JPS63171347A - Method and apparatus for detecting deficient part of pellet - Google Patents

Method and apparatus for detecting deficient part of pellet

Info

Publication number
JPS63171347A
JPS63171347A JP62002914A JP291487A JPS63171347A JP S63171347 A JPS63171347 A JP S63171347A JP 62002914 A JP62002914 A JP 62002914A JP 291487 A JP291487 A JP 291487A JP S63171347 A JPS63171347 A JP S63171347A
Authority
JP
Japan
Prior art keywords
pellet
fuel rod
rays
image
ray
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62002914A
Other languages
Japanese (ja)
Other versions
JP2534999B2 (en
Inventor
Yoshinori Shinohara
芳紀 篠原
Seiichi Kimura
木村 精一
Yoshitaka Yaginuma
芳隆 柳沼
Katsumori Suzuki
鈴木 克盛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Nuclear Fuel Co Ltd
Original Assignee
Mitsubishi Nuclear Fuel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Nuclear Fuel Co Ltd filed Critical Mitsubishi Nuclear Fuel Co Ltd
Priority to JP62002914A priority Critical patent/JP2534999B2/en
Publication of JPS63171347A publication Critical patent/JPS63171347A/en
Application granted granted Critical
Publication of JP2534999B2 publication Critical patent/JP2534999B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Monitoring And Testing Of Nuclear Reactors (AREA)
  • Length-Measuring Devices Using Wave Or Particle Radiation (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

PURPOSE:To enhance working efficiency, by irradiating a fuel rod with X-rays in the radius direction while said fuel rod is rotated around the axial line thereof and projecting the X-rays transmitting through the fuel rod on an X-ray screen and judging the deficient part of a pellet based on the density of the obtained image. CONSTITUTION:A fuel rod 3 is fed to a detection part while rotated on a plurality of the rollers 14 of a feed mechanism 13 and irradiated with X-rays in the radius direction thereof from an X-ray generating tube 15 in the detection part and the X-rays transmitting through the fuel rod 3 are projected on an X-ray screen 16 and further incident to a video camera 17 through a mirror 19 and the image signal of a transmit ted image is supplied to an image processing part 18. When the fuel rod 3 is irradiated with X-rays, X-rays are hard to transmit through the part of a pellet 2 and the trans mitted image obtained by the camera 17 becomes black at the part of the pellet 2 and the other part becomes gray. Therefore, the deficient part of the pellet 2 is judged on the basis of the density of the transmitted image obtained by the camera 17 by the image processing part 18 and the fuel rod judged as an inferior product is dis charged to an inferior product yard. By this method, working efficiency can be en hanced.

Description

【発明の詳細な説明】 [産業上の利用分野コ この発明は、被覆管内に収納された燃料ペレット(以下
、単にペレットという。)の欠損部の有無を非破壊で検
出する方法および装置に関するものである。
[Detailed Description of the Invention] [Industrial Field of Application] This invention relates to a method and apparatus for non-destructively detecting the presence or absence of a defective part in fuel pellets (hereinafter simply referred to as pellets) housed in a cladding tube. It is.

[従来の技術] 加圧水型原子炉に使用される燃料棒は、例えば第8図に
示すように、被覆管1の内部に複数のペレット2・・・
がその軸線をほぼ同一方向に向けて収納されて構成され
ている。ここで、ペレット2を被覆管lに挿入する前に
ペレット2の外観検査が行われるが、検査の完全を期す
ために、燃料棒3とした状態においてもペレット2の外
周に欠損がないかどうかを検査するようにしている。
[Prior Art] A fuel rod used in a pressurized water reactor, for example, as shown in FIG. 8, has a plurality of pellets 2...
are housed with their axes oriented in substantially the same direction. Here, before inserting the pellet 2 into the cladding tube l, the appearance of the pellet 2 is inspected, but in order to ensure completeness of the inspection, whether there is any damage on the outer periphery of the pellet 2 even when it is in the form of a fuel rod 3. I am trying to inspect it.

