JPS63171643A - Catalyst for removing nitrogen oxide - Google Patents

Catalyst for removing nitrogen oxide

Info

Publication number
JPS63171643A
JPS63171643A JP62001003A JP100387A JPS63171643A JP S63171643 A JPS63171643 A JP S63171643A JP 62001003 A JP62001003 A JP 62001003A JP 100387 A JP100387 A JP 100387A JP S63171643 A JPS63171643 A JP S63171643A
Authority
JP
Japan
Prior art keywords
catalyst
surface area
specific surface
high specific
titanium oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62001003A
Other languages
Japanese (ja)
Inventor
Kozo Iida
耕三 飯田
Shigeru Nojima
繁 野島
Toru Seto
徹 瀬戸
Shigeaki Mitsuoka
光岡 薫明
Yoshiaki Obayashi
良昭 尾林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP62001003A priority Critical patent/JPS63171643A/en
Publication of JPS63171643A publication Critical patent/JPS63171643A/en
Pending legal-status Critical Current

Links

Landscapes

  • Catalysts (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Abstract

PURPOSE:To improve an anti-poisoning property to arsenic, by allowing a tita nium oxide to support a compd. of at least one element among V, Cr, Mn, Mo, etc., adding with a substance having high specific surface area such as activated carbon and forming a catalyst. CONSTITUTION:The titanium oxide support is allowed to support the compd. of at least one element selected among a group consisting of V, Cr, Mn, W, Mo, Fe, Co, Cu and etc. Then the catalyst for removing nitrogen oxide is obtained by adding and mixing the material having high specific surface area selected among a group consisting of acti activated carbon, zeolite, silica and silica-alumina to the titanium oxide support. The content of the additional material having high specific surface area is preferable to be under 50wt.% of the total amt. of the catalyst and the material having high specific surface area preferably has the specific surface area of >=200m<2>/g. Then, the amt. of the active component such as V, W or Mo supported with the catalyst support is suitable to be 1-6wt.% of the total amt.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はボイラ排ガス等の燃焼排ガス中に含まれる窒素
酸化物を除去する九めの触媒に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a ninth catalyst for removing nitrogen oxides contained in combustion exhaust gas such as boiler exhaust gas.

〔従来の技術] 燃焼排ガス中の窒素酸化物を除去する方法としては、ア
ルカリ水溶液や亜硫酸塩水溶液で吸収する湿式吸収法や
、触媒による乾式接触還元法が従来から知られている。
[Prior Art] Conventionally known methods for removing nitrogen oxides from combustion exhaust gas include a wet absorption method in which nitrogen oxides are absorbed using an alkaline aqueous solution or a sulfite aqueous solution, and a dry catalytic reduction method using a catalyst.

中でも、触媒を用いたアンモニアによる接触還元法が工
業的に最も多く適用されている。この方法は排ガス中の
窒素酸化物とアンモニアを触媒の存在下に反応させ、無
害な水と窒素に還元処理する方法であり、触媒として酸
化タングステン、酸化バナジ9ム、酸化モリブデン、酸
化鉄などを酸化チタンに担持した触媒(特公昭57−3
6012)や酸化セリウムを酸化チタンに担持した触媒
(特公昭53−13339)などが知られている。
Among them, the catalytic reduction method using ammonia using a catalyst is most often applied industrially. This method involves reacting nitrogen oxides and ammonia in exhaust gas in the presence of a catalyst to reduce them to harmless water and nitrogen. Tungsten oxide, vanadium oxide, molybdenum oxide, iron oxide, etc. are used as catalysts. Catalyst supported on titanium oxide (Special Publication No. 57-3
6012) and a catalyst in which cerium oxide is supported on titanium oxide (Japanese Patent Publication No. 53-13339) are known.

酸化チタンを担体とする触媒以外に高比表面積な酸化ア
ルミニウムに酸化バナジウムを担持し九触媒(特公昭5
6−44778)もあるが、重油や石炭燃焼排ガスのよ
うな硫黄酸化物を含有する排ガス処理の念めには硫黄酸
化物に対する耐被着性の点から酸化チタンを担体とし次
触媒の方がすぐれている。
In addition to catalysts using titanium oxide as a carrier, we developed a nine-catalyst catalyst using vanadium oxide supported on aluminum oxide, which has a high specific surface area.
6-44778), but in order to treat exhaust gases containing sulfur oxides such as heavy oil and coal combustion exhaust gases, the following catalysts with titanium oxide as a carrier are better from the viewpoint of adhesion resistance against sulfur oxides. It is excellent.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

