JPS63171318A - Rotation detector - Google Patents

Rotation detector

Info

Publication number
JPS63171318A
JPS63171318A JP270787A JP270787A JPS63171318A JP S63171318 A JPS63171318 A JP S63171318A JP 270787 A JP270787 A JP 270787A JP 270787 A JP270787 A JP 270787A JP S63171318 A JPS63171318 A JP S63171318A
Authority
JP
Japan
Prior art keywords
magnetic
tracks
thin film
high frequency
rotating plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP270787A
Other languages
Japanese (ja)
Inventor
Mitsuo Yamashita
満男 山下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP270787A priority Critical patent/JPS63171318A/en
Publication of JPS63171318A publication Critical patent/JPS63171318A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a small size and simple magnetic detecting sensor with excellent speed response by concentrically forming a plurality of magnetic thin film tracks on one surface of a rotating plate connected to a rotating shaft. CONSTITUTION:A plurality of magnetic thin film tracks 3 with a magnetic pole pitches different from one another are concentrically formed on the surface of a rotating plate 2. A magnetic detecting element 7 wherein a high frequency exciting coil 5 and a detecting coil 6 are lap-wound around amorphous alloy thin wires 4 is perpendicularly and oppositely provided to the tracks 3 so that the distal ends of the thin wires 4 approach the tracks 3. As a result, the surface leakage magnetic field of the magnetic poles of the tracks 3 is taken out from the coil 6 for every track 3 as amplitude- modulated high frequency induced voltage by utilizing the magnetic saturation of the thin wires 4. The amplitude-modulated components of the amplitude-modulated high frequency induced voltage are taken out and converted to binary signals in a position detecting circuit 26. The circumferential direction position of the rotating plate 2 is detected by combining the binary signals from the tracks 3. The rotational angle and rotating speed of the rotating plate 2 are detected by counting the binary signals from the specific track 3.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、F’A機器などにおいて位置決め制御に用
いられる回転数2回転角および角度位置を磁気的に検知
するアブソリエート形の回転検出装置(通称ロータリー
エンコーダ)に関する。
Detailed Description of the Invention [Field of Industrial Application] The present invention relates to an absolute type rotation detection device that magnetically detects the rotation speed, rotation angle, and angular position used for positioning control in F'A equipment, etc. (commonly known as rotary encoder).

〔従来の技術〕[Conventional technology]

F’A機器における位置決め制御には、主としてロータ
リーエンコーダが用いられている。ロータリーエンコー
ダは、回転板の回転数および回転角を光学的あるいは磁
気的に検出するものであるが、機能的には相対的な回転
数2回転角変化量を検出するインクリメンタル形のもの
と、回転板の周方向の絶対位置を検出可能なアブソリエ
ート形とがある。生産の自動化が普及するに伴い、停電
時の機器の制御、操作、精度の高い角度制御等の必要性
からアブソリニート形ロータリーエンコーダの重要性が
高まっている。
Rotary encoders are mainly used for positioning control in F'A equipment. A rotary encoder optically or magnetically detects the rotation speed and rotation angle of a rotary plate.Functionally, there are two types: an incremental type that detects the relative rotation speed and rotation angle change, and a rotary encoder that detects the relative rotation speed and rotation angle change amount. There is an absolute type that can detect the absolute position in the circumferential direction of the plate. As production automation becomes more widespread, the importance of absolute rotary encoders is increasing due to the need for equipment control and operation during power outages, highly accurate angle control, etc.

光学式は、回転板に多数のスリット孔を設け、そのスリ
ット孔を通過する光をa −si  半導体などの受光
素子で検知するものが知られておシ、このうちアブソリ
エート形は1枚の回転板中に同心円状に数トラツクのス
リット孔が設けられてか〕、各トラックに対応して設け
られた受光素子の出力信号の2値化信号の組合わせによ
り、回転板の周方向位置を特定できるものであり、スリ
ット孔および受光素子を精密加工技術により高精度に加
工することKよシ、回転角の分解能を上げることができ
る。
The optical type is known to have many slit holes in a rotating plate and detect the light passing through the slit holes with a light receiving element such as an a-si semiconductor. Several tracks of slit holes are provided concentrically in the plate], and the circumferential position of the rotating plate is determined by combining the binary signals of the output signals of the light receiving elements provided corresponding to each track. By processing the slit hole and the light-receiving element with high precision using precision processing technology, the resolution of the rotation angle can be increased.