従来、ペレットの欠損部の有無を検出する装置としては
、例えば第8図に示すように、X線フィルム4と、この
X線フィルム4の上方に配置されたX線発生管(X線発
生手段)5と、これらX線フィルム4とX線発生管5の
間に燃料棒3を通過させる搬送機構(図示せず)とから
構成されたものが知られている。このような装置を用い
て燃料棒3内のペレット2・・・の欠損部を検出する場
合には、燃料棒3を軸線方向(図中矢印X方向)へ断続
的に移動させながら順次X線を照射し、その透過X線を
X線フィルム4に撮影する。すると、その撮像は第9図
に示すように、X線透過距離の長いペレット2・・−の
部分で薄く、X線透過距離が短い被覆管1や他の部分(
以下、そのような部分をバックグラウンドという。)で
濃いものとなる。
Conventionally, a device for detecting the presence or absence of a defective portion of a pellet includes an X-ray film 4 and an X-ray generating tube (X-ray generating means) disposed above the X-ray film 4, as shown in FIG. 8, for example. ) 5 and a transport mechanism (not shown) for passing the fuel rod 3 between the X-ray film 4 and the X-ray generating tube 5. When detecting a defective part of the pellet 2 in the fuel rod 3 using such a device, X-rays are sequentially applied while the fuel rod 3 is intermittently moved in the axial direction (in the direction of the arrow X in the figure). , and the transmitted X-rays are photographed on an X-ray film 4. Then, as shown in Fig. 9, the image is thin in the pellet 2...- part where the X-ray transmission distance is long, and in the cladding tube 1 and other parts (where the X-ray transmission distance is short).
Hereinafter, such a part will be referred to as a background. ) will make it darker.

そして、撮像のペレット2の部分に凹部6が現れた場合
には、その部分のX線透過距、雌が短く、したがってペ
レット2の外周に欠損部が存在することが確認される。
If a concave portion 6 appears in the portion of the pellet 2 that is imaged, it is confirmed that the X-ray transmission distance of that portion is short, and therefore a defective portion exists on the outer periphery of the pellet 2.

[発明が解決しようとする問題点コ ところが、上記のようにしてペレットの欠損部を検出す
る場合においては、欠損部が側方に位置するときはX線
が欠損部の空間を通過するから検出ずろことができるが
、欠損部がX線発生管側あるいはX線フィルム側を向く
場合に検出することができない。また、X線フィルムを
一回毎に取り替えなければならないため、検査の作業効
率が悪い等の問題があった。
[Problems to be Solved by the Invention] However, when detecting the defective part of the pellet as described above, when the defective part is located on the side, the X-rays pass through the space of the defective part, so detection is difficult. However, it cannot be detected if the defective part faces the X-ray generating tube side or the X-ray film side. Furthermore, since the X-ray film must be replaced every time, there are problems such as poor inspection efficiency.

[発明の目的] この発明は、上記事情に鑑みてなされたもので、ペレッ
トの欠損を確実に検出することができるのは勿論のこと
、検査の作業効率を大幅に向上さU。
[Object of the Invention] The present invention has been made in view of the above circumstances, and it not only makes it possible to reliably detect defects in pellets, but also greatly improves inspection work efficiency.

ることかできるペレットの欠損検出方法およびその装置
を提供することを目的とする。
An object of the present invention is to provide a method for detecting defects in pellets and an apparatus therefor.

