JPS6317051B2 - - Google Patents

Info

Publication number
JPS6317051B2
JPS6317051B2 JP311180A JP311180A JPS6317051B2 JP S6317051 B2 JPS6317051 B2 JP S6317051B2 JP 311180 A JP311180 A JP 311180A JP 311180 A JP311180 A JP 311180A JP S6317051 B2 JPS6317051 B2 JP S6317051B2
Authority
JP
Japan
Prior art keywords
reaction
isocyanate
catalyst
diformamide
formamide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP311180A
Other languages
Japanese (ja)
Other versions
JPS56100751A (en
Inventor
Shinsuke Fukuoka
Hiroshi Ishida
Masazumi Chono
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd filed Critical Asahi Chemical Industry Co Ltd
Priority to JP311180A priority Critical patent/JPS56100751A/en
Publication of JPS56100751A publication Critical patent/JPS56100751A/en
Publication of JPS6317051B2 publication Critical patent/JPS6317051B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

【発明の詳现な説明】[Detailed description of the invention]

本発明は、―モノ眮換ホルムアミドからむ゜
シアナヌトを補造する方法に関する。 む゜シアナヌトを補造する方法は皮々提案され
おいるが、工業的に実斜されおいるのはアミンた
たはその塩ずホスゲンずの反応によるものが殆ん
どである。しかしながら、ホスゲンは猛毒であ
り、たた埮量の氎分によ぀おも加氎分解され腐食
性ずなるこずから、他の方法によるむ゜シアナヌ
ト類の補造法の開発が望たれおいる。 このような方法の䞀぀ずしお最近、ホルムアミ
ドからむ゜シアナヌトを補造する方法が特開昭54
―39018号によ぀お開瀺された。これによれば、
―モノ眮換ホルムアミドを気盞䞭で、玄300〜
箄600℃の枩床で、銅およびたたは元玠の呚期
埋衚の第および第呚期の第族および第
族の皮たたはそれ以䞊の金属の觊媒の存圚䞋に
酞化するこずによ぀おむ゜シアナヌトが補造され
るこずが蚘茉されおいるが、この方法は第族の
癜金族金属を觊媒ずしお甚いた時には、む゜シア
ナヌトの収率および遞択性が悪く、銀を甚いた時
のみ、満足できる結果が埗られおいるにすぎない
こずは明らかである。 そこで、本発明者らは、―モノ眮換ホルムア
ミドから収率良く、たた遞択性良くむ゜シアナヌ
トを補造する方法に぀いお鋭意研究を重ねた結
果、本発明に到達した。 すなわち本発明は、―モノ眮換ホルムアミド
を200〜600℃の範囲の枩床で酞玠含有ガスを甚い
お酞化するこずによりむ゜シアナヌトを補造する
方法においお、RuRhPdIrPtから遞ばれ
た皮たたはそれ以䞊の金属の酞化物からなる觊
媒を甚いるこずを特城ずするホルムアミドからむ
゜シアナヌトの補造方法にある。 RuRhPdIrPtなどの金属を觊媒ずしお
甚いた堎合は、む゜シアナヌトの収率は数〜
高々10数で、遞択率も数〜高々10数である
こずは特開昭54―39018号公報に蚘茉されおいる
が、これに反しお、これら族の癜金族の金属で
はなく、金属の酞化物を觊媒の䞻成分ずしお甚い
る本発明の方法によれば、50以䞊の高遞択率で
収率よくむ゜シアナヌトが埗られるこずが芋出さ
れた。 本発明で甚いられるRuRhPdIrPtの酞
化物ずしおは、RuO2Rh2O3PdOIrO2
PtOPt3O4などがあげられるが、もちろん他の
酞化状態の酞化物が含たれおいおもよい。これら
の金属酞化物は単独で甚いるこずもできるし、
皮以䞊甚いるこずもできる。たた、これらの金属
酞化物に、必芁に応じお、觊媒ずしお掻性でも掻
性でなくおもよい他の金属たたは金属酞化物を加
えたものを觊媒ずしお䜿甚するこずもできる。こ
れらの觊媒は担䜓なしで甚いるこずもできるが、
担䜓に担持させるのがより奜たしい。 担䜓ずしおは、反応条件䞋で原料および生成物
の分解や副反応を起す掻性のないもの、あるいは
掻性の䜎いものから遞ばれるべきで、このような
担䜓ずしおは、炭化ケむ玠、炭化チタン、二酞化
チタン、窒化ケむ玠、炭化ホり玠、酞化ゞルコニ
りム、焌成シリカゲルおよびこれらの混合物等を
䞻成分ずするものが奜たしく、特に奜たしいのは
炭化ケむ玠を䞻成分ずする担䜓である。 これらの担䜓に觊媒成分を担持させる䞀般的な
方法ずしおは、これらの金属の塩類の溶液に担䜓
を浞挬させ、也燥埌、空気たたは酞玠気流䞭で高
枩熱凊理を行な぀お酞化物ずする方法が甚いられ
るが、もちろん他のいかなる方法によ぀お担持さ
せおもよい。担䜓に察する觊媒成分の担持量は持
に制限はないが、通垞は0.005重量以䞊である。 RuRhPdIrPtの酞化物の䞭でも、特に
酞化パラゞりムが本反応においお高掻性で、しか
も経時的な掻性䜎䞋が芋られず、奜たしい觊媒皮
である。 本発明で出発物質ずしお甚いられる―モノ眮
換ホルムアミドずは、䞀般匏 で瀺されるものであ぀お、匏䞭、は〜の敎
数を衚わす。たたは䟡の有機残基を意味し、
眮換たたは未眮換の脂肪族基、脂環族基、芳銙族
基およびアラルキル基を衚わす。眮換基ずしお
は、反応条件䞋で分解したり副反応を起したりす
るもの以倖であればどんなものであ぀おもよい。
たずえば、塩玠、フツ玠、ニトリル基、アルキル
基、アルコキシ基、アシル基、゚ステル基などの
眮換基を有する―モノ眮換ホルムアミド類は本
発明で䜿甚するこずができる。 未眮換の―モノ眮換ホルムアミドずしおは、
たずえば、―メチルホルムアミド、―゚チル
ホルムアミド、―プロピルホルムアミド、―
ブチルホルムアミド、―ペンチルホルムアミ
ド、―ヘキシルホルムアミド、―ヘプチルホ
ルムアミド、―オクチルホルムアミド、―ノ
ニルホルムアミド、―デシルホルムアミド、
―りンデシルホルムアミド、―ドデシルホルム
アミド、―オクタデシルホルムアミド、―む
゜プロピルホルムアミド、―む゜ブチルホルム
アミド、――ブチルホルムアミド、―ネオ
ペンチルホルムアミド等の―アルキルモノホル
ムアミド類―シクロペンチルホルムアミド、
―シクロヘキシルホルムアミド、―メチルシ
クロヘキシルホルムアミド等の―脂環匏モノホ
ルムアミド類、―プニルホルムアミド、
―ナフチルホルムアミド、―ピリゞルホルムア
ミド、―むンデニルホルムアミド、―トリア
ゞニルホルムアミド、―トリルホルムアミド、
―キノリルホルムアミド、―オキサゟリルホ
ルムアミド等の―アリヌルモノホルムアミド
類―ベンゞルホルムアミド、―プネチル
ホルムアミド等の―アラルキルモノホルムアミ
ド類N′―゚チレンゞホルムアミド、
N′―トリメチレンゞホルムアミド、N′―テ
トラメチレンゞホルムアミド、N′―ヘキサ
メチレンゞホルムアミド、N′―オクタメチ
レンゞホルムアミド、N′―りンデカメチレ
ンゞホルムアミド、N′―ドデカメチレンゞ
ホルムアミド等のN′―アルキレンゞホルム
アミド類N′――シクロヘキシルゞ
ホルムアミド、N′――ゞメチルシク
ロヘキシルホルムアミド、N′―む゜ホロン
ゞホルムアミド、N′―シクロヘキシルメチ
レンゞホルムアミド、N′―4′―ゞシクロ
ヘキシルメタンゞホルムアミド等のN′―脂
環匏ゞホルムアミド類N′――プ
ニレンゞホルムアミド、N′――トリ
レンゞホルムアミド、N′――トリレ
ンゞホルムアミド、N′―4′―ゞプニル
メタンゞホルムアミド、N′―4′―ゞプ
ニル゚ヌテルゞホルムアミド、N′―
―ナフチレンゞホルムアミド、N′―
―ナフチレンゞホルムアミド、N′―
―ナフチレンゞホルムアミド等のN′―アリ
ヌルゞホルムアミド類N′―キシリレンゞ
ホルムアミド等のN′―アラルキレンゞホル
ムアミド類などのモノホルムアミドおよびゞホル
ムアミドがあげられる。この他にトリアミン、た
ずえば、―ゞアミノ――アミノメチルオ
クタン、―トリアミノプロパン、メラ
ニン、トリス―アミノ゚チルアミンなどの
トリホルムアミドも本発明で甚いるこずができ、
盞圓するトリむ゜シアナヌトぞ倉換するこずがで
きる。 これらの未眮換のホルムアミドを前蚘の眮換基
で眮換したホルムアミド類も、もちろん䜿甚でき
る。たずえばアミノ酞の゚ステル誘導䜓のホルム
アミドなども䜿甚できる。このようなものずしお
は、アラニン、バリン、ロむシンのメチル゚ステ
ル、゚チル゚ステルなどのホルムアミド、アスパ
ラギン酞、グルタミン酞のゞメチル゚ステル、ゞ
゚チル゚ステルなどのホルムアミド、リゞンのメ
チル゚ステル、゚チル゚ステルなどのゞホルムア
ミド、アラニン、バリン、ロむシンの―アミノ
゚チル゚ステルなどのゞホルムアミド、アスパラ
ギン酞、グルタミン酞のゞ―アミノ゚チル
゚ステルなどのトリホルムアミド、リゞンの―
アミノ゚チル゚ステルなどのトリホルムアミドな
どがある。 これらのホルムアミド類は、盞圓する䞀玚アミ
ンずギ酞誘導䜓、たずえばギ酞メチル、ギ酞゚チ
ルなどのギ酞゚ステルずの反応、たたは䞀酞化炭
玠ずの反応などによ぀お容易に埗られるが、もち
ろん他の方法によ぀お補造されたものであ぀おも
よい。 本発明で甚いられる酞玠含有ガスずは、酞玠を
所定量含むものであれば空気でもよいし、空気た
たは酞玠を反応に悪圱響を及がさない他のガス、
たずえば、窒玠、アルゎン、ヘリりム、炭酞ガス
などの䞍掻性ガスで垌釈したものであ぀おもよ
い。たた堎合によ぀おは、氎玠、䞀酞化炭玠、炭
化氎玠、ハロゲン化炭化氎玠、チオヌル類などの
ガスを含んでいおもよい。 觊媒䞊に䟛絊される―モノ眮換ホルムアミド
ず酞玠ずの割合は、ホルムアミド基個圓り酞玠
が0.5〜50圓量、奜たしくは〜20圓量である。
酞玠量が少なすぎるずむ゜シアナヌトの収率が䜎
くなり、たた倚すぎるず酞化分解、燃焌などが起
぀おむ゜シアナヌトの収率および遞択率が䜎䞋す
るからである。 たた反応系を窒玠、アルゎン、ヘリりム、炭酞
ガスなどの䞍掻性ガスで垌釈するこずも奜たしい
方法で、この堎合、―モノ眮換ホルムアミドの
濃床が〜30であるこずが奜たしい。これらの
䞍掻性ガスは原料のキダリアヌずしおも甚いられ
る。 反応系に䟛絊される―モノ眮換ホルムアミド
はそのたゝでもよいし、䞍掻性溶媒で垌釈された
ものであ぀おもよい。このような溶媒の䟋ずしお
は、ベンれン、トル゚ン、キシレン、ビプニ
ル、ペンタン、ヘキサン、シクロペンタン、シク
ロヘキサン、メチルシクロヘキサン、テトラリ
ル、デカリン、メチルナフタリン等の炭化氎玠
類、ベンゟニトリル、トルニトリル、アゞポニト
リル、バレロニトリル、ブチロニトリル等のニト
リル類、酢酞゚チル、酢酞オクチル、プロピオン
酞オクチル等の゚ステル類、クロルベンれン、ゞ
クロルベンれン等のハロゲン化炭化氎玠類などが
あげられる。 本発明の方法においお䜿甚される枩床範囲は、
甚いる觊媒系、―モノ眮換ホルムアミドの皮類
および酞玠ずの割合およびガス流䞭のホルムアミ
ドの濃床、滞留時間、ガスの速床などの反応条件
によ぀お異なるが、200〜600℃が奜たしい。200
℃より䜎い枩床では実質的に殆んど反応が進行し
ないし、600℃より高い枩床では分解などの副反
応が起り、む゜シアナヌトの収率および遞択率が
䜎䞋するからである。さらに、より奜たしい枩床