酸化チタンにバナジウム、タングステン、モリブデンな
どの遷移金属化合物を担持した触媒は、上記の理由から
硫黄酸化物?含有する重油焚あるいは石炭焚排ガス処理
用の触媒として広く適用されているが、使用する燃料の
種類によっては、排ガス中に砒素化合物がガス状物質と
して存在する場合があり、これが触媒の吸着あるいは酸
化作用によって触媒内に捕集され蓄積していくため、触
媒細孔の閉塞や活性成分との化合物?生成し触媒活性が
急速に低下していく欠点を有している。
Is a catalyst made of titanium oxide supporting a transition metal compound such as vanadium, tungsten, or molybdenum a sulfur oxide for the above reasons? It is widely used as a catalyst for the treatment of heavy oil-fired or coal-fired exhaust gas, but depending on the type of fuel used, arsenic compounds may exist as gaseous substances in the exhaust gas, and this may cause adsorption or oxidation of the catalyst. Because it is captured and accumulated in the catalyst by action, it causes blockage of catalyst pores and compounds with active ingredients? This has the disadvantage that the catalyst activity rapidly decreases.

〔発明の目的] 本発明は、排ガス中のガス状砒素化合物に対する耐被毒
性を向上させた触媒を提供するものである。
[Object of the Invention] The present invention provides a catalyst with improved poisoning resistance against gaseous arsenic compounds in exhaust gas.

〔問題点を解決する九めの手段〕[Ninth way to solve the problem]

本発明はバナジ9ム、クロム%iンガン、り/グステ/
、モリブデン、鉄、コバルト及び銅よりなる群から選ば
れた少くとも一種類以上の化合物を酸化チタンに担持し
、さらにこのものに活性炭、ゼオライト、シリカ及びシ
リカ・アルミナよりなる群より選ばれ友高比表面積物質
を添加混合してなることを特徴とする窒素酸化物除去用
触媒である。
The present invention is based on vanadium 9m, chromium%ingan, ri/guste/
, at least one compound selected from the group consisting of molybdenum, iron, cobalt, and copper is supported on titanium oxide, and this is further loaded with activated carbon, zeolite, silica, and silica-alumina. This is a catalyst for removing nitrogen oxides, characterized in that it is formed by adding and mixing a specific surface area substance.

本発明の触媒は酸化チタ/を担体とし、活性成分が(L
 1〜40 vtl、好ましくはα5〜30wt%であ
る従来の触媒に、さらに比表面積が200 m”/ を
以上と大きな活性炭、ゼオライト、シリカまたはシリカ
・アルミナを添加し念ものであり、この高比表面積物質
に存在する多くのミクロボア内に排ガス中に存在する砒
素化合物を選択的に捕集し、触媒活性を維持している酸
化チタンベースの物質の被毒を抑制するものである。
The catalyst of the present invention uses titanium oxide as a carrier, and the active component is (L
1 to 40 vtl, preferably α5 to 30 wt%, is further added with activated carbon, zeolite, silica, or silica-alumina with a large specific surface area of 200 m''/ Arsenic compounds present in the exhaust gas are selectively collected in the many micropores present in the surface area material, thereby suppressing the poisoning of the titanium oxide-based material that maintains the catalytic activity.

酸化チタンを担体とし九従来の触媒の比表面積はおよそ
50〜12 G −/ f程度のものであるが、活性炭
、ゼオライト、シリカま+hシリカ・アルミナのそれは
、前述したように200m冨/を以上(特に活性炭は1
000〜3000m”/ iF )と大きく、従来触媒
に比べて、ミクロな細孔がなくさん存在している。その
九めガス状砒素物質の吸着はその毛管凝縮作用によって
、活性炭、ゼオライト、シリカteはシリカ・アルミナ
のような高比表面積物質への吸着速度の方が大であり、
比表面積の小さな従来触媒にはろまり砒素が蓄積しない
The specific surface area of conventional catalysts using titanium oxide as a carrier is about 50 to 12 G-/f, but that of activated carbon, zeolite, silica + silica/alumina has a surface area of more than 200 m/f, as mentioned above. (Especially activated carbon is 1
000 to 3000 m"/iF), and has many microscopic pores compared to conventional catalysts. The adsorption of gaseous arsenic substances is achieved through the capillary condensation action of activated carbon, zeolite, and silica. has a higher adsorption rate on high specific surface area materials such as silica and alumina,
Conventional catalysts with small specific surface areas do not accumulate arsenic.