[問題点を解決するための手段] この発明のペレット欠損検出方法は、燃料棒を軸線回り
に回転させながらその半径方向からX線を照射し、燃料
棒を透過・したX線をX線スクリーンに映して得られる
画像の濃淡に基づいてペレットの欠損の有無を判別する
。また、本発明の装置は、燃料棒を軸線回りに回転させ
ながら軸線方向に沿って移動させる搬送機構と、搬送さ
れる燃料棒にその半径方向からX線を照射するX線発生
手段と、燃料棒を透過したX線を映すX線スクリーンと
、このX線スクリーンに映された画像の濃淡に基づいて
欠損の有無を判別する判別手段とを備えて構成したもの
である。
[Means for Solving the Problems] The pellet defect detection method of the present invention irradiates X-rays from the radial direction while rotating the fuel rod around its axis, and the X-rays that have passed through the fuel rod are screened through an X-ray screen. The presence or absence of pellet defects is determined based on the shading of the image obtained. The apparatus of the present invention also includes a transport mechanism that rotates the fuel rods around the axis and moves them along the axial direction, an X-ray generating means that irradiates the transported fuel rods with X-rays from the radial direction, and It is constructed by comprising an X-ray screen that reflects the X-rays that have passed through the rod, and a determining means that determines the presence or absence of a defect based on the shading of the image projected on the X-ray screen.

[作用コ ペレットの欠損部がX線の進行方向と直交する方向を向
いたときに、X線スクリーンに映される画像の濃淡に変
化が生じる。この濃淡の変化により欠損部の有無を判別
する。
[When the defective part of the working copellet faces in a direction perpendicular to the direction in which the X-rays travel, a change occurs in the shading of the image projected on the X-ray screen. The presence or absence of a defective portion is determined based on this change in shading.

[実施例] 以下、第1図ないし第7図を参照しながら本発明の一実
施例について説明する。第2図は実施例のペレットの欠
損部検出装置の全体を示す概略図である。このペレット
の欠損部検出装置は、検査前の燃料棒3・・・を溜めて
おく第1の収納部10と、ペレットの欠損部を検出する
検出部11と、合否判定された燃料棒3・・・を溜めて
おく第2の収納部12と、燃料棒3を第1の収納部10
から搬出し、検出部11を通過させて第2の収納部12
へ搬入する搬送機構13とから概略構成されている。
[Embodiment] Hereinafter, an embodiment of the present invention will be described with reference to FIGS. 1 to 7. FIG. 2 is a schematic diagram showing the entire pellet defect detection device according to the embodiment. This pellet defect detection device includes a first storage section 10 that stores fuel rods 3 before inspection, a detection section 11 that detects pellet defects, and a fuel rod 3 that has been determined to be pass/fail. ... is stored in the second storage section 12, and the fuel rods 3 are stored in the first storage section 10.
is carried out, passed through the detection section 11, and placed in the second storage section 12.
It is generally composed of a transport mechanism 13 for transporting the container to the container.

ここで、搬送機構13は、第1図に示すように、搬送方
向に対して傾斜して配置された複数のローラー14・・
・を有しており、燃料棒3を回転させながらその軸線方
向へ移動させるようになされている。また、搬送機構1
3は、上記検出部11の判定結果により良品と判定され
たものを第2の収納部12の良品ヤード12aに供給し
、不良品と判定されたものを不良品ヤードL2bに排出
するようになされている。
Here, as shown in FIG. 1, the conveyance mechanism 13 includes a plurality of rollers 14 arranged obliquely with respect to the conveyance direction.
The fuel rod 3 is moved in its axial direction while being rotated. In addition, the transport mechanism 1
3 is configured to supply the products determined to be good according to the determination result of the detection section 11 to the non-defective product yard 12a of the second storage section 12, and discharge the products determined to be defective to the defective product yard L2b. ing.

次に、検出部11について説明すると、第1の収納部l
Oと第2の収納部12との中間には、搬送機構13の上
方に位置させてX線発生管(X線発生手段)15が配置
されている。また、搬送機構13の下側には、X線スク
リーン16が配置され、このX線スクリーン16の下方
には、ミラー19が傾斜して配置されている。また、ミ
ラー19から搬送方向側へ所定距離離間してビデオカメ
ラ17が配置されている。このビデオカメラ17は、燃
料棒3を透過してX線スクリーン16に映される透過像
の画像信号を画像処理部(判定部)18へ供給するよう
になされている。ここで、画像処理部18によりペレッ
ト2の欠損部を判別する原理について説明する。
Next, to explain the detection section 11, the first storage section l
An X-ray generating tube (X-ray generating means) 15 is arranged between the O and the second storage section 12 and above the transport mechanism 13 . Further, an X-ray screen 16 is arranged below the transport mechanism 13, and a mirror 19 is arranged at an angle below the X-ray screen 16. Further, a video camera 17 is arranged at a predetermined distance from the mirror 19 in the transport direction. This video camera 17 is configured to supply an image signal of a transmitted image transmitted through the fuel rod 3 and projected on an X-ray screen 16 to an image processing section (judgment section) 18. Here, the principle of determining the defective portion of the pellet 2 by the image processing unit 18 will be explained.

