JPS63171169A - High-frequency high-voltage power source - Google Patents

High-frequency high-voltage power source

Info

Publication number
JPS63171169A
JPS63171169A JP62000854A JP85487A JPS63171169A JP S63171169 A JPS63171169 A JP S63171169A JP 62000854 A JP62000854 A JP 62000854A JP 85487 A JP85487 A JP 85487A JP S63171169 A JPS63171169 A JP S63171169A
Authority
JP
Japan
Prior art keywords
power supply
frequency
capacitor
voltage power
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62000854A
Other languages
Japanese (ja)
Other versions
JP2698867B2 (en
Inventor
Senichi Masuda
増田 閃一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP62000854A priority Critical patent/JP2698867B2/en
Publication of JPS63171169A publication Critical patent/JPS63171169A/en
Application granted granted Critical
Publication of JP2698867B2 publication Critical patent/JP2698867B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Inverter Devices (AREA)

Abstract

PURPOSE:To prevent accidents when output terminals of this apparatus are opened, by connecting between said output terminals a fixed protecting capacitor in parallel with a load. CONSTITUTION:Both terminals M, N of a power capacitor 6 with electrostatic capacity C0 sufficiently larger than that of a capacitive load 5 composed of small resistance part RK and comparatively large nonlinear capacity part CK connected with output terminals 3 to 4 of secondary winding 2 of a high-frequency boosting transformer 1 are connected with a charging DC power 9 composed of low-frequency AC power 7 and full-wave rectifier 8. Said terminal M is connected with the middle point O of a transformer primary winding 10 and provided with vibrating inductances L1 to L2 and silicon controlled rectifiers S1 to S2, and said rectifiers S1 to S2 are alternately turned ON by a control power 13. Then, a protective capacitor 18 is connected between the output terminals 3 and 4, and its capacity CP is set to about one-fourth to one-fifth of the load electrostatic capacity CK or more. Thus, said mechanism performs protection from any accidents by overcurrent and by opening and short-circuiting of the output terminals together with a fuse F1 for protection from overcurrent.

Description

【発明の詳細な説明】 [産業上の利用分野1 本発明は、沿面放電型オゾナイザ−等の如く静電容量が
電圧により変化する非線形性の容量負荷に効率よく、安
定かつ高い信頼性をもって高周波高圧電圧を印加するた
めの電源に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field 1] The present invention provides efficient, stable and highly reliable high frequency application to non-linear capacitive loads such as creeping discharge ozonizers whose capacitance changes with voltage. This invention relates to a power source for applying high voltage.

[従来の技術] 従来この種の電源としては高周波発振器と高周波用昇圧
変圧器の組合せが用いられて来た。その際、負荷の静電
容量が放電等のため、交流電圧の一周期内で電圧により
変化するため、その無効電力を直列ないし並列インダク
タンスの使用により補償することが出来ず、したがって
高周波発振器、昇圧変圧器とも大型高価となり、損失も
増えて電力効率も極めて低くなる。その−し、電圧があ
る値をこえると突然電流が過大な値に跳躍するという非
線形回路特有の不安定現象が存し、安定な駆動が困難で
ある。
[Prior Art] Conventionally, a combination of a high frequency oscillator and a high frequency step-up transformer has been used as this type of power source. At that time, the capacitance of the load changes due to discharge, etc. within one cycle of the AC voltage, so the reactive power cannot be compensated for by using a series or parallel inductance. Both transformers are large and expensive, with increased losses and extremely low power efficiency. However, there is an unstable phenomenon peculiar to nonlinear circuits in which the current suddenly jumps to an excessive value when the voltage exceeds a certain value, making stable driving difficult.