活性炭の種類としては木材、ヤシガラ、リグニンカッ炭
、石炭などどのような炭素質原料から調製し友ものでも
用いることができる。
The activated carbon may be prepared from any carbonaceous raw material such as wood, coconut shell, lignin charcoal, or coal.

添加する高比表面積物質としてのゼオライトはX型、Y
型、モルデナイト、28M−5、シリカライトなどを用
いることができる。ム型ゼオライトは、細孔径が砒素蒸
気分子(ムgao@)よりも小さく、ゼオライト細孔内
に砒素化合物が入っていかないなめ好ましくない。
Zeolite as a high specific surface area substance to be added is of type X and Y type.
type, mordenite, 28M-5, silicalite, etc. can be used. Mu-type zeolite is not preferred because its pore diameter is smaller than that of arsenic vapor molecules (mugao@), and arsenic compounds cannot enter the zeolite pores.

ま九高比表面積物質自体には窒素酸化物の除去活性がな
いため、あまり多く添加することに好ましくなく、添加
量としては触媒全体の10〜s o vtlの範四が好
ましい。
Since the high specific surface area substance itself does not have any activity for removing nitrogen oxides, it is not preferable to add too much of it, and the amount added is preferably in the range of 10 to 4 sovtl based on the entire catalyst.

以下、本発明触媒の効果を立証するために、実施例をあ
げて更に説明する。
Hereinafter, in order to prove the effect of the catalyst of the present invention, further explanation will be given using Examples.

〔実施例1〕 アナターゼ型の酸化チタン80部、酸化バナジウムll
S部、酸化タングステン7部、バインダ成分12.5部
からなる触媒(このものを比較触媒−1とする。N! 
吸着法で測定し念比表面積Fi75 m”/fでめつ九
)に、100Ω−z / yの比表面積をもった活性炭
をそれぞれ10wt%、2GWt憾、!5oft%混合
し、ハニカム型に押出成型しな。調製触媒を各々、触媒
−1〜触媒3とする。
[Example 1] 80 parts of anatase-type titanium oxide, 11 parts of vanadium oxide
A catalyst consisting of part S, 7 parts of tungsten oxide, and 12.5 parts of a binder component (this is designated as comparative catalyst-1.N!
Activated carbon with a specific surface area of 100Ω-z/y was mixed with 10wt%, 2GWt, and !5of%, respectively, and extruded into a honeycomb mold. The prepared catalysts were designated as Catalyst-1 to Catalyst-3, respectively.

比較触媒−1および触媒−1〜触媒−3を、内径24−
の小型反応器に充てんし、以下の条件で脱硝活性試験を
行つ念。さらに、各触媒について25 ppmのムeg
o@蒸気を含むOR;5%、801 : 1000 p
pmのN! ペースのガスで350℃、8V:4500
hr−’  で10時間処理し、その処理後の触媒活性
を同じ条件で測定し念。
Comparative catalyst-1 and catalyst-1 to catalyst-3 were prepared with an inner diameter of 24-
Fill it into a small reactor and conduct a denitrification activity test under the following conditions. In addition, 25 ppm Mueg for each catalyst
o@OR with steam; 5%, 801: 1000 p
PM's N! Pace gas at 350℃, 8V: 4500
hr-' for 10 hours, and the catalyst activity after the treatment was measured under the same conditions.

結果を表1にまとめ念。The results are summarized in Table 1.

(脱硝活性測定条件) No   :  100p10 0pp:  100 ppm 1301  :  800 ppm 0霊      ”        4%Co、  :
  12  係 H!0:   ρ1% N!:  残部 温度 :  350C 8’V  :  16300hr−’ 表  1 〔実施例2〕 実施例1の比較触媒−1に、下記の第2表に示す各物質
を混合し、実施例1に示し穴ように押出成型した。調製
触媒を、それぞれ触媒4〜9とする。
(Denitrification activity measurement conditions) No.: 100p10 0pp: 100 ppm 1301: 800 ppm 0 spirits 4%Co,:
12 Person in charge H! 0: ρ1% N! : Residual temperature: 350C 8'V: 16300hr-' Table 1 [Example 2] Comparative catalyst-1 of Example 1 was mixed with each substance shown in Table 2 below, and the mixture was prepared in the same manner as shown in Example 1. Extrusion molded. The prepared catalysts are referred to as catalysts 4 to 9, respectively.