X線を燃料棒3に照射したとき、X線は、第6図に示す
ように、被覆管lの部分よりもペレット2の部分の方が
透過しにくい。したがって、ビデオカメラ17により得
られる燃料棒3の透過像は、第3図に示すように、ペレ
ット2の部分で黒く、被覆管lの部分で灰色、それら以
外のバックグラウンドで白い濃淡の階調を有するものと
なる。
When the fuel rod 3 is irradiated with X-rays, the X-rays are more difficult to penetrate through the pellet 2 than through the cladding tube 1, as shown in FIG. Therefore, as shown in FIG. 3, the transmitted image of the fuel rod 3 obtained by the video camera 17 is black in the pellet 2 part, gray in the cladding tube l part, and white in the background other than those areas. It will have the following.

ここで、被覆管lの内周部とペレット2の外周部には隙
間があるため、ペレット2の位置は一定していない。こ
のため、ペレット2の部分の透過像の変動を観察すると
、正常なペレツ、ト2を欠損部有りと判定したり、欠損
部有りのペレット2を正常と判定する恐れがある。そこ
で、画像処理部18において濃淡の階調の部分にウィン
ドウA、Bを設定し、これらウィンドウA、B内の部分
の色調についてヒストグラムを作成する(第4図参照)
。そして、被覆管lの部分のヒストグラムを拡大すると
第5図に示す曲線りが得られる。この場合、第6図に示
すように欠損部が存在すると、被覆管lの部分(すなわ
ち、灰色の部分)の度数が増大して第5図中破線で示す
曲線Rとなるから、曲線Rから曲線りを差し引くと、第
7図に示す欠損部の分布曲線を得ることができる。した
がって、第7図に示すような曲線が現れたときに、不良
品と判定する。
Here, since there is a gap between the inner peripheral part of the cladding tube l and the outer peripheral part of the pellets 2, the position of the pellets 2 is not constant. Therefore, when observing fluctuations in the transmitted image of the pellet 2, there is a possibility that a normal pellet or pellet 2 may be determined to have a defective portion, or a pellet 2 with a defective portion may be determined to be normal. Therefore, in the image processing unit 18, windows A and B are set for the gradation areas of shading, and a histogram is created for the color tones of the areas within these windows A and B (see Figure 4).
. Then, when the histogram of the portion of the cladding tube I is enlarged, a curve shown in FIG. 5 is obtained. In this case, if there is a defect as shown in FIG. 6, the frequency of the portion of the cladding tube l (i.e., the gray portion) increases and becomes the curve R shown by the broken line in FIG. By subtracting the curve, the distribution curve of the defective portion shown in FIG. 7 can be obtained. Therefore, when a curve as shown in FIG. 7 appears, it is determined that the product is defective.

次に、このようなペレットの欠損部検出装置を用いて、
ペレット2の検査を行う方法について説明する。まず、
第1の収納部10から燃料棒3を搬出し、これを回転さ
せながら検出部11側へ搬送する。この場合の搬送速度
および回転速度は、燃料棒3が画像処理部のウィンドウ
A、Bを通過する間に少なくとも1回転するように設定
する。
Next, using such a pellet defect detection device,
A method for inspecting the pellet 2 will be explained. first,
The fuel rod 3 is taken out from the first storage section 10 and transported to the detection section 11 side while being rotated. The conveyance speed and rotation speed in this case are set so that the fuel rod 3 rotates at least once while passing through the windows A and B of the image processing section.

