JPS63170679A - Control of rocking apparatus - Google Patents

Control of rocking apparatus

Info

Publication number
JPS63170679A
JPS63170679A JP62001754A JP175487A JPS63170679A JP S63170679 A JPS63170679 A JP S63170679A JP 62001754 A JP62001754 A JP 62001754A JP 175487 A JP175487 A JP 175487A JP S63170679 A JPS63170679 A JP S63170679A
Authority
JP
Japan
Prior art keywords
operating rods
obtaining
pair
operating
shaking
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62001754A
Other languages
Japanese (ja)
Other versions
JPH0627968B2 (en
Inventor
荒島 章平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Precision Co Ltd
Original Assignee
Mitsubishi Precision Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Precision Co Ltd filed Critical Mitsubishi Precision Co Ltd
Priority to JP175487A priority Critical patent/JPH0627968B2/en
Publication of JPS63170679A publication Critical patent/JPS63170679A/en
Publication of JPH0627968B2 publication Critical patent/JPH0627968B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 この発明は動揺装置の制御方法に関し、さらに詳しくい
うと、三角形の各頂点にそれぞれ配置されて動揺台に取
付けられた3組の上部自在継手の各組に各1対の動作杆
の上端部が結合され、各1対の動作杆の下端部がそれぞ
れ結合され直線移動する各1対の下部自在継手を備えた
6自由度の動揺装置の制御方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for controlling a shaking device, and more specifically, the present invention relates to a method for controlling a shaking device, and more specifically, a pair of upper universal joints are attached to each set of three sets of upper universal joints arranged at each vertex of a triangle and attached to a shaking table. The present invention relates to a control method for a six-degree-of-freedom swinging device including a pair of lower universal joints that move in a straight line, with the upper ends of the operating rods connected together and the lower ends of each pair of operating rods connected and moved in a straight line.

〔従来の技術〕[Conventional technology]

第5図、第6図は本出願人が先に特許出願した(特願昭
61−104849号)従来の動揺装置を示し、白板(
1)の上面に、正三角形の各頂点にそれぞれ位置して3
個の軸受台(2)が固設されており、各軸受台(2)相
互間の中央部には、互いに間隔をおいて1対の軸受板(
3)が固設されている。軸受台(2)と軸受板(3)と
の間には、歯車(4)を介し電動モータ(5)でそれぞ
れ回転駆動されるボールねじ(6)が支持されている。
Figures 5 and 6 show a conventional shaking device for which the present applicant previously applied for a patent (Japanese Patent Application No. 104849/1983).
1) On the top surface, 3 are located at each vertex of an equilateral triangle.
Bearing stands (2) are fixedly installed, and in the center between each bearing stand (2), a pair of bearing plates (
3) is permanently installed. Ball screws (6) each rotatably driven by an electric motor (5) via a gear (4) are supported between the bearing stand (2) and the bearing plate (3).

ボールねじ(6)と平行に案内杆(7)が設けられてお
り、案内杆(7〉に嵌着されたスライドベアリング(8
)とボールねじ(6)に螺合したナツト(9)とは、下
部自在継手(10)と一体になっている。
A guide rod (7) is provided parallel to the ball screw (6), and a slide bearing (8) fitted into the guide rod (7>
) and the nut (9) screwed onto the ball screw (6) are integrated with the lower universal joint (10).

動揺台(11)の下面には、軸受台(2)が作る三角形
とは逆向きで、かつ、平行な正三角形の各頂点に、3組
の上部自在継手(12)が取付けられており、上部自在
継手(12)と、これに対応する1対の下部自在継手(
10)との間に、各1対の動作杆(13)が連結されて
いる。
Three sets of upper universal joints (12) are attached to the lower surface of the swing table (11) at each vertex of an equilateral triangle that is parallel and opposite to the triangle formed by the bearing table (2), An upper universal joint (12) and a corresponding pair of lower universal joints (
10), each pair of operating rods (13) is connected.

白板(1)はローラ(14)を介して固定円板(15)
に旋回可能に支持されており、旋回用モータ(16)と
歯車(17)によって水平旋回される。(18)は白板
(1)に取付けられ、旋回中の白板(1)のずれを防止
するガイドプーリである。 (19)は電気配線であり
、電動モータ(5)などへ接続されている。
The white board (1) is attached to a fixed disc (15) via a roller (14).
It is supported so as to be able to turn, and is horizontally turned by a turning motor (16) and a gear (17). (18) is a guide pulley attached to the white plate (1) to prevent the white plate (1) from shifting during turning. (19) is electrical wiring, which is connected to an electric motor (5) and the like.