磁気式′は、回転板の外周面KS極、N極が交互に着磁
され、この極性変化を磁気センサーで検知するものであ
り、アブソリ具−ト形は着磁極のピッチが互いに異なる
複数枚の回転板を同一回転軸に互いに平行に連結し、そ
の極性変化を回転板それぞれに対応して設けられたホー
ル素子、磁気抵抗素子(半導体もしくは強磁性薄膜)K
よシ検出することKよシ、光学式と同様に2値化信号の
組合わせにより回転板の周方向位置を特定できるもので
あル、最近の高精度の着磁技術、磁性膜形成技術により
、高速応答性に優れた回転検出装置が得られるようにな
っている。
In the magnetic type, the KS and N poles on the outer circumferential surface of the rotary plate are alternately magnetized, and this polarity change is detected by a magnetic sensor.In the absolute type, multiple pieces with different pitches of magnetized poles are used. The rotating plates are connected parallel to each other around the same rotating shaft, and the polarity change is detected by a Hall element or a magnetoresistive element (semiconductor or ferromagnetic thin film) K provided corresponding to each rotating plate.
As with the optical method, the circumferential position of the rotary plate can be determined by a combination of binary signals. , a rotation detection device with excellent high-speed response can now be obtained.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

光学式のアブソリニート形ロータリーエンコーダにおい
ては、受光素子の追従性の点で応答周波数に限界かあ)
、また受光素子が周囲温度の影響を受は易く、長期信頼
性に欠けるという問題がある。一方磁気式のアブソリニ
ート形ロータリーエンコーダにおいては、ホール素子や
半導体磁気抵抗素子が周囲温度の影響を受は易いという
受光素子と同様な弱点を有するとともに、磁性薄膜抵抗
素子を用いた場合には高分解能を得るための特別の検出
方法2回路設計を必要とし、かつ複数の回転板を必要と
するために軸方向寸法が大きくなる2という問題がある
For optical absolute rotary encoders, there is a limit to the response frequency due to the followability of the light receiving element.)
Furthermore, there is a problem that the light receiving element is easily affected by the ambient temperature and lacks long-term reliability. On the other hand, in magnetic absolute rotary encoders, Hall elements and semiconductor magnetoresistive elements have the same weakness as light receiving elements in that they are easily affected by ambient temperature, and when magnetic thin film resistance elements are used, high resolution There is a problem in that the axial dimension becomes large due to the need for a special detection method 2 circuit design and the need for a plurality of rotary plates.

この発明の目的は、1枚の回転板を用いて磁気的に周方
向位置を特定でき、磁気検出センサが小形かつ簡素で優
れた速度応答性と少い温度依存性の回転検出装置を得る
ことにある。
An object of the present invention is to obtain a rotation detection device that can magnetically specify a position in the circumferential direction using a single rotary plate, has a small and simple magnetic detection sensor, has excellent speed response, and has little temperature dependence. It is in.

〔問題点を解決するための手段〕[Means for solving problems]

上記問題点を解決するために、この発明によれば、ケー
スに回動自在に支持された回転軸、およびこの回転軸に
固定された回転板と、この回転板の表面に着磁極ピッチ
を互いに異ならして同心状に形成された複数の磁性薄膜
トラックと、高周波励磁コイルおよび検出コイルが巻装
された非晶質合金線の先端を前記磁性薄膜トラックの表
面に近接して垂直に配置した複数の磁気検出素子と、こ
の磁気検出素子からそれぞれ出力される振幅変調高周波
信号の振幅変調成分を検出してその二値化信号により回
転板の位置を検出する位置検出回路とを備えるものとす
る。
In order to solve the above problems, according to the present invention, a rotating shaft rotatably supported by a case, a rotating plate fixed to the rotating shaft, and a magnetized pole pitch on the surface of the rotating plate are mutually arranged. A plurality of magnetic thin film tracks formed differently and concentrically, and a plurality of tips of an amorphous alloy wire around which a high frequency excitation coil and a detection coil are wound are arranged perpendicularly close to the surface of the magnetic thin film tracks. The magnetic detection element includes a magnetic detection element, and a position detection circuit that detects the amplitude modulation component of the amplitude modulated high frequency signal outputted from each of the magnetic detection elements and detects the position of the rotating plate based on the binary signal.