これに対して・本発明の発明者は別発明「高周波高圧電
源」 (特願昭81−3040号、以下r別発明」とよ
ぶ)において中点イ」き低圧側−・次巻線と両端を出力
端子とする高圧側二次巻線を有する高周波用昇圧変圧器
の該一次巻線の中点に、充電用直流電源を具備せる電源
コンデンサーの一端を接続し、該一次巻線の両端をそれ
ぞれ振動用インダクタンスおよびコンデンサー充電電圧
の放電方向を導通方向とせるシリコン制御整流素子(サ
イリスター)など適当なる外部制御型スイッチ素子に直
列接続の」二、該コンデンサーの他端に接続し、かつ該
外部制御型スイッチ素子のそれぞれに逆並列にダイオー
ド素子を接続し、制御電源から導通トリガー用制御信号
を該外部制御型スイッチ素子の制御端子に交互に供給し
て、該外部制御型スイッチ素子を交互にオン・オフせし
め、これによって負荷の静電容量がたとえ電圧により変
化する非線形性のものであっても、常にもっとも高い電
力効率をもって安定に高周波高電圧を印加しうる電源を
実現することを提案した。
On the other hand, the inventor of the present invention has developed a separate invention, "High Frequency High Voltage Power Supply" (Patent Application No. 81-3040, hereinafter referred to as "separate invention"), in which the center point A' is located on the low voltage side, the next winding and both ends. Connect one end of a power supply capacitor equipped with a DC power supply for charging to the midpoint of the primary winding of a high-frequency step-up transformer that has a high-voltage side secondary winding with the output terminal, and connect both ends of the primary winding. connected in series to a suitable externally controlled switching element such as a silicon-controlled rectifying element (thyristor) that makes the discharging direction of the capacitor charge voltage the conduction direction, respectively, and the other end of the capacitor, and the external A diode element is connected in antiparallel to each of the control type switch elements, and a control signal for conduction trigger is alternately supplied from the control power source to the control terminal of the external control type switch element, so that the external control type switch element is alternately connected. We proposed to create a power supply that can stably apply high frequency and high voltage with the highest power efficiency even if the capacitance of the load is non-linear and changes depending on the voltage. .

但し、ここに外部制御型スイッチ素子とはその制御端子
に制御信号を供給しないときはオフ状態を保ち、供給し
たときにアノード端子からカソード端子に向って電流を
導通せしめる作用を有する素子を総称する。
However, the term "externally controlled switching element" here generally refers to an element that maintains an off state when no control signal is supplied to its control terminal, and conducts current from the anode terminal to the cathode terminal when the control signal is supplied. .

[発明が解決しようとする問題] 本発明は上記「別発明」の有する使用上の問題点を解決
しようとするものであるが、この問題点を明らかにする
ため、まず予めr別発明」の内容と動作を第1図および
第2図で説明する。
[Problem to be Solved by the Invention] The present invention attempts to solve the problems in use of the above-mentioned "separate invention." In order to clarify this problem, first of all, the problems of the "r. different invention" are explained in advance. The contents and operation will be explained with reference to FIGS. 1 and 2.

第1図において高周波用昇圧変圧器1の二次巻線2の出
力端子3.4に接続された小さな抵抗分Rkと比較的大
きな非線形性容量分Ckより成る容量性負荷5の一次側
換算容](aCkに対して、これより充分に大きい静電
容量Goを看する電源コンデンサー6の両端子Mおよび
Nは、低周波交流電源7および両波整流器8より成る充
電用直流電源9に接続され、該コンデンサー6はたとえ
ばM側が正、N側(Nは接地されている)が負の極性で
電圧Voに充電されている。端子Mは昇圧変圧器1の一
次巻線10の中点Oに接続され、10の両端子A、Bは
それぞれ振動用インダクタンスLl 、 L2 、これ
に直列に順方向に(コンデンサー8の放電方向に)接続
されたシリコン制御整流素子より成る外部制御型スイッ
チ素子Sl 、 S2を介して端子Nに接続され、接地
される。St 、 S2にはそれぞれ逆並列にダイオー
ド素子DI 、 D2が接続されている。11.12は
DI、D2に直列接続された小さなインダクタンスで、
ni 、 [12を通っての電流の逆転に際して逆方向
の小さな電圧降下をSl 、 32両端に生じてそのオ
フ状態の回復を確実ならしめる。13は制御電源で、導
線14.15を介してS1、S2の制御端子18.17
に交互に制御電流を供給し、St 、 S2を交互に導
通せしめる。まず制御信号をその制御端子に供給された
方の外部制御型スイッチ素子S1は直ちに導通状態とな
るので、電源コンデンサーの充電電圧Voの−・部は1
該コンデンサーの一端M→昇圧変圧器一次巻線の中点O
→当該一次巻線端子A→当該振動用インダクタンスL1
→導通状態にある当該スイッチ素子S1→該コンデンサ
ーの他端Njの回路を通じて放電する。
In FIG. 1, the primary-side equivalent capacity of a capacitive load 5 consisting of a small resistance Rk and a relatively large nonlinear capacitance Ck connected to the output terminal 3.4 of the secondary winding 2 of the high-frequency step-up transformer 1. ] (Both terminals M and N of the power supply capacitor 6, which has a capacitance Go that is sufficiently larger than aCk, are connected to a charging DC power supply 9 consisting of a low frequency AC power supply 7 and a double-wave rectifier 8. , the capacitor 6 is charged to a voltage Vo with positive polarity on the M side and negative polarity on the N side (N is grounded).The terminal M is connected to the midpoint O of the primary winding 10 of the step-up transformer 1. Both terminals A and B of 10 are connected to vibration inductances Ll and L2, respectively, and an externally controlled switching element Sl, which is made of a silicon-controlled rectifier connected in series with this in the forward direction (in the discharge direction of the capacitor 8). It is connected to the terminal N via S2 and grounded.Diode elements DI and D2 are connected antiparallel to St and S2, respectively.11.12 is a small inductance connected in series to DI and D2,
Upon reversal of the current through ni,[12, a small voltage drop in the opposite direction is created across Sl,32 to ensure recovery of its off state. 13 is a control power supply, which is connected to control terminals 18.17 of S1 and S2 via conductor 14.15.
A control current is alternately supplied to St and S2 to make them conductive alternately. First, the externally controlled switching element S1 to which the control signal is supplied to its control terminal immediately becomes conductive, so that the - part of the charging voltage Vo of the power supply capacitor is 1
One end M of the capacitor → midpoint O of the primary winding of the step-up transformer
→ The relevant primary winding terminal A → The relevant vibration inductance L1
→The switch element S1 in a conductive state →Discharges through the circuit at the other end Nj of the capacitor.