範囲は250〜500℃である。 本発明の方法によ぀お―モノ眮換ホルムアミ
ドを酞化しおむ゜シアナヌトにする反応は、連続
匏でも回分匏でも行なえるが、連続匏に行なうの
が奜たしく、より奜たしいのは、気䜓状態の―
モノ眮換ホルムアミドず酞玠を觊媒局に連続的に
接觊させる、いわゆる気盞流通反応方匏である。
この堎合、觊媒局ずの接觊時間は0.05〜20秒が奜
たしく、さらには0.1〜秒がより奜たしい。 反応は通垞、垞圧䞋で行なわれるが、もちろん
枛圧䞋たたは加圧䞋においお行な぀おもよい。特
に沞点の高い―モノ眮換ホルムアミドを甚いる
堎合には200〜600℃の範囲、より奜たしくは250
〜500℃の範囲で気化させるために枛圧䞋で実斜
するこずが奜たしい。 本発明の方匏によるむ゜シアナヌトの生成反応
は、䞀般匏で次のように衚わされる。 したが぀お、む゜シアナヌトの生成ず同時に氎
が副生しおくるが、本発明の觊媒を甚いた堎合、
この氎ずむ゜シアナヌトが二次的に反応しお生成
するず考えられるアミン―NH2oが殆んど怜
出されないこずから、反応機出口たでは生成物同
志の反応は殆んど起぀おいないず思われる。 この氎を生成物から陀去する方法ずしおは、反
応域から出おきた気䜓状のむ゜シアナヌトず氎を
通垞の蒞溜操䜜によ぀お分離する方法、たたはむ
゜シアナヌトの良溶剀で氎を殆んど溶解させない
溶剀䞭に反応生成ガスを導入する方法などがあ
り、比范的容易に氎を陀去できるこずがわか぀
た。 このような溶剀ずしおは、ベンれン、トル゚
ン、キシレン、テトラリン、デカリン、キナメ
ン、α―メチルナフタレンのような炭化氎玠類、
四塩化炭玠、トリクロロ゚チレン、トリクロロ゚
タン、クロルベンれン、ゞクロロベンれン、ブロ
モベンれン、α―クロロナフタレン、α―ブロモ
ナフタレンなどのハロゲン化炭化氎玠類、アゞポ
ニトリル、ベンゟニトリルなどのニトリル類、酢
酞゚チル、酢酞オクチルなどの゚ステル類などが
奜たしい。 次に実斜䟋にお本発明をさらに詳现に説明する
が、本発明は、これらの実斜䟋によ぀お䜕ら限定
されるものではない。 これらの実斜䟋は䞀般的に次のような方法で行
なわれた。 長さ40cm、盎埄cmの石英補の反応管を長さ30
cmの瞊型の電気炉䞭に、觊媒局がほゞ䞭倮に䜍眮
するように固定した反応装眮を甚い、䞊郚より原
料および酞玠含有ガスを䟛絊する流通匏で反応を
行な぀た。觊媒局の䞊郚には予熱局ずしお石英砂
を充填した。反応枩床は觊媒局に熱電察入りの石
英管を挿入するこずによ぀お枬定した。原料の
―モノ眮換ホルムアミドは予熱装眮によ぀お予熱
され、ガス状たたは高枩液状にしお反応管に導入
された。生成物の同定、定量は、反応管出口のガ
ス状物質をガスクロマトグラフむヌによ぀お行な
う方法ず、反応生成物を―ブロモナフタリンに
吞収させた液状物質をガスクロマトグラフむヌで
行なう方法ずを甚いた。さらにむ゜シアナヌト基
の存圚は、IRおよび生成液にアルコヌルたたは
アミンを加えおりレタンたたは尿玠誘導䜓にする
こずによ぀おも確認された。 実斜䟋  塩化パラゞりムの塩酞溶液䞭に炭化ケむ玠を浞
挬し、也燥埌、空気を流しながら600℃に加熱す
るこずによ぀お、0.5重量のパラゞりムを含む
酞化パラゞりム觊媒を埗た。――ブチルホル
ムアミド酞玠窒玠82なるモル比の
原料ガスを、この觊媒局にSV玄6000hr-1の空
間速床で導入した。反応枩床290℃での――
ブチルホルムアミドの倉換率は70、―ブチル
む゜シアナヌトの収率は50、む゜シアナヌトぞ
の遞択率は71であ぀た。副生成物ずしお―ブ
チロニトリルが玄10、ゞブチル尿玠が生成
しおいた。 反応枩床を倉えた堎合の―ブチルむ゜シアナ
ヌトの収率ず遞択率は次のずおりであ぀た。
The present invention relates to a process for producing isocyanates from N-monosubstituted formamides. Although various methods for producing isocyanates have been proposed, most of the methods that have been carried out industrially involve the reaction of amines or their salts with phosgene. However, since phosgene is extremely poisonous and can be hydrolyzed and corrosive even in the presence of trace amounts of moisture, there is a desire to develop a method for producing isocyanates using other methods. As one such method, a method for producing isocyanate from formamide has recently been proposed in JP-A-54
-Disclosed by No. 39018. According to this,
N-monosubstituted formamide in the gas phase at approximately 300 ~
by oxidation at a temperature of about 600° C. in the presence of a catalyst of copper and/or one or more metals of Groups B and Groups 5 and 6 of the Periodic Table of the Elements. Although it has been described that isocyanates are produced, this method has poor isocyanate yields and selectivity when platinum group metals are used as catalysts, and is only satisfactory when silver is used. It is clear that results are being obtained. Therefore, the present inventors have conducted extensive research on a method for producing isocyanate from N-monosubstituted formamide in good yield and selectivity, and as a result, have arrived at the present invention. That is, the present invention provides a method for producing isocyanate by oxidizing N-monosubstituted formamide using an oxygen-containing gas at a temperature in the range of 200 to 600°C. The method of producing isocyanate from formamide is characterized by using a catalyst comprising an oxide of one or more metals. When metals such as Ru, Rh, Pd, Ir, and Pt are used as catalysts, the yield of isocyanate is several percent to
It is stated in JP-A-54-39018 that the selectivity is at most 10-odd percent, and the selectivity is a few percent to 10-odd percent at most. It has been found that according to the method of the present invention using a metal oxide as the main component of the catalyst, isocyanate can be obtained in good yield with a high selectivity of 50% or more. The oxides of Ru, Rh, Pd, Ir, and Pt used in the present invention include RuO 2 , Rh 2 O 3 , PdO, IrO 2 ,
Examples include PtO and Pt 3 O 4 , but of course oxides in other oxidation states may also be included. These metal oxides can be used alone, or two
More than one species can also be used. Moreover, it is also possible to use as a catalyst a mixture of these metal oxides with other metals or metal oxides which may or may not be active as catalysts, if necessary. These catalysts can also be used without a support, but
More preferably, it is supported on a carrier. The carrier should be selected from those that have no or low activity to cause decomposition or side reactions of the raw materials and products under the reaction conditions; examples of such carriers include silicon carbide, titanium carbide, and titanium dioxide. , silicon nitride, boron carbide, zirconium oxide, calcined silica gel, mixtures thereof, etc. are preferred, and particularly preferred is a carrier containing silicon carbide as a main component. A common method for supporting catalyst components on these carriers is to immerse the carrier in a solution of salts of these metals, dry it, and then heat treat it at a high temperature in an air or oxygen stream to form an oxide. However, it can of course be supported by any other method. There is no limit to the amount of catalyst components supported on the carrier, but it is usually 0.005% by weight or more. Among the oxides of Ru, Rh, Pd, Ir, and Pt, palladium oxide is particularly highly active in this reaction and shows no decrease in activity over time, making it a preferred catalyst species. The N-monosubstituted formamide used as a starting material in the present invention has the general formula In the formula, n represents an integer of 1 to 3. Further, R means an n-valent organic residue,