例えば、ウィンドウA、Bがペレット2個分の広さに設
定されている場合には、燃料棒3がペレット2個分進む
間に少なくとも1回転するように設定する。そして、欠
損部が存在すると、上述のように、灰色の部分の度数が
増大するから、その燃料棒3を不良品と判定する。この
場合、画像処理部18から搬送機構13に信号を送り、
不良品と判定された燃料棒3を第2の収納部12の不良
品ヤード12bに排出する。
For example, when the windows A and B are set to have a width equivalent to two pellets, they are set so that the fuel rod 3 rotates at least once while advancing by two pellets. If a defective portion exists, the frequency of the gray portion increases as described above, so that the fuel rod 3 is determined to be a defective product. In this case, a signal is sent from the image processing unit 18 to the transport mechanism 13,
The fuel rods 3 determined to be defective are discharged to the defective product yard 12b of the second storage section 12.

このように、上述した実施例のペレットの欠損部検出方
法および装置によれば、燃料棒3を回転させながらX線
を照射し、ウィンドウA、Bに現れろ画像の濃淡の変化
により欠損部の有無を検出するから、欠損部の検出を確
実に行うことができるのは勿論のこと、連続的かつ高速
に検出することができるので、検査の作業効率を大幅に
向上させることができる。
As described above, according to the pellet defect detection method and apparatus of the above-described embodiment, X-rays are irradiated while the fuel rod 3 is rotated, and defects are detected by changes in the shading of the images that appear in windows A and B. By detecting the presence or absence, not only can defects be reliably detected, but also continuous and high-speed detection can greatly improve inspection work efficiency.

[発明の効果] 以上説明したようにこの発明は、燃料棒を軸線′回りに
回転させながらその半径方向からX線を照射し、燃料棒
を透過したX線をX線スクリーンに映して得られる画像
の濃淡に基づいてペレットの欠損の有無を判別し、また
、燃料棒を軸線回りに回転させながら軸線方向に沿って
移動させる搬送機構と、搬送される燃料棒にその半径方
向からX線を照射するX線発生手段と、燃料棒を透過し
たX線を映すX線スクリーンと、このX線スクリーンに
映された画像の濃淡に基づいて欠損の有無を判別する判
別手段とを備えて構成したものであるから、ペレットの
欠損を確実に検出することができるのは勿論のこと、連
続的かつ高速に行うことができるので、検査の作業効率
を大幅に向上させることができるという効果が得られる
[Effects of the Invention] As explained above, this invention is obtained by irradiating X-rays from the radial direction of a fuel rod while rotating it around its axis, and projecting the X-rays transmitted through the fuel rod on an X-ray screen. The presence or absence of pellet defects is determined based on the shading of the image, and there is also a transport mechanism that rotates the fuel rods around their axis and moves them along the axial direction, and a transport mechanism that emits X-rays from the radial direction of the fuel rods being transported. The fuel rod is configured to include an X-ray generating means for irradiation, an X-ray screen for projecting the X-rays transmitted through the fuel rod, and a discriminating means for determining the presence or absence of a defect based on the shading of the image projected on the X-ray screen. Not only can defective pellets be detected reliably, but the test can also be performed continuously and at high speed, which has the effect of greatly improving inspection work efficiency. .

【図面の簡単な説明】[Brief explanation of the drawing]