この時、昇圧変圧器の二次巻線には起電力が誘起されて
、これに接続された前記の非線形性容量性負荷の両端に
この起電力が加わる。この場合の一次側および二次側の
電圧と電流は、該電源コンデンサーの静電容量Co、該
振動インダクタンスL1のインダクタンス10.昇圧変
圧器の一次側および二次側のもれインピーダンスZl 
、 Z2 、該容量性負荷の静電容Ckおよびその抵抗
分Rkの昇圧変圧器を介しての速成直列回路における過
渡振動となり、Go)a Ckの場合Ckはこれによっ
て一旦2aVoの近くまで充電される(但し、a=二次
巻線対一次巻線0−Aの巻数比)。次いでCkは二次巻
を通じて放電し、これに伴なって一次巻線の中点Oと該
端子間AにはVoよりも大きな逆方向(電源コンデンサ
ーを充電する向き)の起電力を生じ、これに伴なって当
該外部制御型スイッチ素子S1には逆方向電圧が加わり
、非導通状態を回復する。
At this time, an electromotive force is induced in the secondary winding of the step-up transformer, and this electromotive force is applied to both ends of the nonlinear capacitive load connected thereto. In this case, the voltage and current on the primary and secondary sides are the capacitance Co of the power supply capacitor and the inductance 10 of the vibration inductance L1. Leakage impedance Zl on the primary and secondary sides of a step-up transformer
, Z2, it becomes a transient oscillation in the fast-forming series circuit via the step-up transformer of the electrostatic capacitance Ck of the capacitive load and its resistance Rk, and in the case of Go) a Ck, Ck is thereby once charged to near 2aVo. (However, a=turn ratio of secondary winding to primary winding 0-A). Next, Ck is discharged through the secondary winding, and along with this, an electromotive force is generated in the opposite direction (in the direction of charging the power supply capacitor) that is larger than Vo between the midpoint O of the primary winding and the terminal A, and this Accordingly, a reverse voltage is applied to the externally controlled switching element S1, and the non-conducting state is restored.

しかし、これと逆並列に接続されたダイオード素子が導
通状態となるので、過渡振動は続行して「該コンデンサ
ーの他端N→当該ダイオード素子D1→当該振動用イン
ダクタンスL1→昇圧変圧器の当該一次巻線端子A→一
次巻線の中点O→該コンデンサーの一端M」の方向に逆
電流が流れ、該コンデンサーCOを充電して負荷のCk
に供給された無効電力をGoに回収する。この過程にお
ける容量性負荷の両端電圧v2および12の時間的変化
を第2図の時間t1→t3の間に実線および点線で示す
。但し、tl 、 t2は当該外部制御型スイッチ素子
がオンおよびオフとなった時点、t3はCkの過渡振動
による放電終了時点であり、t3の後Ckは緩慢な放電
に転する。この間における一次電流i1Aの変化は実線
に示す通りで、t1→t2の期間は1’M+o+A +
Ll→S1→N」の回路、t2→t3の期間はFN+D
1−Ll→A→0→Mjの回路を流れる。次に時点t4
において、いま−っの外部制御型スイッチ素子S2に制
御信号が供給され、これが導通状態となると前記とまっ
たく同様の過渡振動がS2を含む側の回路、すなわちi
′M→0→一次巻線のS2側の端子B→S2側の振動用
インダクタンスL2→S2→N」およびFN+32に逆
並列に接続されたダイオードD2→L2→B+O+Mj
の回路を通じて発生し、これに伴なって昇圧変圧器の二
次巻線およびそれに接続された該容量性負荷の電圧V2
++2はいままでと逆向きとなり、第2図における期間
t4→t6に実線および点線で示す様な経過をたどる。
However, since the diode element connected in antiparallel with this becomes conductive, the transient vibration continues and the other end N of the capacitor → the diode element D1 → the vibration inductance L1 → the primary of the step-up transformer. A reverse current flows in the direction of winding terminal A → midpoint O of the primary winding → one end M of the capacitor, charging the capacitor CO and increasing the load Ck.
The reactive power supplied to Go is recovered to Go. The temporal changes in the voltages v2 and 12 across the capacitive load during this process are shown by solid lines and dotted lines during time t1→t3 in FIG. However, tl and t2 are the times when the externally controlled switching element is turned on and off, and t3 is the end of discharge due to transient vibration of Ck, and after t3, Ck turns into a slow discharge. The change in primary current i1A during this period is as shown by the solid line, and the period from t1 to t2 is 1'M+o+A +
Ll→S1→N" circuit, period t2→t3 is FN+D
Flows through the circuit 1-Ll→A→0→Mj. Next, time t4
, a control signal is supplied to the current externally controlled switching element S2, and when it becomes conductive, a transient vibration exactly similar to that described above occurs in the circuit including S2, i.e.
'M→0→terminal B on the S2 side of the primary winding→vibration inductance L2→S2→N on the S2 side'' and diode D2→L2→B+O+Mj connected in antiparallel to FN+32
voltage V2 of the secondary winding of the step-up transformer and the capacitive load connected to it.
++2 goes in the opposite direction, and follows the course shown by the solid line and dotted line in the period t4→t6 in FIG.