Represents a substituted or unsubstituted aliphatic group, alicyclic group, aromatic group, and aralkyl group. Any substituent may be used as long as it does not decompose or cause side reactions under the reaction conditions.
For example, N-monosubstituted formamides having substituents such as chlorine, fluorine, nitrile groups, alkyl groups, alkoxy groups, acyl groups, and ester groups can be used in the present invention. As unsubstituted N-monosubstituted formamide,
For example, N-methylformamide, N-ethylformamide, N-propylformamide, N-
Butylformamide, N-pentylformamide, N-hexylformamide, N-heptylformamide, N-octylformamide, N-nonylformamide, N-decylformamide, N
- N-alkyl monoformamides such as undecylformamide, N-dodecylformamide, N-octadecylformamide, N-isopropylformamide, N-isobutylformamide, N-t-butylformamide, N-neopentylformamide; N-cyclopentylformamide ,
N-alicyclic monoformamides such as N-cyclohexylformamide and N-methylcyclohexylformamide; N-phenylformamide, N-
- Naphthylformamide, N-pyridylformamide, N-indenylformamide, N-triazinylformamide, N-tolylformamide,
N-aryl monoformamides such as N-quinolylformamide and N-oxazolylformamide; N-aralkyl monoformamides such as N-benzylformamide and N-phenethylformamide; N,N'-ethylene diformamide, N,
N'-trimethylene diformamide, N,N'-tetramethylene diformamide, N,N'-hexamethylene diformamide, N,N'-octamethylene diformamide, N,N'-undecamethylene diformamide, N, N,N'-alkylene diformamides such as N'-dodecamethylene diformamide; N,N'-1,4-cyclohexyldiformamide, N,N'-1,4-dimethylcyclohexylformamide, N,N'- N,N'-alicyclic diformamides such as isophorone diformamide, N,N'-cyclohexylmethylene diformamide, N,N'-4,4'-dicyclohexylmethane diformamide; N,N'-1,4 -phenylene diformamide, N,N'-2,4-tolylene diformamide, N,N'-2,6-tolylene diformamide, N,N'-4,4'-diphenylmethane diformamide, N, N'-4,4'-diphenyl ether diformamide, N,N'-1,4
-Naphthylene diformamide, N,N'-1,5
-Naphthylene diformamide, N,N'-2,6
-N,N'-aryl diformamides such as naphthylene diformamide; monoformamides and diformamides such as N,N'-aralkylene diformamides such as N,N'-xylylene diformamide. Other triamines such as triformamides such as 1,8-diamino-4-aminomethyloctane, 1,2,3-triaminopropane, melanin, and tris(2-aminoethyl)amine may also be used in the present invention. I can,
It can be converted to the corresponding triisocyanate. Of course, formamides obtained by substituting these unsubstituted formamides with the above-mentioned substituents can also be used. For example, formamide, an ester derivative of amino acids, can also be used. These include formamides such as methyl and ethyl esters of alanine, valine, and leucine, formamides such as dimethyl and diethyl esters of aspartic acid and glutamic acid, diformamides such as methyl and ethyl esters of lysine, alanine, Diformamide such as 2-aminoethyl ester of valine and leucine, di(2-aminoethyl) of aspartic acid and glutamic acid.
Triformamide such as ester, 2- of lysine
Examples include triformamide such as aminoethyl ester. These formamides can be easily obtained by reacting the corresponding primary amine with a formic acid derivative such as a formate ester such as methyl formate or ethyl formate, or by reaction with carbon monoxide, but of course other methods can also be used. It may also be one that has been manufactured by The oxygen-containing gas used in the present invention may be air as long as it contains a predetermined amount of oxygen, or other gases that do not adversely affect the reaction with air or oxygen.
For example, it may be diluted with an inert gas such as nitrogen, argon, helium, or carbon dioxide. In some cases, it may also contain gases such as hydrogen, carbon monoxide, hydrocarbons, halogenated hydrocarbons, and thiols. The ratio of N-monosubstituted formamide and oxygen fed onto the catalyst is 0.5 to 50 equivalents, preferably 1 to 20 equivalents of oxygen per formamide group.
This is because if the amount of oxygen is too small, the yield of isocyanate will be low, and if it is too large, oxidative decomposition, combustion, etc. will occur, resulting in a decrease in the yield and selectivity of isocyanate. It is also preferable to dilute the reaction system with an inert gas such as nitrogen, argon, helium, carbon dioxide, etc. In this case, the concentration of N-monosubstituted formamide is preferably 1 to 30%. These inert gases are also used as carriers for raw materials. The N-monosubstituted formamide supplied to the reaction system may be as is or may be diluted with an inert solvent. Examples of such solvents include hydrocarbons such as benzene, toluene, xylene, biphenyl, pentane, hexane, cyclopentane, cyclohexane, methylcyclohexane, tetralyl, decalin, methylnaphthalene, benzonitrile, tolnitrile, adiponitrile, valeronitrile. , nitriles such as butyronitrile, esters such as ethyl acetate, octyl acetate, and octyl propionate, and halogenated hydrocarbons such as chlorobenzene and dichlorobenzene. The temperature range used in the method of the invention is:
The reaction temperature is preferably 200 to 600° C., although it varies depending on the catalyst system used, the type of N-monosubstituted formamide and its proportion with oxygen, and the reaction conditions such as the concentration of formamide in the gas stream, residence time, and gas velocity. 200
This is because substantially no reaction proceeds at temperatures lower than 600°C, and side reactions such as decomposition occur at temperatures higher than 600°C, reducing the yield and selectivity of isocyanate. Furthermore, a more preferable temperature range is 250 to 500°C. The reaction of oxidizing N-monosubstituted formamide to form an isocyanate by the method of the present invention can be carried out either continuously or batchwise, but it is preferable to carry out the reaction continuously, and more preferably, N-monosubstituted formamide is oxidized into isocyanate. ―
This is a so-called gas phase flow reaction method in which monosubstituted formamide and oxygen are brought into continuous contact with a catalyst layer.
In this case, the contact time with the catalyst layer is preferably 0.05 to 20 seconds, more preferably 0.1 to 5 seconds. The reaction is usually carried out under normal pressure, but may of course be carried out under reduced pressure or increased pressure. In particular, when using N-monosubstituted formamide with a high boiling point, the temperature is in the range of 200 to 600°C, more preferably 250°C.
It is preferable to carry out under reduced pressure for vaporization in the range of ~500°C. The isocyanate production reaction according to the method of the present invention is expressed by the following general formula. Therefore, water is produced as a by-product at the same time as isocyanate is produced, but when using the catalyst of the present invention,
Since amine R-(NH 2 ) o , which is thought to be produced by a secondary reaction between this water and isocyanate, is hardly detected, it appears that almost no reaction between the products occurs until the exit of the reactor. It seems that it is not. This water can be removed from the product by separating the water from the gaseous isocyanate that has come out of the reaction zone, or by using a good solvent for isocyanate to dissolve most of the water. It has been found that water can be removed relatively easily using methods such as introducing the reaction product gas into a solvent that does not contain water. Such solvents include hydrocarbons such as benzene, toluene, xylene, tetralin, decalin, kyumene, α-methylnaphthalene,
Halogenated hydrocarbons such as carbon tetrachloride, trichloroethylene, trichloroethane, chlorobenzene, dichlorobenzene, bromobenzene, α-chloronaphthalene, α-bromonaphthalene, nitriles such as adiponitrile and benzonitrile, ethyl acetate, octyl acetate, etc. Esters and the like are preferred. EXAMPLES Next, the present invention will be explained in more detail with reference to Examples, but the present invention is not limited to these Examples in any way. These examples were generally performed in the following manner. A quartz reaction tube with a length of 40 cm and a diameter of 2 cm was
The reaction was carried out in a flow-through type reactor in which the catalyst layer was fixed in a vertical electric furnace with a catalyst layer located approximately at the center, and raw materials and oxygen-containing gas were supplied from the top. The upper part of the catalyst layer was filled with quartz sand as a preheating layer. The reaction temperature was measured by inserting a quartz tube containing a thermocouple into the catalyst layer. Raw material N
- Monosubstituted formamide was preheated by a preheating device and introduced into the reaction tube in the form of a gas or a hot liquid. Identification and quantitative determination of the product can be carried out using gas chromatography on the gaseous substance at the outlet of the reaction tube, or gas chromatography on the liquid substance obtained by absorbing the reaction product in 1-bromonaphthalene. there was. Furthermore, the presence of isocyanate groups was also confirmed by IR and by adding alcohol or amine to the product solution to make urethane or urea derivatives. Example 1 A palladium oxide catalyst containing 0.5% by weight of palladium was obtained by immersing silicon carbide in a hydrochloric acid solution of palladium chloride, drying, and heating it to 600° C. while flowing air. A raw material gas having a molar ratio of Nn-butylformamide:oxygen:nitrogen=4:8:82 was introduced into this catalyst layer at a space velocity of SV=about 6000 hr -1 . N-n- at reaction temperature 290℃
The conversion rate of butylformamide was 70%, the yield of n-butyl isocyanate was 50%, and the selectivity to isocyanate was 71%. Approximately 10% n-butyronitrile and 2% dibutyl urea were produced as by-products. The yield and selectivity of n-butyl isocyanate when the reaction temperature was changed were as follows.