第1図ないし第7図は本発明の一実施例を示す図であっ
て、第1図はペレット欠損部検出装置の要部を示す側面
図、第2図は装置全体の概略図、第3図は画像処理部分
のウィンドウを示す説明図、第4図はウィンドウに現れ
る透過像の濃淡階調のヒストグラム、第5図は第4図に
示すヒストグラム中における被覆管の部分を拡大した場
合の濃淡階調のヒストグラム、第6図は燃料棒にX線が
透過する状態を示す断面図、第7図は欠損部のヒストグ
ラム、第8図および第9図は従来のペレット欠損部検出
装置の一例を示す図であって、第8図はその概略側面図
、第9図はX線フィルムに現されたペレットのX線透過
像を示す平面図である。 l・・・・・・被覆管、2・・・・・・ベレット、3・
・・・・・燃料棒、 5・・・・・・X線発生管(X線発生手段)、13・・
・・・・搬送機構、 15・・・・・・X線発生管(X線発生手段)、16・
・・・・・X線スクリーン、 I8・・・・・・画像処理部(判定手段)。 出願人  三菱原子燃料株式会4社 第8図 第9図
1 to 7 are diagrams showing one embodiment of the present invention, in which FIG. 1 is a side view showing the main parts of a pellet defect detection device, FIG. 2 is a schematic diagram of the entire device, and FIG. The figure is an explanatory diagram showing the window of the image processing part, Figure 4 is a histogram of the gradation of the gradation of the transmitted image appearing in the window, and Figure 5 is the shading when the cladding tube part in the histogram shown in Figure 4 is enlarged. A histogram of gradation, Fig. 6 is a cross-sectional view showing the state in which X-rays are transmitted through a fuel rod, Fig. 7 is a histogram of a defective part, and Figs. 8 and 9 are an example of a conventional pellet defect detection device. FIG. 8 is a schematic side view thereof, and FIG. 9 is a plan view showing an X-ray transmission image of the pellet appearing on an X-ray film. l...Claying tube, 2...Bellet, 3.
...Fuel rod, 5...X-ray generating tube (X-ray generating means), 13...
...Transportation mechanism, 15...X-ray generation tube (X-ray generation means), 16.
...X-ray screen, I8... Image processing section (judgment means). Applicant: Mitsubishi Nuclear Fuel Co., Ltd. 4 companies Figure 8 Figure 9

Claims (2)

【特許請求の範囲】[Claims] (1)被覆管の内部に円柱状をなす複数のペレットがそ
れらの軸線を上記被覆管の軸線に沿った方向へ向けて収
納されてなる燃料棒を軸線回りに回転させながらその半
径方向からX線を照射し、燃料棒を透過したX線をX線
スクリーンに映して得られる画像の濃淡に基づいて上記
ペレットの欠損部の有無を判別することを特徴とするペ
レットの欠損部検出方法。
(1) While rotating a fuel rod, in which a plurality of cylindrical pellets are housed inside a cladding tube with their axes oriented along the axis of the cladding tube, from the radial direction of the fuel rod, A method for detecting a defective part of a pellet, characterized in that the presence or absence of a defective part in the pellet is determined based on the density of an image obtained by irradiating the fuel rod with X-rays and projecting the X-rays transmitted through the fuel rod on an X-ray screen.
(2)被覆管の内部に円柱状をなす複数のペレットがそ
れらの軸線を上記被覆管の軸線に沿った方向へ向けて収
納されてなる燃料棒を軸線回りに回転させながら軸線方
向に沿って移動させる搬送機構と、搬送される燃料棒に
その半径方向からX線を照射するX線発生手段と、燃料
棒を透過したX線を映すX線スクリーンと、このX線ス
クリーンに映された画像の濃淡に基づいて上記ペレット
の欠損部の有無を判別する判別手段とを備えてなること
を特徴とするペレットの欠損部検出装置。
(2) A fuel rod in which a plurality of cylindrical pellets are housed inside a cladding tube with their axes oriented along the axis of the cladding tube is rotated around the axis along the axial direction. A transport mechanism for moving, an X-ray generating means for irradiating X-rays from the radial direction of the fuel rods being transported, an X-ray screen for projecting the X-rays that have passed through the fuel rods, and an image projected on the X-ray screen. A defective portion detection device for a pellet, characterized in that it is provided with a discriminating means for determining the presence or absence of a defective portion of the pellet based on the shading of the pellet.
JP62002914A 1987-01-09 1987-01-09 Method and apparatus for detecting defective portion of pellet Expired - Lifetime JP2534999B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62002914A JP2534999B2 (en) 1987-01-09 1987-01-09 Method and apparatus for detecting defective portion of pellet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62002914A JP2534999B2 (en) 1987-01-09 1987-01-09 Method and apparatus for detecting defective portion of pellet