この間における一次電流iツBの変化は実線に示す通り
である。次いで時点t7で再びSlがトリガーされて導
通状態となり、以下この過程をくり返すことによって結
局t1→t7の期間Toを一周期とする高周波高電圧マ
2力咄力端子3、4から該容量性負荷5に印加されるの
である。
The change in the primary current I during this period is as shown by the solid line. Next, at time t7, Sl is triggered again and becomes conductive, and by repeating this process, the high-frequency, high-voltage ma2 force, whose cycle is To from t1 to t7, is transferred from the capacitive terminals 3 and 4. It is applied to the load 5.

この場合、一般にGo)) a Ckに選ぶとv2をも
っとも大きく出来て好適である。−次および二次巻線の
抵抗および負荷抵抗分Rkが無視できるほど小さい場合
には、t1→t3の過渡振動の一周期は近似的に次式で
与えられる。
In this case, it is generally preferable to select Go)) a Ck because v2 can be maximized. When the resistance of the -order and secondary windings and the load resistance Rk are negligibly small, one period of the transient oscillation from t1 to t3 is approximately given by the following equation.

T=2fTでk”        (1)L=文0+文
1+文2°    (2)但し、又1一一次巻線OA、
ないしOBのもれインダクタンス、文2′−二次巻線の
もれインダクタンス立2の一次側換算値一見2/a” 
、  Ck’ −〇にの一次側換算値=aCkである。
k at T = 2fT” (1) L = Sentence 0 + Sentence 1 + Sentence 2° (2) However, 1-primary winding OA,
Or OB leakage inductance, sentence 2' - Secondary winding leakage inductance 2's primary side converted value at first glance 2/a''
, Ck' - primary side conversion value of 〇 = aCk.

したがって、本発明寺にあってはSl 、 S2に供給
する制御信号の時間間隔θ= t4−tlは式(1)で
与えられる過渡振動周期Tに対して、一般にθ≧Tにと
る必要があり、したがって正・負の各半波より成る交流
出力高電圧の実効周期To=t7−tlはTo>27と
なる。
Therefore, in the present invention, the time interval θ=t4−tl of the control signals supplied to Sl and S2 generally needs to be set to θ≧T with respect to the transient vibration period T given by equation (1). , Therefore, the effective period To=t7-tl of the AC output high voltage consisting of each positive and negative half-wave becomes To>27.

以りの結果として、 r別発明1においてはSl 、 
S2を含ム二ツノ回路1rM−0−A−Nj とlrM
−0−B−Njにはそれぞれ交互に第2図のilA 、
 i(Bで示す電流が流れ、該容量性負荷5の両端3−
4間には同図のマ2で与えられる高周波高電圧が印加さ
れるのである。
As a result, in invention 1 according to r, Sl,
Two circuits including S2 1rM-0-A-Nj and lrM
-0-B-Nj are alternately ilA of FIG. 2,
A current indicated by i(B flows through the capacitive load 5 at both ends 3-
A high frequency high voltage given by M2 in the figure is applied between M4 and M4.