以上の構成により、−直線上にある2本のボールねじ(
6)それぞれの軸を、歯車(4)を介して電動モータ(
5)で回転すると、ナツト(9)はボールねじ(6)に
沿って水平方向に移動する。したがって、2個の電動モ
ータ(5)を別々に制御することによって、1対の動作
杆(13)をコンパスのように開閉させることができ、
これに対応して上部自在継手(12)が上下に変位する
。また、1対の動作杆(13)の下部自在継手(10〉
を同一方向に移動させれば、上部自在継手(12)を横
方向に変位させることができる。かような動作は、3組
の上部自在継手(12)について同様である。
With the above configuration, - two ball screws on a straight line (
6) Each shaft is connected to an electric motor (
5), the nut (9) moves horizontally along the ball screw (6). Therefore, by controlling the two electric motors (5) separately, the pair of operating rods (13) can be opened and closed like a compass.
Correspondingly, the upper universal joint (12) is displaced up and down. In addition, the lower universal joint (10) of the pair of operating rods (13)
by moving in the same direction, the upper universal joint (12) can be displaced laterally. Such operation is similar for the three sets of upper universal joints (12).

かようにして、6個の電動モータ(5)をそれぞれ別々
に制御することにより、動作杆(13)の3箇所の頂点
はそれぞれ別々に上下、左右方向に変位するので、上部
自在継手(12)が取付けられた動揺台(11)に6自
由度の動揺動作を生じさせることができる。
In this way, by controlling each of the six electric motors (5) separately, the three vertices of the operating rod (13) are respectively displaced vertically and horizontally, so that the upper universal joint (12) ) is attached to the oscillating table (11), which can cause oscillating motion with six degrees of freedom.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

以上のような従来の動揺装置の制御方法では、6個の電
動モータ(5)をそれぞれ別々に制御するとしているも
のの、リアルタイム処理に適した、無駄のない、合理的
な制御方法が具体化されていないという問題点があった
In the conventional control method of the shaking device as described above, each of the six electric motors (5) is controlled separately, but a streamlined and rational control method suitable for real-time processing has not been realized. The problem was that it was not.

この発明はかかる問題点を解消しようとするもので、リ
アルタイム処理に適するよう、極力無駄を排し、合理的
に設計しうるプログラムによる動揺装置の制御方法を得
ることを目的とする。
The present invention aims to solve these problems, and aims to provide a method for controlling an agitation device using a program that can be designed rationally and eliminate waste as much as possible so as to be suitable for real-time processing.

〔問題点を解決するための手段〕[Means for solving problems]

この発明に係る動揺装置の制御方法は、動揺台の重心位
置および姿勢データを得た上、姿勢変化のないときの各
動作杆上部支点の位置を得る第1の過程と、姿勢変化に
応じた変換マトリックスを得る第2の過程と、変換マト
リックス処理された各動作杆上部支点の位置を得る第3
の過程と、各動作杆下端の案内杆上位置を得る第4の過
程とからなっている。
The control method for the shaking device according to the present invention includes a first process of obtaining the center of gravity position and posture data of the shaking table, and then obtaining the position of the upper fulcrum of each operating rod when there is no change in posture; A second process of obtaining a transformation matrix, and a third process of obtaining the position of the upper fulcrum of each operating rod processed by the transformation matrix.
and a fourth step of obtaining the position on the guide rod of the lower end of each operating rod.

〔作用〕[Effect]

この発明においては、位置、姿勢の入力から各動作杆上
部の支点の位置の計算は、3行3列のマトリックス演算
を用いているが、最終的に、動作杆下端の支点の案内杆
上の位置計算には、球と直線との交点を求める式を用い
、座標変換を有効に用いることにより、同一の式で全て
の出力を得る。
In this invention, the position of the fulcrum at the upper end of each operating rod is calculated from the position and orientation input using a 3-by-3 matrix operation, but in the end, the position of the fulcrum at the lower end of the operating rod is For position calculation, a formula for finding the intersection between a sphere and a straight line is used, and by effectively using coordinate transformation, all outputs are obtained using the same formula.

