Cr 2 O 3 -Bi 2 O 3
-It is a sintered body made of sintered Li 2 O. Reference numerals 2 and 3 denote electrodes which are made of an electrode material that is in close contact with the sintered body 1 and has low contact resistance and good moisture resistance, such as gold paste or silver paste. 4 and 5 are terminals attached to the electrodes 2 and 3. Such a moisture-sensitive element of the present invention can be manufactured, for example, by the following method. That is, metal oxides MgO47.5 mol%, Cr 2 O 3 42.5 mol%,
5 mol % of Bi 2 O 3 and 5 mol % of Li 2 O are weighed out and mixed well in a ball mill. These mixtures were then precalcined at a temperature of 850° C. for 2 hours and further ground in a ball mill. Thereafter, polyvinyl alcohol is added and mixed as a binder to this powder, and the powder is molded into a disk with a thickness of 1 mm and a diameter of 10 mm under a pressure of 1 ton/cm 2 . This compact is then sintered at a temperature of 1300° C. in an air atmosphere for 1 hour. This sintered body 1
is thought to be composed of spinel made of MgCr 2 O 4 , LiMgBi 2 O 4, etc., which is expected to be formed by the reaction of the metal oxides with each other through this sintering. Both sides of this sintered body 1 are polished to a thickness of 0.3 mm, and gold paste is applied and baked on both sides as shown in Figure 1 to form electrodes 2 and 3.
Terminals 4 and 5 are connected to the electrodes 2 and 3, respectively. Comparisons of humidity-resistance characteristics, aging characteristics, and hysteresis between the humidity-sensitive element according to Example A of the present invention and the conventional humidity-sensitive element according to Reference Example B thus obtained are shown in FIGS. 2 to 5. . Reference Example B is an MgCr 2 O 4 moisture sensitive element made of a spinel structure oxide, but Example A shows better results in both cases. That is, in the humidity-resistance characteristics shown in FIG. 2, Reference Example B has a drawback in that the resistance value is high and the change in resistance is large, on the order of three orders of magnitude. In contrast, Example A
has a low resistance value and a change in the order of magnitude of about two orders of magnitude, and has a great advantage in matching with the measurement circuit compared to Reference Example B. Figures 3 to 5 show a comparison of the aging characteristics of the humidity sensing element of Example A and the humidity sensing element of Reference Example B, and are shown for 1000 hours in an atmosphere with a temperature of 35°C and a humidity of 90% RH. After the time has elapsed, the resistance values of each element at a temperature of 25° C. and a humidity of 50% RH, 70% RH, and 90% RH are compared with the initial values, converted to humidity, and shown as a humidity change rate. If the humidity is 50%RH in Figure 3, if the humidity is 70%RH in Figure 4, then the humidity is 90% in Figure 5.
This is the rate of change in the case of RH. According to this, Example A is stable with almost no change, but Reference Example B has a large rate of change and changes in a negative direction. Figures 6 to 8 show the aging characteristics of the humidity sensing element of Example A at a high temperature of 85°C. The resistance value is compared with the initial value, converted into humidity, and shown as a humidity change rate. These results show that the humidity sensitive element of Example A is stable in a high temperature atmosphere and can be used satisfactorily even at high temperatures. Example 2 Next, the reasons for limiting the composition ratios of MgO, Cr 2 O 3 , Bi 2 O 3 and Li 2 O in the present invention will be explained with reference to FIGS. 9 to 12. Figure 9 shows the proportion of sintered bodies when converted into metal oxides.
Table 1 shows the relationship between the composition ratio of MgO and the average grain size of the sintered body. The composition of this example is as shown in Table 1, and the device was manufactured under the same conditions as Example 1.
【表】
この結果からMgO30モル%未満の場合および
69.95モル%を超える場合には、焼結体の平均粒
径が2μmを超え気孔率が小さくなり、感湿素子
として望ましくない。
第10図は第9図の場合と同じく焼結体を金属
酸化物に換算したとき焼結体に占めるCr2O3の組
成比と焼結体の平均粒径との関係を示したもの
で、表2の組成を用い、素子の作製は実施例1と
同様の条件で行つた。[Table] From this result, when MgO is less than 30 mol% and
If it exceeds 69.95 mol%, the average particle size of the sintered body will exceed 2 μm and the porosity will become small, making it undesirable as a moisture-sensitive element. Figure 10 shows the relationship between the composition ratio of Cr 2 O 3 in the sintered body and the average grain size of the sintered body when the sintered body is converted into metal oxide, as in the case of Figure 9. Using the composition shown in Table 2, the device was manufactured under the same conditions as in Example 1.