しかし、いま負荷5と出力端子3.4の間の接続が断線
等の事故で切れ、出力端子3.4の両端が開放状態とな
ると、第2図に示された過渡振動が発生しなくなり、S
l 、 S2のいずれか一方、又は双方が導通状態を持
続し、電源から直ちに短絡電流が流されて、これらの素
子と整流器8を焼損、電源が大きな損傷を受ける。この
焼損事故は瞬時に発生するので、通常のヒユーズ等では
防ぎきれず、これがr別電源J使用に当って大きな実用
上の問題点となっていた。本発明は、別発明における上
記の如き出力端開放時の事故を完全な防止することを目
的とする。
However, if the connection between the load 5 and the output terminal 3.4 is broken due to an accident such as a disconnection, and both ends of the output terminal 3.4 become open, the transient vibration shown in FIG. 2 will no longer occur. S
If one or both of S1 and S2 continues to be conductive, a short-circuit current will immediately flow from the power supply, burning out these elements and the rectifier 8, and seriously damaging the power supply. Since this burnout accident occurs instantaneously, it cannot be prevented by ordinary fuses, etc., and this has been a major practical problem when using the r-separate power supply J. An object of the present invention is to completely prevent the above-mentioned accident when the output end is opened in another invention.

[問題を解決するための手段] 本発明は、出力端子3.4の間に負荷5と並列に固定の
保護用コンデンサーを接続しておくことにより上記問題
点を解決する。
[Means for solving the problem] The present invention solves the above problem by connecting a fixed protective capacitor in parallel with the load 5 between the output terminals 3.4.

[作 用] 出力端子3.4間に保護用コンデンサーが接続されてい
るため、たとえ万一負荷5の3.4との接続が切れても
、第2図に示された過渡振動は常に発生し、上述の事故
発生が防止される。この場合正常運転の時は、式(1)
に用いる負荷静電容量の一次側換算値Ck″が、保護用
コンデンサーの静電容量Cpに対応する分だけ増えて、 Ck’=a (Ck+Cp)        (3)と
なる。又負荷5の接続が切れた時はCk″とじては、次
の値を用いねばならなくなる。
[Function] Since a protective capacitor is connected between output terminals 3 and 4, even if load 5 is disconnected from 3.4, the transient vibration shown in Figure 2 will always occur. Therefore, the above-mentioned accident is prevented from occurring. In this case, during normal operation, formula (1)
The primary side converted value Ck'' of the load capacitance used for When it expires, the next value must be used for Ck''.

C’に=a Cp            (4)[実
施例] 本発明の実施例を第3図に示す。図におけるlより17
までの番号で示された要素、およびCk 、 Rk 。
C'=a Cp (4) [Example] An example of the present invention is shown in FIG. 17 from l in the figure
The elements numbered up to and including Ck, Rk.

A 、 B 、M 、 N 、 O、L1、L2.S1
、S2.DI、D2の記号で示された要素の名称および
機能は第1図の同一番号、記号でされた要素のそれと同
じである。また本発明の高周波高電圧発生に関する基本
動作は第1図1、第2図に示された「別発明」の基本動
作と何等変る所がないので説明を省略する。
A, B, M, N, O, L1, L2. S1
, S2. The names and functions of the elements designated by the symbols DI and D2 are the same as those of the elements designated by the same numbers and symbols in FIG. Further, the basic operation regarding high frequency and high voltage generation of the present invention is no different from the basic operation of the "another invention" shown in FIGS. 1 and 2, so a description thereof will be omitted.

第3図において18は出力端子3,4の間に接続された
本発明の特徴をなす保護用コンデンサーで、その静電容
量cpは負荷静電容量Ckの少なくとも数分の一以上と
する。Flは端子M、O間に挿入された過電流保護用の
ヒユーズ、 F2 、 F3は低圧交流電li;i7の
出力端子19.20と両波整流器8の入力端子21 、
22との間に挿入せるヒユーズで、いずれも万一負荷5
が事故により短絡した際に生ずる過電流に対して、両波
整流器8.外部制御型スイッチ素子St 、 S2 、
昇圧変圧器2を保護する。特番こスイッチF1はこの短
絡保護作用に効果が極めて大きく、その挿入位置は単に
MとOの間のみでなく、COの他端Nと接地端子N′と
の間に挿入してもよい。又F1と別個に、あるいはFl
の変りにN’  とStおよびN゛ とS2の間にそれ
ぞれヒユーズを挿入してもよい。更に一般にはM−〇−
A−8t−N’ −Nおよびt−0−B−S2−N’ 
−Nの回路の少なくともいずれか一方に、好ましくは両
方にヒユーズを挿入するのが短絡損傷防止−L是非必要
である。
In FIG. 3, 18 is a protective capacitor which is a feature of the present invention and is connected between the output terminals 3 and 4, and its capacitance cp is at least a fraction of the load capacitance Ck. Fl is a fuse for overcurrent protection inserted between terminals M and O, F2 and F3 are low-voltage AC current li; output terminal 19.20 of i7 and input terminal 21 of double wave rectifier 8,
This is a fuse that can be inserted between the
A double-wave rectifier 8. Externally controlled switch elements St, S2,
Protects step-up transformer 2. The special switch F1 is extremely effective in protecting against short circuits, and its insertion position is not simply between M and O, but may also be inserted between the other end N of CO and the ground terminal N'. Also, separately from F1 or Fl
Instead, fuses may be inserted between N' and St and between N' and S2, respectively. Furthermore, generally M-〇-
A-8t-N'-N and t-0-B-S2-N'
It is absolutely necessary to insert a fuse in at least one of the -N circuits, preferably both, to prevent short-circuit damage.