〔作用〕[Effect]

回転軸に連結された1枚の回転板の一方の表面に同心状
に複数の垂直磁気異方性を有する磁性薄膜トラックを形
成し、各トラックの局方向KN極。
A plurality of magnetic thin film tracks having perpendicular magnetic anisotropy are formed concentrically on one surface of one rotating plate connected to a rotating shaft, and each track has a KN pole in the local direction.

S極交互に着磁された着磁パターン(着磁極ピッチ)を
トラック毎に変えるようKしたことにより、従来装置に
おける複数枚の回転板の機能を1枚の回転板に集約でき
る。
By changing the magnetization pattern (magnetized pole pitch) in which S poles are alternately magnetized for each track, the functions of a plurality of rotary plates in a conventional device can be integrated into one rotary plate.

また、先端が磁性薄膜トラックそれぞれに近接して垂直
に配された非晶質合金線とと”れに重ね巻きされた高周
波励磁コイル、検出コイルからなる磁気検出素子により
、着磁極の表面漏洩磁界を非晶質合金細線の磁気飽和を
利用して振幅変調され大高周波誘起電圧として検出コイ
ルから各トラック毎に取り出すことができ、位置検出回
路で振幅変調高周波誘起電圧の振幅変調成分を取り出し
て2値化信号に変換し、各トラックからの2値化信号の
組合わせにより、回転板の周方向位置を、ま九特定トラ
ックの2値化信号を計数することにより回転角2回転数
を知ることができる。
In addition, a magnetic detection element consisting of an amorphous alloy wire whose tip is arranged vertically close to each magnetic thin film track, and a high-frequency excitation coil and a detection coil wound around each other, generates a surface leakage magnetic field from the magnetized pole. is amplitude-modulated using the magnetic saturation of the amorphous alloy thin wire and can be extracted from the detection coil as a large high-frequency induced voltage for each track.The position detection circuit extracts the amplitude modulation component of the amplitude-modulated high-frequency induced voltage. By converting into a digitized signal and combining the binarized signals from each track, the circumferential position of the rotary plate can be determined, and by counting the binarized signals of a specific track, the number of revolutions per rotation angle can be determined. Can be done.

さらに、非晶質合金細線は高周波透磁率が高く。Furthermore, amorphous alloy thin wire has high high frequency magnetic permeability.

強じんで、温度依存性が少ない性質を有し、外径数+μ
mオーダの磁気センサを形成できるので、極性変化を高
速かつ高分解能で検知することができる。
It is strong, has low temperature dependence, and has an outer diameter number + μ
Since an m-order magnetic sensor can be formed, polarity changes can be detected at high speed and with high resolution.

〔実施例〕〔Example〕

以下、この発明を実施例に基づいて説明する。 Hereinafter, this invention will be explained based on examples.

第1図は実施例装置を示す断面図である。図において、
10は回転検出装置のケース、1はケース10にベアリ
ング1人等によって回動自在に支持された回転軸、2は
回転軸に固定された回転板であシ、回転板2の一方の表
面には互いに同心状に所定の幅の垂直磁気異方性を有す
る3A〜3F’からなる磁性薄膜トラック3が蒸着され
ている。
FIG. 1 is a sectional view showing an example device. In the figure,
10 is a case of the rotation detection device, 1 is a rotary shaft rotatably supported in the case 10 by a bearing, etc., and 2 is a rotary plate fixed to the rotary shaft, and on one surface of the rotary plate 2. Magnetic thin film tracks 3 consisting of 3A to 3F' having perpendicular magnetic anisotropy and having a predetermined width are deposited concentrically with each other.