第2表 上記触媒−4〜触媒−9i実施例1に示し九条件と同じ
条件で脱硝活性試験を行い、その結果を第3表にまとめ
念。
Table 2 Catalysts-4 to Catalyst-9i A denitrification activity test was conducted under the same conditions as those shown in Example 1, and the results are summarized in Table 3.

第3表 〔実施列3〕 アナターゼ型酸化チタン85部、酸化銅5部。Table 3 [Implementation row 3] 85 parts of anatase titanium oxide, 5 parts of copper oxide.

バインダ成分10部からなる触媒(このものを比較触媒
−2とする。N1 吸着法で測定した比表面積は60 
m”/ fであった)に、以下に示す第4表の各物質を
混合しハニカム型に押出成型しそれぞれ触媒−10〜触
媒−13とする。
A catalyst consisting of 10 parts of a binder component (this catalyst is referred to as Comparative Catalyst-2).The specific surface area measured by the N1 adsorption method is 60
m''/f) were mixed with each substance shown in Table 4 below and extruded into a honeycomb shape to form Catalyst-10 to Catalyst-13, respectively.

第4表 上記比較触媒2及び触媒−10〜触媒−13を実施列1
に示した条件と同じ条件で脱硝活性試験を行い、その結
果を第5表にまとめた。
Table 4 Comparative Catalyst 2 and Catalyst-10 to Catalyst-13 were used in row 1
A denitrification activity test was conducted under the same conditions as shown in Table 5, and the results are summarized in Table 5.

第5表 〔実施例4〕 アナターゼ型酸化チタン85部、酸化鉄5部、バインダ
成分10部からなる触媒(このものを比較触媒−3とす
る。N、  吸着法で測定し九比表面積は55 m” 
/ tであつ念)に実施例−3と同じ添加物を下記第6
表のように混合し、ハニカム型に押出成型しそれぞれ触
媒−14〜触媒−17とする。
Table 5 [Example 4] Catalyst consisting of 85 parts of anatase-type titanium oxide, 5 parts of iron oxide, and 10 parts of a binder component (this is designated as Comparative Catalyst-3.N, specific surface area measured by adsorption method is 55 m”
/ t), the same additives as in Example 3 were added to the following No. 6
They were mixed as shown in the table and extruded into a honeycomb mold to form catalysts 14 to 17, respectively.

第6表 上記比較触媒3及び触媒−14〜触媒−17を実施例1
に示した条件と同じ条件で脱硝活性試験を行い、その結
果を第7表にまとめな。
Table 6 Comparative Catalyst 3 and Catalyst-14 to Catalyst-17 in Example 1
Conduct a denitrification activity test under the same conditions as shown in Table 7 and summarize the results in Table 7.

第7表 〔実施例−5〕 アナターゼ型酸化チタン80部、酸化モリブデン10部
、バインダ成分10部からなる触媒(このものを比較触
媒−4とする。N! 吸着法による比表面積60 m”
/ t )に実施列−3と同じ添加物を第8表のように
混合しハニカム型に押出成型しそれぞれ触媒18〜触媒
21とする。
Table 7 [Example-5] Catalyst consisting of 80 parts of anatase-type titanium oxide, 10 parts of molybdenum oxide, and 10 parts of a binder component (this catalyst is referred to as Comparative Catalyst-4. N! Specific surface area by adsorption method: 60 m"
/t) were mixed with the same additives as in Example 3 as shown in Table 8 and extruded into a honeycomb shape to form catalysts 18 to 21, respectively.

第8表 上記比較触媒4及び触媒−18〜触媒−21を実施例1
に示し九条件と同じ条件で脱硝活性化試験を行い、その
結果を第9表にまとめた。
Table 8 Comparative Catalyst 4 and Catalyst-18 to Catalyst-21 in Example 1
A denitrification activation test was conducted under the same conditions as shown in Table 9, and the results are summarized in Table 9.

第9表 〔実m例−6〕 アナターゼ型酸化チタン85部、二酸化マンガン5部、
バインダ成分10部からなる触媒(このものを比較触媒
−5とする。M、  吸着法による比表面積は60 m
”/ t )に実施列−3と同じ添加物を第10表のよ
うに混合しハニカム型に押出成型し、それぞれ触媒−2
2〜触媒−25とする。
Table 9 [Example-6] Anatase type titanium oxide 85 parts, manganese dioxide 5 parts,
Catalyst consisting of 10 parts of binder component (this is referred to as Comparative Catalyst-5. M, specific surface area by adsorption method is 60 m
"/t) were mixed with the same additives as in Example 3 as shown in Table 10 and extruded into a honeycomb mold, and each catalyst was mixed with catalyst 2.
2 to Catalyst-25.