【衚】 実斜䟋  ――ブチルホルムアミド酞玠窒玠
86なるモル比の原料ガスを、実斜䟋ず
同䞀の觊媒局にSV玄4000hr-1の空間速床で導
入するこずによ぀お反応を行な぀た。反応枩床
300℃での―ブチルむ゜シアナヌトの収率は43
、遞択率は68であ぀た。たた副生物ずしお
―ブチロニトリルが玄生成した。 実斜䟋  塩化パラゞりムにアンモニア氎を加え、玄70℃
に枩めお埗られたパラゞりムのアンミン錯䜓溶液
に炭化ケむ玠を浞挬させ也燥埌、空気を流しなが
ら600℃で熱凊理するこずによ぀お、0.7重量の
パラゞりムを含む酞化パラゞりム觊媒を埗た。ホ
ルムアニリド酞玠窒玠82なるモル
比の原料ガスを、この觊媒局にSV5000hr-1の
空間速床で導入した。反応枩床310℃でのホルム
アニリドの倉換率は75、プニルむ゜シアナヌ
トの収率は58、遞択率は77であ぀た。たた20
時間の反応䞭、掻性の䜎䞋は党く芋られなか぀
た。 実斜䟋  ヘキサメチレンゞホルムアミドずアゞポニトリ
ルずビプニルずの混合物重量比
を、実斜䟋ず同じ觊媒局に䟛絊した。ヘキサメ
チレンゞホルムアミド空気窒玠のモル比は
50であり、SV2000hr-1であ぀た。390
℃においお、ヘキサメチレンゞホルムアミドの倉
換率はほゞ100、ヘキサメチレンゞむ゜シアナ
ヌトの収率は38であ぀た。 実斜䟋  実斜䟋ず同様にしお二酞化チタンを担䜓ずす
る酞化パラゞりム觊媒を埗た。―シクロヘキシ
ルホルムアミドを甚いる以倖は、実斜䟋ず同様
の方法によ぀お反応を行な぀たずころ、320℃で
―シクロヘキシルむ゜シアナヌトが53、遞択
率68で埗られた。 実斜䟋  䞉塩化ロゞりムの氎溶液を甚いお実斜䟋ず同
様な方法によ぀お炭化ケむ玠に0.5重量のロゞ
りムを含む酞化ロゞりム觊媒を埗た。この觊媒を
甚いお、実斜䟋ず同様の原料ガスを同様の条件
䞋で反応を行な぀た。この觊媒の堎合は、―ブ
チロニトリルがかなり倚く生成したが、―ブチ
ルむ゜シアナヌトの収率および遞択率は、各枩床
においお次のずおりであ぀た。
[Table] Example 2 N-n-butylformamide: oxygen: nitrogen =
The reaction was carried out by introducing raw material gases in a molar ratio of 7:7:86 into the same catalyst layer as in Example 1 at a space velocity of SV=about 4000 hr -1 . reaction temperature
The yield of n-butyl isocyanate at 300℃ is 43
%, and the selection rate was 68%. Also, as a by-product n
- Approximately 5% butyronitrile was produced. Example 3 Add ammonia water to palladium chloride and heat to about 70℃
A palladium oxide catalyst containing 0.7% by weight of palladium was obtained by immersing silicon carbide in an ammine complex solution of palladium obtained by heating the solution to a temperature of 100.degree. C., drying it, and heat-treating it at 600.degree. A raw material gas having a molar ratio of formanilide:oxygen:nitrogen=4:8:82 was introduced into this catalyst layer at a space velocity of SV=5000 hr -1 . At a reaction temperature of 310°C, the conversion rate of formanilide was 75%, the yield of phenyl isocyanate was 58%, and the selectivity was 77%. 20 again
No decrease in activity was observed during the time reaction. Example 4 Mixture of hexamethylene diformamide, adiponitrile and biphenyl (weight ratio 1:2:5)
was supplied to the same catalyst layer as in Example 3. The molar ratio of hexamethylene diformamide:air:nitrogen was 1:1:50 and SV=2000hr -1 . 390
At °C, the conversion of hexamethylene diformamide was nearly 100% and the yield of hexamethylene diisocyanate was 38%. Example 5 A palladium oxide catalyst using titanium dioxide as a carrier was obtained in the same manner as in Example 3. When the reaction was carried out in the same manner as in Example 1 except for using N-cyclohexylformamide, N-cyclohexyl isocyanate was obtained at 320°C with a selectivity of 53% and 68%. Example 6 A rhodium oxide catalyst containing 0.5% by weight of rhodium in silicon carbide was obtained in the same manner as in Example 1 using an aqueous solution of rhodium trichloride. Using this catalyst, the same raw material gas as in Example 2 was reacted under the same conditions. In the case of this catalyst, a considerable amount of n-butyronitrile was produced, but the yield and selectivity of n-butyl isocyanate were as follows at each temperature.