4は磁性薄膜トラック3A〜3Fにそれぞれ対応して配
された4A、4B、4C・・・・4FからなるCo 基
非晶質合金細線であシ、それぞれに高周波励磁コイル5
および検出コイル6が重ね巻きされて磁気検出素子7が
形成されるとともに、支持部材9により非晶質合金細線
4の先端が磁性薄膜トラック30表面に僅かな間隙を隔
てて近接するよう垂直に支持され、かつ各検出素子が回
転板の半径方向に整列するようケース10側に支持され
ている。また、高周波励磁コイル6#i互いに直列接続
され、リード1l115を介して発振器25K”導電接
続され、発振器25からの高周波励磁電流により同位相
に励磁される。さらに、検出コイル6肌それぞれ独立し
たリード#16により検出回路26に導電接続されてい
る。11は検出信号の取出し線である。
Reference numeral 4 is a Co-based amorphous alloy thin wire consisting of 4A, 4B, 4C, .
The detection coil 6 is wound overlappingly to form a magnetic detection element 7, and the supporting member 9 vertically supports the amorphous alloy thin wire 4 so that its tip is close to the surface of the magnetic thin film track 30 with a slight gap therebetween. and is supported on the case 10 side so that each detection element is aligned in the radial direction of the rotating plate. In addition, the high-frequency excitation coils 6 #i are connected in series with each other, and are conductively connected to the oscillator 25K'' through the lead 1l115, and are excited in the same phase by the high-frequency excitation current from the oscillator 25.Furthermore, each of the detection coils 6 has independent leads. It is conductively connected to the detection circuit 26 by #16. 11 is a detection signal lead line.

ta2図は実施例装flGcおける磁性薄膜トラックを
示す平面図であり、最内周トラック3Fでは半周ずつ1
対のN極、S極が着磁され、トラック3Eでは四分の一
周ずつN極、S極が周方向に交互に位置するよう着磁さ
れ、以下同様に着磁極N極。
Figure ta2 is a plan view showing the magnetic thin film track in the embodiment flGc, and in the innermost track 3F, one half round at a time
A pair of north and south poles are magnetized, and in the track 3E, the north and south poles are magnetized so that they are alternately located in the circumferential direction every quarter of a turn, and the same goes for the north and south poles.

S極の極ピッチが二分の−に短縮されるよう着磁されて
おシ、トラック数をnとすれば、2の1乗に比例して回
転板20周方向を弁別し得る磁性薄膜トラックを1枚の
回転板上に形成することができる。
It is magnetized so that the pole pitch of the S pole is shortened by -2, and if the number of tracks is n, then the magnetic thin film tracks that can distinguish the circumferential direction of the rotary plate 20 in proportion to the first power of 2 are formed. It can be formed on one rotating plate.

第3図は実施例装置の要部の詳細図であシ、垂直磁気異
方性を有する磁性薄膜トラック5A、3Bはそれぞれ厚
み方向に図中矢印で示すように着磁されておシ、その表
面上の空間には着磁極の極非 性に対応した空間漏洩磁束が発生している。*品質合金
細線4A、4B等は、この空間漏洩磁束を検知するため
、その先端が間隙を隔てて各トラックに対向するよう垂
直に配され、高周波励磁コイル4A 、4B等は互いに
直列接続されてリード線ist介して発振器25に導電
接続され、高周波励磁コイルに重ね巻きされた検出コイ
ル6人、6B等は独立したリード線16A 、 16B
等により検出回路に導電接続されている。
FIG. 3 is a detailed view of the main part of the embodiment device. The magnetic thin film tracks 5A and 3B having perpendicular magnetic anisotropy are each magnetized in the thickness direction as shown by the arrows in the figure. Space leakage magnetic flux corresponding to the polarity of the magnetized pole is generated in the space above the surface. *In order to detect this spatial leakage magnetic flux, the quality alloy thin wires 4A, 4B, etc. are arranged vertically so that their tips face each track with a gap in between, and the high frequency excitation coils 4A, 4B, etc. are connected in series with each other. The six detection coils, 6B, etc. are conductively connected to the oscillator 25 through lead wires IST, and are wound around the high-frequency excitation coil in an overlapping manner through independent lead wires 16A and 16B.
etc., and is conductively connected to the detection circuit.