〔実施例〕〔Example〕

この発明のプログラムは、動揺台(11)の所要の恣S
 位Mを人力と1、 匁翔佐粁(13)の宏内杯(7)
上の位置を出力とするもので、前記姿勢、位置の入力か
ら各動作杆(13)の上部の支点の位置の計算は、3行
3列のマトリックス演算を用いるが、最終的に動作杆下
部の支点の案内杆上の位置計算には、球と直線との交点
を求める式を用い、座標変換を有効に駆使することによ
り、同一の式で全ての出力を得るようにしている。その
基本的な概要は、 (a)動揺台(11)に相当する上部基準三角形の重心
の位置および姿勢を基本人力とする。
The program of this invention provides the required arbitrary speed of the shaking table (11).
Rank M with human power and 1, Hirouchi Cup (7) of Sho Sako (13)
The upper position is the output, and the position of the upper fulcrum of each operating rod (13) is calculated from the input of the posture and position using a matrix operation with 3 rows and 3 columns. To calculate the position of the fulcrum on the guide rod, a formula for finding the intersection of a sphere and a straight line is used, and by making effective use of coordinate transformation, all outputs can be obtained using the same formula. The basic outline is as follows: (a) The position and posture of the center of gravity of the upper reference triangle corresponding to the shaking table (11) are the basic human power.

(b)基本人力から、6本の動作杆(13)の上端部支
点の座標を得る。
(b) Obtain the coordinates of the upper end fulcrums of the six operating rods (13) from the basic human power.

(6)動作杆(13)の上端部各文点を中心とし、動作
杆(13)の長さを半径とする球と台板(1)に相当す
る下部基準三角形の対応する辺との交点を求める。
(6) Intersection of a sphere whose radius is the length of the operating rod (13) and whose center is each point at the upper end of the operating rod (13) and the corresponding side of the lower reference triangle corresponding to the base plate (1) seek.

(d)システムの特性に適合するよう、符号変換、オフ
セット等の処理を施す。
(d) Perform processing such as code conversion and offset to match the characteristics of the system.

(e)6本の動作杆(13)の案内杆(7)上の位置デ
ータとして出力する。
(e) Output as position data on the guide rod (7) of the six operating rods (13).

以下、第6図、第7図に加え、第1図〜第5図を参照し
てこの発明の一実施例を説明する。第1図はフローチャ
ート図であり、第2図は第1図のものに具体的な符号、
式等を表示したフローチャート図である。
Hereinafter, one embodiment of the present invention will be described with reference to FIGS. 1 to 5 in addition to FIGS. 6 and 7. Fig. 1 is a flowchart diagram, and Fig. 2 shows specific symbols and symbols for those in Fig. 1.
FIG. 3 is a flowchart diagram showing formulas and the like.

(1)座標系について 三次元基準座標は、6本の動作杆(13)の下部の支点
が移動することで描かれる下部基準三角形の重心を原点
とし、第1頂点方向をY軸とするデカルト座標系である
(1) About the coordinate system The three-dimensional reference coordinate is a Cartesian whose origin is the center of gravity of the lower reference triangle drawn by moving the lower fulcrum of the six operating rods (13), and whose Y axis is the direction of the first vertex. It is a coordinate system.

動揺台(11)の軸呼称は下記のとおりとする。The axis names of the shaking table (11) are as follows.

X軸まわりの回転;ピッチ(Pitcl+)軸(θ)Y
II    :ロール(Roll)軸(φ)7、   
 77     ;ヨー(Yaw)軸(ψ)(2)シス
テム定数について 動揺台(11)下面に位置する6本の動作杆(13)上
部の支点の呼称と位置は第3図のとおりである。
Rotation around the X axis; pitch (Pitcl+) axis (θ) Y
II: Roll axis (φ) 7,
77; Yaw axis (ψ) (2) System constants The names and positions of the fulcrums at the top of the six operating rods (13) located on the bottom surface of the shaking table (11) are as shown in FIG.

1番−PB2 2IノーPS1 3ツノ−PS2 4 n −P P 1 5  u  −P P 2 5  n −P B  1 なお、第3図において、 (3)駆動方程式 (a)上部基準三角形(11^)の重心座標から姿勢変
化がないときの各動作杆上部の6ケ所の支点の座標を得
る(ステップ−1)。
No. 1-PB2 2I No PS1 3 Horn-PS2 4 n -P P 1 5 u -P P 2 5 n -P B 1 In addition, in Fig. 3, (3) Driving equation (a) Upper reference triangle (11^ ), obtain the coordinates of the six fulcrums at the top of each operating rod when there is no change in posture (Step-1).