[発明の効果] 本発明は叙上の如き作用を有することから保護用コンデ
ンサー18の出力端子3.4間への接続により上記説明
の如く、端子3.4間が開放状態となっても本電源が損
傷することが完全に防止できる。またヒユーズFlの使
用により端子3,4間が短絡状態になっても本電源が損
傷することが完全に防げる。
[Effects of the Invention] Since the present invention has the above-mentioned effect, the connection between the output terminals 3 and 4 of the protective capacitor 18 allows the main power to be maintained even if the terminals 3 and 4 are in an open state as described above. It can completely prevent the power supply from being damaged. Further, by using the fuse Fl, even if the terminals 3 and 4 are short-circuited, the power supply can be completely prevented from being damaged.

尚、本発明の電源では、外部制御型スイッチ素子S1、
S2としてシリコン制御整流素子の代りに電力用トラン
ジスター、FET)ランシスター、トライアック、GT
O等適当な如何なるスイッチをも用いることも出来る。
In addition, in the power supply of the present invention, the externally controlled switching element S1,
As S2, a power transistor (FET), Runsistor, TRIAC, GT is used instead of the silicon-controlled rectifier.
Any suitable switch may be used, such as an O switch.

また、充電用直流電源9として三相ないし多相のダイオ
ード・ブリッジを組合せたものを用いることも出来る。
Furthermore, a combination of three-phase or multi-phase diode bridges can also be used as the charging DC power source 9.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は別発明の原理を示す回路図、第2図は別発明お
よび本発明の電源の出力電圧、および昇圧変圧器−次お
よび二次電流の波形を示す図、83図は本発明の実施例
を示す回路図である。 v2・・・・・・・・・・・・出力電圧12・・・・・
・・・・・・・出力電流i1A、i1B・・・昇圧変圧
器−次電流l・・・・・・・・・・・・高周波用昇圧変
圧器2・・・・・・・・・・・・二次巻線 5・・・・・・・・・・・・容量性負荷6・・・・・・
・・・・・・電源コンデンサー8・・・・・・・・・・
・・充電用直流電源lO・・・・・・・・・・・・一次
巻線St 、 S2・・・・・・シリコン制御整流素子
01 、 D2・・・・・・ダイオード素子Ll 、 
L2・・・・・・振動用インダクタンス13・・・・・
・・・・・・・制御電源18・・・・・・・・・・・・
保護用コンデンサーFl 、F2 、F3・・・ヒユー
ズ 以  上 1  昇圧変圧器 2  二次巻線 3.4  出力端子 5  容J−性負荷 6  電源コンデンサー 7  低圧交流電源 8  両波整流器 9  充電用直流電源 、    10−一次巻線 11.12小インダクタンス 13 制御電源 14.15導線 46.17制御端子 18 イ宥四用コンデンサー 49.20,21.22端子 八、B、H,N、N’炸イ Ck  負荷容量分 Rk  負荷抵抗分 1所、11B端子A、Bを流れる 一次電流 12 二次電流(出力電流) ■2 二翼研(出力電圧) 0  中点タップ 1.1.12振動用インダクタンス 5LS2シリコ4す御整流素子 01、ロ2ダイオード素子 FL F2. F3  ヒユーズ 今 才3図
Fig. 1 is a circuit diagram showing the principle of another invention, Fig. 2 is a diagram showing the output voltage of the power supply of the other invention and the present invention, and waveforms of the step-up transformer - primary and secondary current, and Fig. 83 is a diagram showing the waveforms of the primary and secondary current of the step-up transformer. FIG. 2 is a circuit diagram showing an example. v2・・・・・・・・・Output voltage 12・・・・・・
......Output current i1A, i1B...Step-up transformer - next current l......High frequency step-up transformer 2... ...Secondary winding 5...Capacitive load 6...
・・・・・・Power capacitor 8・・・・・・・・・
...Charging DC power supply lO...Primary winding St, S2...Silicon controlled rectifier element 01, D2...Diode element Ll,
L2... Vibration inductance 13...
......Control power supply 18...
Protective capacitors Fl, F2, F3...Fuses and above 1 Step-up transformer 2 Secondary winding 3.4 Output terminal 5 J-type load 6 Power supply capacitor 7 Low-voltage AC power supply 8 Double-wave rectifier 9 DC power supply for charging , 10-Primary winding 11.12 Small inductance 13 Control power supply 14.15 Conductor 46.17 Control terminal 18 A capacitor for 49.20, 21.22 Terminal 8, B, H, N, N' Explosion A Ck Load capacity Rk Load resistance 1 point, primary current flowing through 11B terminals A and B 12 Secondary current (output current) ■2 Two wings (output voltage) 0 Center tap 1.1.12 Vibration inductance 5LS2 silicon 4-switch rectifier element 01, 2 diode element FL F2. F3 Hughes Konsai 3 figure