第10表 上記比較触媒5及び触媒−22〜触媒−25を実施例1
に示した条件と同じ条件で脱硝活性化試験を行い、その
結果を第11表にまとめた。
Table 10 Comparative Catalyst 5 and Catalyst-22 to Catalyst-25 in Example 1
A denitrification activation test was conducted under the same conditions as shown in Table 11, and the results are summarized in Table 11.

第11表 〔実施8iIl−7] アナターゼ型酸化チタン87部、酸化コバルト3部、バ
インダ成分10部からなる触媒(このものを比較触媒−
6とする。M! 吸着法による比表面積は65 m”/
 f )に、実施例−3と同じ添加物を第12表のよう
に混合しハニカム型に押出成型し、それぞれ触媒−26
〜触媒−29とする。
Table 11 [Example 8iIl-7] A catalyst consisting of 87 parts of anatase titanium oxide, 3 parts of cobalt oxide, and 10 parts of a binder component (this was used as a comparison catalyst -
Set it to 6. M! The specific surface area by adsorption method is 65 m”/
f) were mixed with the same additives as in Example-3 as shown in Table 12 and extruded into a honeycomb shape, and each catalyst was mixed with catalyst-26.
~Catalyst-29.

第12表 上記比較触媒6及び触媒−26〜触媒−29を実施例1
に示した条件と同じ条件で脱硝活性化試験を行い、その
結果を第13表にまとめた。
Table 12 Comparative Catalyst 6 and Catalyst-26 to Catalyst-29 in Example 1
A denitrification activation test was conducted under the same conditions as shown in Table 13, and the results are summarized in Table 13.

第13表 〔実施例−8] アナターゼ型酸化チタン86部、酸化バナジウム1部、
酸化クロム3部、バインダ成分10部からなる触媒(こ
のものを比較触媒−7とする。Ml 吸着法による比表
面積はb 5 m”/ f )に実施例−3と同じ添加
物を第14表のように混合しハニカム型に押出成型し、
それぞれ触媒−30〜触媒−33とする。
Table 13 [Example-8] 86 parts of anatase titanium oxide, 1 part of vanadium oxide,
The same additives as in Example 3 were added to a catalyst consisting of 3 parts of chromium oxide and 10 parts of a binder component (this is designated as Comparative Catalyst-7. The specific surface area by the Ml adsorption method is b 5 m"/f) as shown in Table 14. Mix as shown and extrude into a honeycomb mold.
Catalyst-30 to Catalyst-33, respectively.

第14表 上記比較触媒−7及び触媒−30〜触媒−33を実施例
1に示し九条件と同じ条件で脱硝活性化試験を行い、そ
の結果を第15表にまとめ念。
Table 14 Comparative Catalyst-7 and Catalyst-30 to Catalyst-33 shown in Example 1 were subjected to a denitrification activation test under the same conditions as in Example 9, and the results are summarized in Table 15.

第15表 〔発明の効果〕 以上の実施例から明らかなように、従来型の比較触媒に
比べて、本発明の触媒は砒素ガス処理後の脱硝活性が高
く保なれておりすぐれた触媒である。
Table 15 [Effects of the Invention] As is clear from the examples above, the catalyst of the present invention maintains high denitrification activity after arsenic gas treatment and is an excellent catalyst compared to the conventional comparative catalyst. .

Claims (2)

【特許請求の範囲】[Claims] (1)バナジウム、クロム、マンガン、タングステン、
モリブデン、鉄、コバルト及び銅よりなる群から選ばれ
た少くとも一種類以上の化合物を酸化チタンに担持し、
さらにこのものに活性炭、ゼオライト、シリカ及びシリ
カ・アルミナよりなる群より選ばれた高比表面積物質を
添加混合してなることを特徴とする窒素酸化物除去用触
媒。
(1) Vanadium, chromium, manganese, tungsten,
At least one compound selected from the group consisting of molybdenum, iron, cobalt and copper is supported on titanium oxide,
Furthermore, a catalyst for removing nitrogen oxides is prepared by adding and mixing a high specific surface area substance selected from the group consisting of activated carbon, zeolite, silica, and silica/alumina.
(2)添加する高比表面積物質の含有量が触媒全体の5
0wt%以下である特許請求の範囲(1)記載の窒素酸
化物除去用触媒。
(2) The content of the high specific surface area substance to be added is 5% of the total catalyst.
The catalyst for removing nitrogen oxides according to claim (1), which has a content of 0 wt% or less.
JP62001003A 1987-01-08 1987-01-08 Catalyst for removing nitrogen oxide Pending JPS63171643A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62001003A JPS63171643A (en) 1987-01-08 1987-01-08 Catalyst for removing nitrogen oxide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62001003A JPS63171643A (en) 1987-01-08 1987-01-08 Catalyst for removing nitrogen oxide