Co 基非晶質合金細a4は、機械的剛性が高く、かつ
磁歪性が糎とんど無いので、直径50〜120μm程度
の細線に細い導線を磁気特性に影響を及ぼすことなく巻
くことが可能であシ、磁気検出素子7を細く小形に形成
できる特徴があシ、またこれに対応する磁性薄膜トラッ
ク30幅も1fi以下ですみ、したがって回転板2の直
径を増すことなく10トラツクを超える磁性薄膜トラッ
クを形成することが可能である。また、 Co基非晶質
合金細線はパーマロイ、フェライトなどの磁性材料に比
べて高周波領域における透磁率が高く、磁場に対する感
応性にすぐれ、また糸−ル素子や磁気抵抗素子に比べて
周囲温度依存性が少いので、温度補正回路を必要とせず
、したがりて装置を小型。
Co-based amorphous alloy thin A4 has high mechanical rigidity and almost no magnetostriction, so it is possible to wind a thin conducting wire around a thin wire with a diameter of about 50 to 120 μm without affecting the magnetic properties. Another advantage is that the magnetic detection element 7 can be made thin and compact, and the width of the corresponding magnetic thin film track 30 can be less than 1fi, so the magnetic detection element 7 can have more than 10 tracks without increasing the diameter of the rotary plate 2. It is possible to form thin film tracks. In addition, Co-based amorphous alloy thin wires have higher magnetic permeability in the high frequency range than magnetic materials such as permalloy and ferrite, and have excellent sensitivity to magnetic fields, and are more sensitive to ambient temperature than thread elements or magnetoresistive elements. Since the temperature is low, a temperature compensation circuit is not required, thus making the device smaller.

強じん、かつ簡素に構成することができる。なお、高周
波励磁される磁気検出素子7相互の干渉を防ぐために1
重ね巻きされたコイル5および6の外周は磁気シールド
8によって包囲される。
It is strong and can be configured simply. In addition, in order to prevent mutual interference between the magnetic detection elements 7 excited by high frequency,
The outer circumferences of the overlapping coils 5 and 6 are surrounded by a magnetic shield 8.

励磁コイル5が高周波励磁されると、非晶質合金細線4
には高周波磁界が発生するとともに、磁性薄膜トラック
30着磁極からの表面漏洩磁束が加わることKなる0回
転板20回動に伴う表面漏洩磁束の極性変化が高周波磁
束の周期よ)長ければ、検出コイル6には表面漏洩磁束
によって振幅変調された高周波電圧が誘起されることK
なる。
When the excitation coil 5 is excited at high frequency, the amorphous alloy thin wire 4
A high-frequency magnetic field is generated, and surface leakage magnetic flux from the magnetized pole of the magnetic thin film track 30 is added. If the polarity change of the surface leakage magnetic flux accompanying the rotation of the 0-rotation plate 20 (K) is longer than the period of the high-frequency magnetic flux, it can be detected. A high frequency voltage whose amplitude is modulated by the surface leakage magnetic flux is induced in the coil 6.
Become.

第4図ないし第6図は実施例装置における非晶質合金細
線4の磁化状況を示すB−H特紳線図であり、Lステリ
シスを無視して筒部化して示したものである。第4図は
高周波励磁電流による磁化状況を示しておシ、図中破線
で示す飽和磁束密度B8 なる非晶質合金細線4を、B
s  より幾分低く磁束密度の変化幅がdBIKなるよ
う(図中実線で示す)高周波磁化しておくものとする。
FIGS. 4 to 6 are B-H special line diagrams showing the magnetization state of the amorphous alloy thin wire 4 in the embodiment device, and are shown in a cylindrical shape ignoring the L steresis. Figure 4 shows the magnetization state caused by high-frequency excitation current.
It is assumed that high-frequency magnetization is performed so that the width of change in magnetic flux density is dBIK (indicated by a solid line in the figure), which is slightly lower than s.

第5図は着磁極の表面漏洩磁束が高周波磁界の正方向に
一致したときの磁化状況、第6図は負方向に一致したと
きの磁化状況である。第5図においては、高周波磁界が
表面漏洩磁界によって正側−42ノ叩w JP J++
 −y ?r 麹bP Mm 翻1  v’lh 索虐
ek ^−1b幅がdB、に低減される。第6図におい
ては、高周波磁界は表面漏洩磁界によ)負側にバイアス
されて負側に飽和し、磁束密度の変化幅がdB、に低減
される。
FIG. 5 shows the magnetization state when the surface leakage magnetic flux of the magnetized pole matches the positive direction of the high-frequency magnetic field, and FIG. 6 shows the magnetization state when it matches the negative direction. In Fig. 5, the high-frequency magnetic field is hit by -42 points on the positive side due to the surface leakage magnetic field w JP J++
-y? r koji bP Mm translation 1 v'lh soraku ek ^-1b width is reduced to dB. In FIG. 6, the high frequency magnetic field is biased to the negative side (by the surface leakage magnetic field) and saturated to the negative side, and the variation width of the magnetic flux density is reduced to dB.