【衚】 実斜䟋  䞉塩化ルテニりムの氎溶液を甚い、実斜䟋ず
同様の方法により調補された酞化ルテニりム觊媒
を甚いお、実斜䟋ず同様の条件で反応を行な぀
たずころ、290℃で―ブチルむ゜シアナヌトの
収率は12、遞択率は65であ぀た。 実斜䟋  塩化癜金酞溶液を甚い、実斜䟋ず同様の方法
によりたゞし、熱凊理は500℃で行な぀た調
補された酞化癜金觊媒を甚いお、実斜䟋ず同様
の条件䞋で反応を行な぀たずころ、300℃で―
ブチルむ゜シアナヌトの収率は23、遞択率は54
であ぀た。 実斜䟋  塩化パラゞりムず䞉塩化ルテニりムを含む塩酞
溶液に炭化ケむ玠を浞挬し、也燥埌600℃で時
間空気気流䞭で熱凊理を行ない、重量で0.3
のパラゞりムず0.1のルテニりムを含む酞化パ
ラゞりム䞀酞化ルテニりム觊媒を埗た。この觊媒
を甚いお―プネチルホルムアミドの反応を行
な぀た。ホルムアミド酞玠窒玠40
のモル比で、SV5000hr-1であ぀た。350℃での
―プニル゚チルむ゜シアナヌトの収率は45
、遞択率は78であ぀た。 実斜䟋 10 パラゞりムを0.4重量含む炭化ケむ玠に担持
された酞化パラゞりム觊媒を、実斜䟋の方法に
よ぀お調補した。―ゞアミノ――アミノ
メチルオクタンをギ酞゚チルず反応させるこずに
よ぀お、盞圓するトリホルムアミドを埗た。トリ
ホルムアミド酞玠窒玠45なるモル
比の原料を420℃の觊媒局に導入した。觊媒ずの
接觊時間は玄秒であ぀た。生成物を蒞留によ぀
お分離し、IRによ぀おむ゜シアナヌト基の存圚
を確認し、たたホルムアミド基が存圚しないこず
も確認した。ゞブチルアミンによる滎定法によ぀
お定量したずころ、―ゞむ゜シアナヌト―
―む゜シアナヌトメチルオクタンが28の収率
で、遞択率は35であ぀た。 実斜䟋 11 塩化むリゞりムの氎溶液を甚い、実斜䟋ず同
様の方法により調敎された酞化むリゞりム觊媒を
甚いお、実斜䟋ず同様の条件で反応を行぀たず
ころ、300℃で―ブチルむ゜シアナヌトの収率
は15、遞択率は53であ぀た。
[Table] Example 7 A reaction was carried out under the same conditions as in Example 1 using an aqueous solution of ruthenium trichloride and a ruthenium oxide catalyst prepared in the same manner as in Example 1. The yield of n-butyl isocyanate was 12%, and the selectivity was 65%. Example 8 A platinum oxide catalyst prepared using a chloroplatinic acid solution in the same manner as in Example 1 (but the heat treatment was carried out at 500°C) was used under the same conditions as in Example 2. When the reaction was carried out at 300℃, n-
Butyl isocyanate yield is 23%, selectivity is 54
It was %. Example 9 Silicon carbide was immersed in a hydrochloric acid solution containing palladium chloride and ruthenium trichloride, and after drying, heat treatment was performed at 600°C for 4 hours in an air stream, resulting in a concentration of 0.3% by weight.
A palladium oxide and ruthenium monoxide catalyst containing 0.1% of palladium and 0.1% of ruthenium was obtained. Using this catalyst, a reaction of N-phenethylformamide was carried out. Formamide: oxygen: nitrogen = 1:2:40
The molar ratio was SV = 5000 hr -1 . The yield of 2-phenylethyl isocyanate at 350℃ is 45
%, and the selection rate was 78%. Example 10 A palladium oxide catalyst supported on silicon carbide containing 0.4% by weight of palladium was prepared by the method of Example 3. The corresponding triformamide was obtained by reacting 1,8-diamino-4-aminomethyloctane with ethyl formate. Raw materials having a molar ratio of triformamide:oxygen:nitrogen=2:3:45 were introduced into the catalyst layer at 420°C. The contact time with the catalyst was about 1 second. The product was isolated by distillation and IR confirmed the presence of isocyanate groups and also the absence of formamide groups. When determined by titration with dibutylamine, 1,8-diisocyanate
The yield of 4-isocyanatomethyloctane was 28%, and the selectivity was 35%. Example 11 A reaction was carried out under the same conditions as in Example 1 using an aqueous solution of iridium chloride and an iridium oxide catalyst prepared in the same manner as in Example 1. The yield was 15% and the selectivity was 53%.