Publications (1)

Publication Number Publication Date
JPS63171643A true JPS63171643A (en) 1988-07-15

Family

ID=11489405

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62001003A Pending JPS63171643A (en) 1987-01-08 1987-01-08 Catalyst for removing nitrogen oxide

Country Status (1)

Country Link
JP (1) JPS63171643A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0365308A2 (en) * 1988-10-18 1990-04-25 Babcock-Hitachi Kabushiki Kaisha Exhaust gas-purifying catalyst, process for producing the catalyst and use of the catalyst
US6589495B2 (en) 1998-11-09 2003-07-08 Siemens Aktiengesellschaft Process for reducing the levels of halogenated hydrocarbons
KR100629574B1 (en) * 2005-03-14 2006-09-27 현대중공업 주식회사 Catalyst for nitrogen oxides reduction using activated carbon and method for preparing the same
WO2010016250A1 (en) * 2008-08-07 2010-02-11 バブコック日立株式会社 Catalyst for removing nitrogen oxide, system for removing nitrogen oxide using same and method for removing nitrogen oxide using same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0365308A2 (en) * 1988-10-18 1990-04-25 Babcock-Hitachi Kabushiki Kaisha Exhaust gas-purifying catalyst, process for producing the catalyst and use of the catalyst
US6589495B2 (en) 1998-11-09 2003-07-08 Siemens Aktiengesellschaft Process for reducing the levels of halogenated hydrocarbons
KR100629574B1 (en) * 2005-03-14 2006-09-27 현대중공업 주식회사 Catalyst for nitrogen oxides reduction using activated carbon and method for preparing the same
WO2010016250A1 (en) * 2008-08-07 2010-02-11 バブコック日立株式会社 Catalyst for removing nitrogen oxide, system for removing nitrogen oxide using same and method for removing nitrogen oxide using same
JP2010036137A (en) * 2008-08-07 2010-02-18 Babcock Hitachi Kk Catalyst for removing nitrogen oxide, apparatus and method for removing nitrogen oxide using the same

Similar Documents

Publication Publication Date Title
RU1829954C (en) Method to recover nitrogen oxides contained in gaseous wastes
US4466947A (en) Denitration catalyst and denitrating method
US4891348A (en) Catalyst for removing nitrogen oxides in exhaust gases
CN102049257A (en) Catalyst for simultaneously reducing SO2 and NO with CO as well as preparation and application of catalyst
KR100422193B1 (en) Reduction method of nitrogen oxide reduction catalyst and nitrogen oxide in exhaust gas
US6171372B1 (en) Nitrogen dioxide absorbent
GB2079172A (en) Catalyst for removing nitrogen oxides
JPS63171643A (en) Catalyst for removing nitrogen oxide
JP2973524B2 (en) Exhaust gas purification catalyst
JP4512691B2 (en) Catalyst for selective reduction of nitrogen oxides by carbon monoxide and its preparation
US4225462A (en) Catalyst for reducing nitrogen oxides and process for producing the same
EP4039365A1 (en) Scr catalyst having excellent sulfur tolerance
JPS5812057B2 (en) Shiyokubaisosabutsu
US7405175B2 (en) Catalyst and method for clarifying exhaust gas
JP3246757B2 (en) Nitrogen oxide removal catalyst
JPH0857262A (en) Method for removing nitrous oxide in exhaust gas and catalyst for removing the same
JP2638067B2 (en) Catalyst for catalytic reduction of nitrogen oxides
JP2548756B2 (en) Catalyst for removing nitrogen oxides
JP2825343B2 (en) Method for producing catalyst for removing nitrogen oxides
JPH07222924A (en) Regeneration of denitration catalyst
KR0146879B1 (en) Mordenite containing zeolite catalyst for nox removal
JPH1099418A (en) Deodorizing filter
JP7183081B2 (en) Denitrification catalyst and method for producing the same
Tsuchida et al. Catalytic performance of alumina for NOx control in diesel exhaust
JPS5913893B2 (en) Flue gas denitrification catalyst with low temperature activity