重心座標を(CGx、 CGy、 CGz)とし、姿勢
変化のない場合の6ケ所の支点の座標を以下のとおりと
する。
The coordinates of the center of gravity are (CGx, CGy, CGz), and the coordinates of the six fulcrums when there is no change in posture are as follows.

PBI;(ABlx、AB ly、 AB 1z)PB
2;(AB2x、AB2y、AB2z)Psi:(AS
lx、AS ly、 AS lz>PS2;(AS2x
、AS2y、AS2z)PPI;(APIに、AP l
y、 AP 1z)PP2;(AP2x、AP2y、A
P2z)それぞれの式は以下のとおりである。
PBI; (ABlx, AB ly, AB 1z) PB
2; (AB2x, AB2y, AB2z) Psi: (AS
lx, AS ly, AS lz>PS2; (AS2x
, AS2y, AS2z) PPI; (API, AP l
y, AP 1z) PP2; (AP2x, AP2y, A
P2z) Each formula is as follows.

^B1x=CGx−OF^    ^B2x= CGx
+ OF^^B1y= c(、y+ RDL     
AB2y= c(y+ RDL八Bへz = CGz 
      AB2z = Cに2^S1z;CGz 
       AS2z:CGz^P1z:CGz  
      AP2z:CGz(b)姿勢変化に対応し
た、変換マトリックスを得る(ステップ−2)。
^B1x=CGx-OF^ ^B2x= CGx
+ OF^^B1y= c(, y+ RDL
AB2y= c(y+RDL8Btoz=CGz
AB2z = C to 2^S1z; CGz
AS2z:CGz^P1z:CGz
AP2z:CGz(b) Obtain a transformation matrix corresponding to the posture change (step-2).

マトリックスを次のように定義する。Define the matrix as follows.

姿勢をθ;ピッチ、φ;ロール、ψ;ヨーとすると、 RA = cosφX cosψ RB −eosφX sinψ RC−sinφ RD= −5inθX sinφX eosψ−cos
θX sinψRE =−sinθX sinφX s
inψ+cosθX cosψRF−=sinθX c
osφ RG =−eosθX5inφX (!O8ψ+sin
θX5inψRH=−cosθX sinφX5inψ
−5inθX eO8ψR1=cosθX cosφ (C)(b)項のマトリックスを用いて6ケ所の支点の
座標を得る(ステップ−3)。
If the posture is θ: pitch, φ: roll, ψ: yaw, then RA = cosφX cosψ RB −eosφX sinφ RC−sinφ RD= −5inθX sinφX eosψ−cos
θX sinψRE =-sinθX sinφX s
inψ+cosθX cosψRF−=sinθX c
osφ RG =-eosθX5inφX (!O8ψ+sin
θX5inψRH=-cosθX sinφX5inψ
−5inθX eO8ψR1=cosθX cosφ (C) Using the matrix of term (b), obtain the coordinates of the six supporting points (step-3).

座標変換後の座標を以下のとおりとする。The coordinates after coordinate transformation are as follows.

PB 1 ;(BB lx、 BB ly、 BB 1
z)PB2;(BB2x、BB2y、BB2z)Psi
;(BSlx、B51y、B51z)PS2;(BS2
x、B52y、B52z)PPI;(BPlx、BPl
y、BPlz)PP2;(BP2x、BP2y、BP2
z)それぞれの式は以下のとおりである。
PB 1 ; (BB lx, BB ly, BB 1
z) PB2; (BB2x, BB2y, BB2z) Psi
; (BSlx, B51y, B51z) PS2; (BS2
x, B52y, B52z) PPI; (BPlx, BPl
y, BPlz) PP2; (BP2x, BP2y, BP2
z) Each formula is as follows.

(d)各動作杆(13)の下端の位置を得る(ステップ
−4)。
(d) Obtain the position of the lower end of each operating rod (13) (step-4).