Claims (1)

【特蚱請求の範囲】  ―モノ眮換ホルムアミドを200〜600℃の範
囲の枩床で酞玠含有ガスを甚いお酞化するこずに
よりむ゜シアナヌトを補造する方法においお、
RuRhPdIrPtから遞ばれた皮たたはそ
れ以䞊の金属の酞化物からなる觊媒を甚いるこず
を特城ずするホルムアミドからむ゜シアナヌトの
補造方法。  觊媒が酞化パラゞりムである特蚱請求の範囲
第項蚘茉のむ゜シアナヌトの補造方法。  觊媒が炭化ケむ玠に担持された酞化パラゞり
ムである特蚱請求の範囲第項蚘茉のむ゜シアナ
ヌトの補造方法。
[Claims] 1. A method for producing isocyanate by oxidizing N-monosubstituted formamide using an oxygen-containing gas at a temperature in the range of 200 to 600°C, comprising:
A method for producing isocyanate from formamide, characterized by using a catalyst comprising an oxide of one or more metals selected from Ru, Rh, Pd, Ir, and Pt. 2. The method for producing isocyanate according to claim 1, wherein the catalyst is palladium oxide. 3. The method for producing isocyanate according to claim 1, wherein the catalyst is palladium oxide supported on silicon carbide.
JP311180A 1980-01-17 1980-01-17 Preparation of isocyanate Granted JPS56100751A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP311180A JPS56100751A (en) 1980-01-17 1980-01-17 Preparation of isocyanate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP311180A JPS56100751A (en) 1980-01-17 1980-01-17 Preparation of isocyanate