【表】
この結果からCr2O329.95モル%未満の場合およ
び50モル%を超える場合には、前記MgOの場合
と同様に焼結体の平均粒径が2μmを超え気孔率
が小さくなり感湿素子として不適である。
また第11図は焼結体を金属酸化物に換算した
とき焼結体に占めるBi2O3の組成比と焼結体の抵
抗値との関係を示したもので、湿度60%RHの場
合のBi2O3の組成比に対応する抵抗値の変化であ
るが、表3に示すような組成を用い、素子の作製
は実施例1と同様の条件で行つたものである。[Table] From this result, when Cr 2 O 3 is less than 29.95 mol% or more than 50 mol%, the average grain size of the sintered body exceeds 2 μm and the porosity becomes small, similar to the case of MgO. Not suitable as a wet element. Furthermore, Figure 11 shows the relationship between the composition ratio of Bi 2 O 3 in the sintered body and the resistance value of the sintered body when the sintered body is converted into metal oxide, and when the humidity is 60%RH. The change in resistance value corresponding to the composition ratio of Bi 2 O 3 is shown in Table 3. The device was manufactured under the same conditions as in Example 1 using the composition shown in Table 3.
【表】
この結果Bi2O30.05〜10モル%の範囲での抵抗
値は105Ωの領域に入つているが、0.05モル%未
満の場合および10モル%を超える場合には抵抗値
が増大する傾向にあつて計測回路とのマツチング
が悪く感湿素子として不適である。
さらに第12図は焼結体を金属酸化物に換算し
たとき焼結体に占めるLi2Oの組成比に対応する
抵抗値の変化を示したものであるが、表4に示す
ような組成を用い、素子の作製は実施例1と同様
の条件で行つた。[Table] As a result, the resistance value in the range of 0.05 to 10 mol% Bi 2 O 3 is in the 10 5 Ω region, but the resistance value decreases when it is less than 0.05 mol% and when it exceeds 10 mol%. This tends to increase, and the matching with the measurement circuit is poor, making it unsuitable as a humidity sensing element. Furthermore, Figure 12 shows the change in resistance value corresponding to the composition ratio of Li 2 O in the sintered body when the sintered body is converted into metal oxide. The device was manufactured under the same conditions as in Example 1.
【表】
この結果Li2O0.05〜10モル%の範囲での抵抗値
は105Ωの領域に入つているが、0.05モル%未満
の場合は抵抗値が増大する傾向にあり、10モル%
を超える場合には抵抗値は低下するが経時特性が
悪く良好な感湿素子が得られない。
これらから明らかなように金属酸化物のMgO、
Cr2O3、Bi2O3、Li2Oに換算してそれぞれ69.95〜
30モル%、29.95〜50モル%、0.05〜10モル%、
0.05〜10モル%が最適組成範囲であることがわか
る。
なお上記実施例では成形体を焼結温度1300℃、
焼結時間1hで焼結した場合について述べたが、
焼結温度1200〜1400℃、焼結時間1〜5hの範囲
で焼結した素子でも同様の効果を得ることができ
たことから、実施例と同様MgCr2O4のスピネル
などができていることが予想される。
以上詳述したように本発明によれば、金属酸化
物に換算してMgO69.95〜30モル%、Cr2O329.95
〜50モル%、Bi2O30.05〜10モル%および
Li2O0.05〜10モル%の組成を有する焼結体からな
ることを特徴とし、抵抗値が低く室温放置で加熱
しなくとも抵抗値は安定で経時特性も優れてお
り、しかも湿度ヒステリシスの小さい、そして高
温領域での使用においても信頼性の高い感湿素子
を得ることができる。[Table] As a result, the resistance value in the range of 0.05 to 10 mol% Li 2 O is in the 10 5 Ω region, but when it is less than 0.05 mol%, the resistance value tends to increase; %
If it exceeds this value, the resistance value decreases, but the aging characteristics are poor and a good moisture-sensitive element cannot be obtained. As is clear from these, the metal oxide MgO,
69.95~ each in terms of Cr 2 O 3 , Bi 2 O 3 , and Li 2 O
30 mol%, 29.95-50 mol%, 0.05-10 mol%,
It can be seen that the optimum composition range is 0.05 to 10 mol%. In the above example, the molded body was sintered at a temperature of 1300°C.