Publications (2)

Publication Number Publication Date
JPS63171347A true JPS63171347A (en) 1988-07-15
JP2534999B2 JP2534999B2 (en) 1996-09-18

Family

ID=11542614

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62002914A Expired - Lifetime JP2534999B2 (en) 1987-01-09 1987-01-09 Method and apparatus for detecting defective portion of pellet

Country Status (1)

Country Link
JP (1) JP2534999B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013238525A (en) * 2012-05-16 2013-11-28 Nuclear Fuel Ind Ltd X-ray inspection calibration method, x-ray inspection method, x-ray inspection device, and reference work

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8693613B2 (en) * 2010-01-14 2014-04-08 General Electric Company Nuclear fuel pellet inspection

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5148388A (en) * 1974-10-23 1976-04-26 Shimadzu Corp
JPS5863559U (en) * 1981-10-24 1983-04-28 株式会社島津製作所 X-ray fluoroscope
JPS59117955A (en) * 1982-12-26 1984-07-07 Aisin Seiki Co Ltd Automatic assembling apparatus for seal
JPS6120845A (en) * 1984-07-09 1986-01-29 Toshiba Corp Measuring device for singular part area frequency

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5148388A (en) * 1974-10-23 1976-04-26 Shimadzu Corp
JPS5863559U (en) * 1981-10-24 1983-04-28 株式会社島津製作所 X-ray fluoroscope
JPS59117955A (en) * 1982-12-26 1984-07-07 Aisin Seiki Co Ltd Automatic assembling apparatus for seal
JPS6120845A (en) * 1984-07-09 1986-01-29 Toshiba Corp Measuring device for singular part area frequency

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013238525A (en) * 2012-05-16 2013-11-28 Nuclear Fuel Ind Ltd X-ray inspection calibration method, x-ray inspection method, x-ray inspection device, and reference work

Also Published As

Publication number Publication date
JP2534999B2 (en) 1996-09-18

Similar Documents

Publication Publication Date Title
JPH05180777A (en) Appearance inspection device for cylindrical object
JP3083364B2 (en) Nuclear fuel pellet peripheral surface inspection device
JP2007212283A (en) Visual inspection device and visual inspection method
JP2806415B2 (en) Foreign matter inspection device
KR100451537B1 (en) Radiation inspection apparatus and radiation inspection method
JP2003294655A (en) X-ray inspection method and apparatus of tire
JPH06148098A (en) Surface defect inspection apparatus
WO1997000438A1 (en) Inspecting the surface of an object
JPS63171347A (en) Method and apparatus for detecting deficient part of pellet
JP2002310944A (en) Radiation inspection system
JPH11223610A (en) Surface defect inspection device and fluorescent magnetic particle flaw inspecting method
JP2010014670A (en) Visual inspection apparatus, visual inspection method, image processing method, and visual inspecting apparatus using the apparatus
JP2846052B2 (en) Cylindrical inspection equipment
JP2009080030A (en) X-ray inspection device
JPH04121647A (en) Appearance inspection method and device for metal can edge part
JPS6239746A (en) Apparatus for inspecting external appearance of cylinder
JP2000111501A (en) Fluoroscope
JPH0763699A (en) Flaw inspection apparatus
JP2000081396A (en) Method and apparatus for automatically judging quality of side surface of taking-up roll
JPH03226696A (en) Inspection device for circumferential surfaces of nuclear fuel pellet
JP2010008380A (en) X-ray inspection system
JP7250301B2 (en) Inspection device, inspection system, inspection method, inspection program and recording medium
JP2004296271A (en) Quality decision testing device and method of coating state of sealing agent
Schache et al. Developments in 2D and CT X-ray inspection of light alloy castings for production
JPH0470555A (en) Apparatus for inspecting surface of sphere