Publications (2)

Publication Number Publication Date
JPS56100751A JPS56100751A (en) 1981-08-12
JPS6317051B2 true JPS6317051B2 (en) 1988-04-12

Family

ID=11548233

Family Applications (1)

Application Number Title Priority Date Filing Date
JP311180A Granted JPS56100751A (en) 1980-01-17 1980-01-17 Preparation of isocyanate

Country Status (1)

Country Link
JP (1) JPS56100751A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0211057U (en) * 1988-07-04 1990-01-24
JPH0245961U (en) * 1988-09-26 1990-03-29

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4698438A (en) * 1985-04-26 1987-10-06 E. I. Du Pont De Nemours And Company Process for the preparation of methyl carbamates and thioimidates
US8716471B2 (en) 2008-11-24 2014-05-06 Reliance Life Sciences Pvt. Ltd. Process for the preparation of tetrazine derivatives

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0211057U (en) * 1988-07-04 1990-01-24
JPH0245961U (en) * 1988-09-26 1990-03-29

Also Published As

Publication number Publication date
JPS56100751A (en) 1981-08-12

Similar Documents

Publication Publication Date Title
KR101602495B1 (en) Preparation of light-colored isocyanates
JP4523275B2 (en) Supported catalysts for the hydrogenation of nitroaromatic compounds.
US3461149A (en) Isocyanate process
US4123466A (en) Process for nitrating aromatic hydrocarbons
JPS6317051B2 (en)
JP2986888B2 (en) Method for producing aliphatic isocyanate
JPS6317052B2 (en)
US3935264A (en) Hydrogenation of dinitrotoluene to toluene diamine
JP4527057B2 (en) Process for producing 4-aminodiphenylamine intermediate
US4219661A (en) Process for the production of urethanes
US4304922A (en) Process for the preparation of urethane
US10501406B2 (en) Low by-product content polyphenylene polymethylene polyisocyanates
US3093685A (en) Catalytic reduction of aromatic mononitro compounds
JPH0159267B2 (en)
KR940009279B1 (en) Process for the preparation of urethanes
US4230876A (en) Process for the preparation of urethanes
JPS6341384B2 (en)
WO1995013256A1 (en) Process for producing 1,1,1,3,3-pentafluoropropane
JPH10158227A (en) Production of n,n-dimethylformamide
JPH05194286A (en) Production of 1,1,1,4,4,4-hexafluorobutane
JPS5950602B2 (en) Manufacturing method of cyanate compound
JPH0246022B2 (en)
US3132180A (en) Catalytic reduction of aromatic mononitro compounds
US3119856A (en) Process for the preparation of tolylene diisocyanates
JPH04235954A (en) Production of urethane compound