第7図および第8図は検出コイルの誘起電圧を示す波形
図であり、第7図は高周波磁界のみKよる誘起電圧波形
を、第8図は振幅変調された誘起電圧波形を示したもの
であシ、波高値VOなる高周波誘起電圧50は、表面漏
洩磁界による図中破線で示す振幅変調成分63によ)振
幅変調された高周波誘起電圧60となる。また振幅変調
波成分630周期Tは、磁性薄膜トラック3A〜6Fの
着磁極ピッチがそれぞれ異なるために、トラック6A側
で短かくトラック6F側では長くなる。
Figures 7 and 8 are waveform diagrams showing the induced voltage of the detection coil. Figure 7 shows the induced voltage waveform due to only the high-frequency magnetic field K, and Figure 8 shows the amplitude-modulated induced voltage waveform. The high-frequency induced voltage 50 having the peak value VO becomes a high-frequency induced voltage 60 whose amplitude is modulated by an amplitude modulation component 63 shown by a broken line in the figure due to the surface leakage magnetic field. Further, the amplitude modulated wave component 630 period T is shorter on the track 6A side and longer on the track 6F side because the magnetic thin film tracks 3A to 6F have different magnetized pole pitches.

第9図は、実施例装置Kかける2値化信号波形図であシ
、振幅変調された高周波誘起電圧60の変調波成分63
を所定のしきい値で2値化信号260に変換することK
よシ、N極、S極がそれぞれHレベルとLレベル(1,
0)に対応し、雨着磁極の通過時間を周期Tとするディ
ジタル信号260を得ることができる。したがって磁性
薄膜トラック3A〜3Fからのディジタ省信号260を
組合わせることにより、回転板20周方向位置を2のn
乗なる分解能で特定することができる。
FIG. 9 is a waveform diagram of a binary signal applied to the embodiment device K, in which a modulated wave component 63 of an amplitude-modulated high-frequency induced voltage 60 is shown.
Converting K into a binary signal 260 using a predetermined threshold value
Yoshi, N pole, and S pole are respectively H level and L level (1,
0), it is possible to obtain a digital signal 260 whose period T is the passing time of the rain magnetized pole. Therefore, by combining the digital saving signals 260 from the magnetic thin film tracks 3A to 3F, the position in the circumferential direction of the rotating plate 20 can be determined by n.
It can be specified with a resolution of

なお、前述の実施例においては、非晶質合金細線と、こ
れに重ね巻きされた高周波励磁コイル。
In the above-mentioned embodiment, the amorphous alloy thin wire and the high frequency excitation coil wound around the thin amorphous alloy wire are used.

検出コイルからなる磁気検出素子7を回転板の半径方向
に整列して配置した場合を例にして説明したが、磁気検
出素子7および対応するトラック3の着磁極をトラック
電化周方向にずらして配置または形成するよう構成すれ
ば、磁気検出素子7によるトラック幅の制約を排除する
ことが可能であり、外径寸法の小さい回転板2により多
くの磁性薄膜トラック3を形成して位置検出の分解能を
高めることができる。
The explanation has been given using an example in which the magnetic detection elements 7 made up of detection coils are arranged in alignment in the radial direction of the rotating plate, but it is also possible to arrange the magnetic detection elements 7 and the magnetized poles of the corresponding tracks 3 to be shifted in the circumferential direction of the track electrification. Alternatively, if the track width is formed by the magnetic detecting element 7, it is possible to eliminate the restriction on the track width, and by forming a large number of magnetic thin film tracks 3 on the rotary plate 2 having a small outer diameter, the resolution of position detection can be improved. can be increased.