このとき、6番および1番の動作杆については、上部支
点を中心とし動作杆の長さを半径とする球と、下部基準
三角形(1^)の対応する辺との交点のX座標の一方で
得られる。
At this time, for the No. 6 and No. 1 operating rods, one of the It can be obtained with

他の2組、すなわち、2番と3番、4番と5番の動作杆
については、各動作杆上端の支点を基準座標のZ軸のま
わりにそれぞれ一120°、・+120°回転させるこ
とにより、6番、1番と同様に扱うことができる。下部
基準三角形(1^)の対応する辺に沿った各動作杆下端
の位置データをOP^1〜OP八〇とすれば、 OP^1=  (BB2x+F(BB2y、 BB2z
))+0Sop^2=(^3−F(B3、B51z))
+0SOP^3=−(^4+F(B4、B52z))+
0SOP^4=(^5−F(B5、BPlz)l+03
OP^5=−(^6+F(B6、BP2z)l+0so
p^6= (BBlx −F(BBly、  BBlz
)) + OSとなる。ただし、 F(B、C)=、/i’i”扉「jπ石BL=動作杆(
13)の上下支点間の長さなお、第4図は実システムに
合致した下部基準三角形(1^)の動作杆に対応する辺
の極性と位置データを示す。
For the other two sets of operating rods, namely No. 2 and No. 3, and No. 4 and No. 5 operating rods, rotate the fulcrum at the upper end of each operating rod by -120° and +120° around the Z-axis of the reference coordinates, respectively. Therefore, it can be treated in the same way as No. 6 and No. 1. If the position data of the lower end of each operating rod along the corresponding side of the lower reference triangle (1^) is OP^1 to OP80, then OP^1= (BB2x+F(BB2y, BB2z)
))+0Sop^2=(^3-F(B3,B51z))
+0SOP^3=-(^4+F(B4,B52z))+
0SOP^4=(^5-F(B5,BPlz)l+03
OP^5=-(^6+F(B6,BP2z)l+0so
p^6= (BBlx −F(BBly, BBlz
)) + becomes the OS. However, F (B, C) =, /i'i" door "jπ stone BL = operating rod (
13) Length between the upper and lower supporting points FIG. 4 shows the polarity and position data of the side corresponding to the operating rod of the lower reference triangle (1^) that matches the actual system.

以上の位置データ(OP^1)〜(OP^6)はモニタ
に送られ、動揺台(11)に所定の動揺動作を与えるこ
とになる。
The above position data (OP^1) to (OP^6) are sent to the monitor and give a predetermined shaking motion to the shaking table (11).

〔発明の効果〕〔Effect of the invention〕

以上のように、この発明は、動揺台の所要の姿勢、位置
を入力とし、各動作杆の案内杆上の位置を出力とするプ
ログラムによるので、リアルタイム処稗に適し、無駄を
極小にして合理的に制御することができる効果がある。
As described above, the present invention uses a program that inputs the required posture and position of the swing table and outputs the position of each operating rod on the guide rod, so it is suitable for real-time processing and is efficient with minimal waste. It has an effect that can be controlled.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図〜第4図はこの発明の一実施例を説明すスためぬ
t、めで 箪1団1士勾1割羊弱めフロー手ヤード図、
第2図は同じく各過程をさらに具体化したフローチャー
ト図、第3図、第4図はそれぞれ動揺装置の要部の模式
図である。 第5図は従来の動揺装置の斜視図、第6図は同じく側面
図である。 (1)・・・台板、(7)・・・案内杆、(10)・・
・下部自在継手、(11)・・・動揺台、(12)・・
・上部自在継手、(13)・・・動作杆、(1^)・・
・下部基準三角形、(11^)・・・上部基準三角形。 なお、各図中、同一符号は同−又は相当部分を示す。 特許出願人 三菱プレシジョン株式会社第1図 范3図 第1頂魚 第2区
Figures 1 to 4 are diagrams for explaining an embodiment of the present invention.
FIG. 2 is a flowchart showing each process in more detail, and FIGS. 3 and 4 are schematic diagrams of the main parts of the shaking device. FIG. 5 is a perspective view of a conventional shaking device, and FIG. 6 is a side view of the same. (1)... Base plate, (7)... Guide rod, (10)...
・Lower universal joint, (11)... Shaking table, (12)...
・Upper universal joint, (13)...Operating rod, (1^)...
・Lower reference triangle, (11^)...upper reference triangle. In each figure, the same reference numerals indicate the same or corresponding parts. Patent Applicant Mitsubishi Precision Co., Ltd. Figure 1 Fan 3 Figure 1 Dingyu Section 2

Claims (1)