We have described the case of sintering with a sintering time of 1 hour,
Similar effects were obtained with elements sintered at a sintering temperature of 1200 to 1400°C and a sintering time of 1 to 5 hours, indicating that spinel of MgCr 2 O 4 was produced as in the example. is expected. As detailed above, according to the present invention, MgO is 69.95 to 30 mol% and Cr 2 O 3 is 29.95 mol% in terms of metal oxide.
~50 mol%, Bi2O3 0.05 ~10 mol% and
It is characterized by being made of a sintered body with a composition of 0.05 to 10 mol% Li 2 O, and has a low resistance value, stable resistance value even if left at room temperature without heating, and excellent aging characteristics. A moisture-sensitive element that is small and highly reliable even when used in high-temperature areas can be obtained.
第1図は本発明に係る感湿素子の一実施例を示
す断面図、第2図は湿度−抵抗特性を示す曲線
図、第3図〜第8図はそれぞれ経時特性を示す曲
線図、第9図は焼結体を金属酸化物に換算したと
きの焼結体に占めるMgOの組成比と平均粒径と
の関係を示す曲線図、第10図は同じくCr2O3の
組成比と平均粒径との関係を示す曲線図、第11
図は同じくBi2O3の組成比と抵抗値との関係を示
す曲線図、第12図は同じくLi2Oの組成比と抵
抗値との関係を示す曲線図である。
1……焼結体、2,3……電極、4,5……端
子。
FIG. 1 is a cross-sectional view showing one embodiment of the humidity sensing element according to the present invention, FIG. 2 is a curve diagram showing humidity-resistance characteristics, and FIGS. 3 to 8 are curve diagrams showing temporal characteristics, respectively. Figure 9 is a curve diagram showing the relationship between the composition ratio of MgO in the sintered body and the average grain size when the sintered body is converted into metal oxide, and Figure 10 is a curve diagram showing the relationship between the composition ratio of Cr 2 O 3 and the average particle size. Curve diagram showing the relationship with particle size, No. 11
The figure is a curve diagram similarly showing the relationship between the composition ratio of Bi 2 O 3 and the resistance value, and FIG. 12 is a curve diagram similarly showing the relationship between the composition ratio of Li 2 O and the resistance value. 1... Sintered body, 2, 3... Electrode, 4, 5... Terminal.
Claims (1)
ム、酸化ビスマス、酸化リチウムに換算して、そ
れぞれ69.95〜30モル%、29.95〜50モル%、0.05
〜10モル%、0.05〜10モル%の組成を有する焼結
体からなることを特徴とする感湿素子。1 In terms of metal oxides magnesium oxide, chromium oxide, bismuth oxide, and lithium oxide, 69.95 to 30 mol%, 29.95 to 50 mol%, and 0.05 respectively.
A moisture-sensitive element comprising a sintered body having a composition of ~10 mol% and 0.05-10 mol%.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP56031856A JPS57145301A (en) | 1981-03-04 | 1981-03-04 | Moisture sensitive element |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP56031856A JPS57145301A (en) | 1981-03-04 | 1981-03-04 | Moisture sensitive element |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS57145301A JPS57145301A (en) | 1982-09-08 |
JPS6317201B2 true JPS6317201B2 (en) | 1988-04-13 |
Family
ID=12342685
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP56031856A Granted JPS57145301A (en) | 1981-03-04 | 1981-03-04 | Moisture sensitive element |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS57145301A (en) |
-
1981
- 1981-03-04 JP JP56031856A patent/JPS57145301A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS57145301A (en) | 1982-09-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4464647A (en) | Humidity sensor made of metal oxide | |
US4328478A (en) | Humidity sensitive device | |
JPS6317205B2 (en) | ||
JPS6317201B2 (en) | ||
JPS6317203B2 (en) | ||
JPS6317204B2 (en) | ||
JPS6317206B2 (en) | ||
JPS6317207B2 (en) | ||
JPS6317208B2 (en) | ||
JPS6317209B2 (en) | ||
JPH0378761B2 (en) | ||
JPS6041841B2 (en) | moisture sensing element | |
JPS6145180B2 (en) | ||
JPS6023481B2 (en) | moisture sensing element | |
JPS6024565B2 (en) | moisture sensing element | |
JPS5811721B2 (en) | Kanshitsusoshi | |
JPS6161241B2 (en) | ||
KR840000260B1 (en) | Temperature-responsive element | |
JPS6161242B2 (en) | ||
JPS5813002B2 (en) | Kanshitsusoshi | |
JPH0572157A (en) | Humidity sensing element | |
JPS5813003B2 (en) | Kanshitsusoshi | |
JPS6351363B2 (en) | ||
JPS6250778B2 (en) | ||
JPH0552795A (en) | Humidity sensitive element |