〔発明の効果〕〔Effect of the invention〕

この発明は前述のように、一つの回転板の表面に着磁極
ピッチが互い夜具なる複数の磁性薄膜トラックを同心円
状に形成し、非晶質合金細線に高周波励磁コイル、検出
コイルを重ね巻きした磁気検出素子を非晶質合金細線の
先端が各トラック表面に近接するよう磁性薄膜トラック
それぞれに対応して垂直に設けるよう構成した。その結
果、各磁性薄膜トラックの着磁極の極性変化を非晶質合
金細線の磁気飽和特性を利用して振幅変調され良高周波
誘起電圧として検出でき、この電圧を検出回路でN極、
S極に対応して1,0となるディジタル信号に変換し、
各トラックのディジタル信号の組合わせにより回転板の
周方向位置を特定できるアプンリエート形磁気式回転検
出装蓋を提供することができる。また、Co基非晶質合
金細線は機械的に強じんで磁歪性がほとんどなく、かつ
高周波透磁率が高いので、50〜120μm程度の細線
を用いて極〈小形で磁気検出性能の高い磁気検出素子を
形成でき、したがって、これに対向する磁性薄膜トラッ
クの幅および着磁極ピッチを小さくできることにより1
枚の回転板に多数のトラックを形成することができ、複
数の回転板を用いた従来の磁気式回転検出装置に比べ・
て小型かつ簡素で回転角回転数検出における速度応答性
および位置検出における分解能に優れたアブソリエート
形の回転検出装置を提供することができる。さらに、非
晶質合金細線を用いた磁気検出素子は周囲温度の影響が
少いので、ホール素子や磁気抵抗素子を用いた従来装置
における温度依存性を排除でき、かつその補正回路を必
要としないので、信頼性が高く検出回路が簡素化された
回転検出装置を提供することができる。
As described above, this invention consists of concentrically forming a plurality of magnetic thin film tracks with mutually varying magnetization pole pitches on the surface of one rotary plate, and winding a high-frequency excitation coil and a detection coil around an amorphous alloy thin wire. The magnetic detection elements were arranged perpendicularly to each magnetic thin film track so that the tip of the thin amorphous alloy wire was close to the surface of each track. As a result, the polarity change of the magnetized pole of each magnetic thin film track is amplitude-modulated using the magnetic saturation characteristics of the amorphous alloy thin wire and can be detected as a high-frequency induced voltage, and this voltage can be detected by the detection circuit as a high-frequency induced voltage.
Convert to a digital signal that becomes 1, 0 corresponding to the S pole,
It is possible to provide an amplified magnetic rotation detection device that can specify the circumferential position of the rotary plate by combining the digital signals of each track. In addition, Co-based amorphous alloy thin wires are mechanically strong, have almost no magnetostriction, and have high high-frequency magnetic permeability. The width of the magnetic thin film track facing the magnetic thin film track and the pitch of the magnetized poles can be reduced.
A large number of tracks can be formed on a single rotating plate, compared to conventional magnetic rotation detection devices that use multiple rotating plates.
Therefore, it is possible to provide an absolute type rotation detection device that is small and simple, and has excellent speed responsiveness in rotation angle rotation speed detection and excellent resolution in position detection. Furthermore, since the magnetic sensing element using amorphous alloy thin wire is less affected by ambient temperature, it can eliminate the temperature dependence of conventional devices using Hall elements and magnetoresistive elements, and does not require a correction circuit. Therefore, it is possible to provide a rotation detection device with high reliability and a simplified detection circuit.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は実施例装置を示す断面図、第2図は実施例にお
ける磁性薄膜トラックを示す平面図、第6図は実施例に
おける要部の概略側面図、第4図ないし第6図は実施例
における非晶質合金細線の磁化状況を示すB−H4!j
性線図、第7図および第8図は実施例における検出コイ
ルの誘起電圧波形図、第9図は実施例における検出回路
の2値化信号波形図である。 1・・・回転軸、2・・・回転板、5.5A〜3E・・
・磁性薄膜トラック、4,4A、4B・・・非晶質合金
細線、5・・・高周波励磁コイル、6・・・検出コイル
、7・・・磁気検出素子、8・・・磁気シールド、9・
・・支持部材、10・・・ケース、25・・・発振器、
26・・・検出回路。 足?楠鈷 112図 第3図 第4図 第5図 第6図
Fig. 1 is a cross-sectional view showing the device of the embodiment, Fig. 2 is a plan view showing the magnetic thin film track in the embodiment, Fig. 6 is a schematic side view of the main parts in the embodiment, and Figs. B-H4 showing the magnetization state of the amorphous alloy thin wire in Example! j
7 and 8 are induced voltage waveform diagrams of the detection coil in the embodiment, and FIG. 9 is a binary signal waveform diagram of the detection circuit in the embodiment. 1... Rotating shaft, 2... Rotating plate, 5.5A to 3E...
・Magnetic thin film track, 4, 4A, 4B... Amorphous alloy thin wire, 5... High frequency excitation coil, 6... Detection coil, 7... Magnetic detection element, 8... Magnetic shield, 9・
... Support member, 10... Case, 25... Oscillator,
26...Detection circuit. feet? Kusunoki 112 Figure 3 Figure 4 Figure 5 Figure 6

Claims (1)

【特許請求の範囲】 1)ケースに回動自在に支持された回転軸、およびこの
回転軸に固定された回転板と、この回転板の表面に着磁
極ピッチを互いに異ならして同心状に形成された複数の
磁性薄膜トラックと、高周波励磁コイルおよび検出コイ
ルが巻装された非晶質合金線の先端を前記磁性薄膜トラ
ックの表面に近接して垂直に配置した複数の磁気検出素
子と、この磁気検出素子からそれぞれ出力される振幅変
調高周波信号の振幅変調成分を検出してその二値化信号
により回転板の位置を検出する位置検出回路とを備えた
ことを特徴とする回転検出装置。 2)特許請求の範囲1項記載のものにおいて、磁気検出
素子がこれを包囲する磁気シールドを有することを特徴
とする回転検出装置。
[Claims] 1) A rotary shaft rotatably supported by a case, a rotary plate fixed to the rotary shaft, and concentrically formed magnetized poles with different pitches on the surface of the rotary plate. a plurality of magnetic thin film tracks, a plurality of magnetic sensing elements each having a tip of an amorphous alloy wire around which a high frequency excitation coil and a detection coil are wound, arranged vertically close to the surface of the magnetic thin film track; A rotation detecting device comprising: a position detecting circuit that detects amplitude modulated components of amplitude modulated high frequency signals respectively output from magnetic detecting elements and detects the position of the rotary plate based on the binary signals thereof. 2) The rotation detecting device according to claim 1, wherein the magnetic detecting element has a magnetic shield surrounding the magnetic detecting element.
JP270787A 1987-01-09 1987-01-09 Rotation detector Pending JPS63171318A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP270787A JPS63171318A (en) 1987-01-09 1987-01-09 Rotation detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP270787A JPS63171318A (en) 1987-01-09 1987-01-09 Rotation detector

Publications (1)

Publication Number Publication Date
JPS63171318A true JPS63171318A (en) 1988-07-15

Family

ID=11536764

Family Applications (1)

Application Number Title Priority Date Filing Date
JP270787A Pending JPS63171318A (en) 1987-01-09 1987-01-09 Rotation detector

Country Status (1)

Country Link
JP (1) JPS63171318A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03202702A (en) * 1989-12-29 1991-09-04 Ebara Corp Inductance-type displacement sensor
JP2013156120A (en) * 2012-01-30 2013-08-15 Canon Inc Position detector and lens barrel

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03202702A (en) * 1989-12-29 1991-09-04 Ebara Corp Inductance-type displacement sensor
JP2013156120A (en) * 2012-01-30 2013-08-15 Canon Inc Position detector and lens barrel

Similar Documents

Publication Publication Date Title
US6118271A (en) Position encoder using saturable reactor interacting with magnetic fields varying with time and with position
JPS618670A (en) Device for detecting speed of revolution and/or angle of rotation of shaft
JP3352366B2 (en) Pulse signal generator
JP2002228733A (en) Magnetism detecting device
JPS63171318A (en) Rotation detector
JP2550049B2 (en) Device that magnetically detects position and speed
JPH0331782A (en) Magnetic encoder
JPS62293122A (en) Rotational frequency and angle of rotation detector
JP2958846B2 (en) Angle detector
JPS6063413A (en) Rotation detector
JPS63180865A (en) Rotation detector
JPH01233316A (en) Revolution detector
JPS6123822Y2 (en)
JPH0122088Y2 (en)
JP2536693B2 (en) Magnetic encoder
JPS5817213Y2 (en) magnetic disc
JPH0320779Y2 (en)
JPS61266914A (en) Encoder
JPH08122422A (en) Magnetic field sensor utilizing reversible susceptibility
JPH0217411A (en) Manufacture of magnetic rotary encoder
JPH01295658A (en) Rotation detector
JP2019211327A (en) Magnetic encoder
JPS5944950A (en) Motor mounted with magnetic encoder
JPH0560568A (en) Magnetic sensor
JPH0441282B2 (en)