【特許請求の範囲】[Claims] 三角形の各頂点にそれぞれ配置されて動揺台に取付けら
れた3組の上部自在継手の各組に上端部が結合された3
対の動作杆と、各1対の前記動作杆の下端部がそれぞれ
結合され案内杆に沿って直線移動する各1対の下部自在
継手を備えた動揺装置の制御方法において、前記動揺台
の重心位置および姿勢データを得て、前記動揺台の姿勢
変化のないときの前記動作杆上端部各支点の位置を得る
第1の過程と、前記動揺台の姿勢変化に応じた変換マト
リックスを得る第2の過程と、前記変換マトリックスで
処理された前記各動作杆上端部支点の位置を得る第3の
過程と、前記各動作杆下端の前記案内杆上の位置を得る
第4の過程とからなることを特徴とする動揺装置の制御
方法。
3 whose upper ends are connected to each set of three sets of upper universal joints arranged at each vertex of the triangle and attached to the rocking table;
In a method for controlling a shaking device including a pair of operating rods and a pair of lower universal joints each of which is coupled to a lower end portion of each pair of operating rods and moves linearly along a guide rod, the center of gravity of the shaking table is provided. A first process of obtaining position and attitude data to obtain the positions of each fulcrum of the upper end of the operating rod when there is no change in the attitude of the shaking table, and a second process of obtaining a transformation matrix according to the change in the attitude of the shaking table. a third step of obtaining the position of the upper end fulcrum of each of the operating rods processed by the conversion matrix; and a fourth step of obtaining the position of the lower end of each of the operating rods on the guide rod. A method for controlling a shaking device, characterized by:
JP175487A 1987-01-09 1987-01-09 Control method of the shaking device Expired - Lifetime JPH0627968B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP175487A JPH0627968B2 (en) 1987-01-09 1987-01-09 Control method of the shaking device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP175487A JPH0627968B2 (en) 1987-01-09 1987-01-09 Control method of the shaking device

Publications (2)

Publication Number Publication Date
JPS63170679A true JPS63170679A (en) 1988-07-14
JPH0627968B2 JPH0627968B2 (en) 1994-04-13

Family

ID=11510364

Family Applications (1)

Application Number Title Priority Date Filing Date
JP175487A Expired - Lifetime JPH0627968B2 (en) 1987-01-09 1987-01-09 Control method of the shaking device

Country Status (1)

Country Link
JP (1) JPH0627968B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009243631A (en) * 2008-03-31 2009-10-22 Hosei Univ Free motion flight simulator apparatus

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5681809A (en) * 1979-12-10 1981-07-04 Matsushita Electric Works Ltd Optical coupling device
JPS57102077A (en) * 1980-12-16 1982-06-24 Mitsubishi Electric Corp Photo coupling device by photo semiconductor element and optical fiber

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5681809A (en) * 1979-12-10 1981-07-04 Matsushita Electric Works Ltd Optical coupling device
JPS57102077A (en) * 1980-12-16 1982-06-24 Mitsubishi Electric Corp Photo coupling device by photo semiconductor element and optical fiber

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009243631A (en) * 2008-03-31 2009-10-22 Hosei Univ Free motion flight simulator apparatus

Also Published As

Publication number Publication date
JPH0627968B2 (en) 1994-04-13

Similar Documents

Publication Publication Date Title
US5667354A (en) Two-dimensional manipulating robot
CN104162892A (en) Hand-shaped manipulator
CN207788984U (en) paw and teaching robot
CN109922929A (en) Apparatus for work and dual-arm apparatus for work
JPS63170679A (en) Control of rocking apparatus
DK179990A (en) BALL UNIT AND BALL COVER
CN209630102U (en) A kind of upper-limbs rehabilitation training robot and its wrist joint training device
CN205835341U (en) A kind of robot palletizer with vertical slide and horizontal slide
JPS6254302A (en) Robot controller
JPS62502844A (en) robotic arm
CN208246812U (en) A kind of wu-zhi-shan pig
CN107351064A (en) A kind of Novel two-freedom-degree parallel robot of apery wrist joint
CN207386865U (en) A kind of Portable welding apparatus for copper artware production
CN207104914U (en) A kind of adaptive robot visual inspection webcam driver structure
JPH039998Y2 (en)
JPH0248188Y2 (en)
JPH02232193A (en) Balance device for multi-joint type robot
JPH0754418B2 (en) Shaking device
CN203865967U (en) Adjustable jack with changeable angle
CN211639902U (en) Multi-axis manipulator mounting base with good stability
JP2617775B2 (en) Industrial robot with horizontal arm
JPH05146980A (en) Parallel manipulator
CN216399641U (en) Manipulator capable of being rotationally adjusted
JP2537832Y2 (en) Steel joint welding equipment
JP2581615Y2 (en) Two-dimensional motion device

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term