Claims (1)

【特許請求の範囲】 1、中点付き低圧側一次巻線10と両端を出力端子3、
4とする高圧側二次巻線2を有する高周波用昇圧変圧器
1の該一次巻線中点Oに、充電用直流電源9を具備せる
電源コンデンサー6の一端Mを接続し、該一次巻線の両
端A、Bをそれぞれ振動用インダクタンスL1、L2お
よび該コンデンサー充電電圧の放電方向を導通方向とせ
る外部制御型スイッチ素子S1、S2に直列接続の上、
該コンデンサー6の他端Nに接続し、かつ該外部制御型
スイッチ素子S1、S2のそれぞれに逆並列にダイオー
ド素子D1、D2を接続し、制御電源13から導通トリ
ガー用制御信号を該スイッチ素子S1、S2の制御端子
16、17に交互に供給して該外部制御型スイッチ素子
S1、S2を交互に、オン・オフせしめる高周波高圧電
源において該出力端子3、4の間に保護用コンデンサー
を接続したことを特徴とする高周波高圧電源。 2、特許請求の範囲1に記載の装置において該電源コン
デンサー6の一端Mより該一次巻線中点O、該端子A、
接地端子N’を経て該コンデンサー6の他端Nに至る回
路、およびMよりO、該端子B、N’を経てNに至るい
ま一つの回路の中小なくともいずれか一つの回路の途中
に直列に少なくとも1個のヒューズを挿入することを特
徴とする高周波高圧電源。 3、特許請求の範囲2に記載の装置において、端子対M
、O間およびN’、N間の中小なくとも一つの端子対の
間に該ヒューズを挿入することを特徴とする高周波高圧
電源。 4、特許請求の範囲3に記載の装置において、端子対M
、O間に該ヒューズを挿入することを特徴とする高周波
高圧電源。 5、特許請求の範囲3に記載の装置において、端子対N
’、N間に該ヒューズを挿入することを特徴とする高周
波高圧電源。 6、特許請求の範囲2に記載の装置において、AよりN
に至る回路部分およびBよりNに至る回路部分の両方に
該ヒューズを直列に挿入することを特徴とする高周波高
圧電源。 7、特許請求の範囲6に記載の装置において、S1とN
の間およびS2とNの間にそれぞれ該ヒューズを挿入す
ることを特徴とする高周波高圧電源。 8、特許請求の範囲1より7までのいずれか1項に記載
の装置において該外部制御型スイッチ素子がシリコン制
御整流素子であることを特徴とする高周波高圧電源。 9、特許請求の範囲1より7までのいずれか1項に記載
の装置において該外部制御型スイッチ素子がFET型ト
ランジスターであることを特徴とする高周波高圧電源。 10、特許請求の範囲1より9までのいずれか1項に記
載の装置において該ダイオード素子D1、D2に小イン
ダクタンス11、12をそれぞれ直列接続の上、これら
を、該外部制御型スイッチ素子S1、S2に逆並列に接
続したことを特徴とする高周波高圧電源。
[Claims] 1. A low voltage side primary winding 10 with a middle point and an output terminal 3 at both ends,
One end M of a power supply capacitor 6 equipped with a DC power source 9 for charging is connected to the middle point O of the primary winding of a high-frequency step-up transformer 1 having a high-voltage side secondary winding 2 of 4, and the primary winding Both ends A and B of are connected in series to vibration inductances L1 and L2, respectively, and externally controlled switching elements S1 and S2 whose conduction direction is the discharging direction of the capacitor charging voltage,
Diode elements D1 and D2 are connected to the other end N of the capacitor 6 and in antiparallel to each of the externally controlled switching elements S1 and S2, and a control signal for conduction trigger is applied from the control power supply 13 to the switching element S1. A protective capacitor was connected between the output terminals 3 and 4 in a high-frequency high-voltage power supply that alternately supplies power to the control terminals 16 and 17 of the externally controlled switching elements S1 and S2 to turn on and off the externally controlled switching elements S1 and S2. A high frequency, high voltage power supply characterized by: 2. In the device according to claim 1, from one end M of the power supply capacitor 6 to the middle point O of the primary winding, the terminal A,
A circuit that goes through the ground terminal N' to the other end N of the capacitor 6, and another circuit that goes from M to O, and through the terminals B and N' to N. A high-frequency high-voltage power supply characterized in that at least one fuse is inserted into the high-frequency high-voltage power supply. 3. In the device according to claim 2, the terminal pair M
, O and between at least one pair of medium and small terminals between N' and N. 4. In the device according to claim 3, the terminal pair M
, O, and the fuse is inserted between O and O. 5. In the device according to claim 3, the terminal pair N
A high frequency high voltage power supply characterized in that the fuse is inserted between ' and N. 6. In the device according to claim 2, from A to N.
A high-frequency, high-voltage power source characterized in that the fuse is inserted in series in both the circuit section leading to the circuit section B and the circuit section extending from B to N. 7. In the device according to claim 6, S1 and N
A high-frequency, high-voltage power supply characterized in that the fuses are inserted between S2 and N. 8. A high-frequency high-voltage power source in the device according to any one of claims 1 to 7, characterized in that the externally controlled switching element is a silicon-controlled rectifying element. 9. A high-frequency, high-voltage power supply according to any one of claims 1 to 7, wherein the externally controlled switching element is an FET transistor. 10. In the device according to any one of claims 1 to 9, small inductances 11 and 12 are connected in series to the diode elements D1 and D2, respectively, and these are connected to the externally controlled switching element S1, A high frequency high voltage power supply characterized by being connected in antiparallel to S2.
JP62000854A 1987-01-06 1987-01-06 High frequency high voltage power supply for nonlinear capacitive load Expired - Fee Related JP2698867B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62000854A JP2698867B2 (en) 1987-01-06 1987-01-06 High frequency high voltage power supply for nonlinear capacitive load

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62000854A JP2698867B2 (en) 1987-01-06 1987-01-06 High frequency high voltage power supply for nonlinear capacitive load

Publications (2)

Publication Number Publication Date
JPS63171169A true JPS63171169A (en) 1988-07-14
JP2698867B2 JP2698867B2 (en) 1998-01-19

Family

ID=11485231

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62000854A Expired - Fee Related JP2698867B2 (en) 1987-01-06 1987-01-06 High frequency high voltage power supply for nonlinear capacitive load

Country Status (1)

Country Link
JP (1) JP2698867B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49114737A (en) * 1973-03-08 1974-11-01
JPS5225225U (en) * 1975-08-12 1977-02-22
JPS5376320A (en) * 1976-12-18 1978-07-06 Mitsubishi Electric Corp Inverter for transistor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49114737A (en) * 1973-03-08 1974-11-01
JPS5225225U (en) * 1975-08-12 1977-02-22
JPS5376320A (en) * 1976-12-18 1978-07-06 Mitsubishi Electric Corp Inverter for transistor

Also Published As

Publication number Publication date
JP2698867B2 (en) 1998-01-19

Similar Documents

Publication Publication Date Title
US5930122A (en) Inverter and DC power supply apparatus with inverter used therein
US5379206A (en) Low loss snubber circuit with active recovery switch
US11496042B2 (en) Method and device for matching the voltage of the smoothing capacitor of a DC/DC converter before a high-voltage battery is connected
US4706182A (en) RF high-voltage power supply
JPS63171169A (en) High-frequency high-voltage power source
JPH05344605A (en) Electric system of electric vehicle
JP2006228676A (en) Discharge lamp lighting device
JP3570691B2 (en) DC high voltage polarity reversal test equipment
SU1415325A1 (en) Device for connecting a capacitor bank
JP3327754B2 (en) Gate drive device for semiconductor switching element
JPH0320046Y2 (en)
SU949763A1 (en) Serial self-sustained inverter
RU2196382C2 (en) Dc voltage converter
JPH06311757A (en) Inverter
SU688971A1 (en) Single-phase thyristorized bridge-type inverter
JP3501132B2 (en) Power supply for magnetron drive
SU1767671A1 (en) Thyristor invertor
SU896727A1 (en) Transistorized inverter
JPS62166767A (en) Power supply circuit
RU2001506C1 (en) Voltage converter
SU1481003A1 (en) Power source for elevated-frequency resistance welding
SU972639A2 (en) Resonance series-parallel inverter
SU1638776A2 (en) Constant voltage converter
RU2214638C1 (en) Method and device for arcless current interruption
SU726640A1 (en) Self-sustained inverter

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees