JPS63170219A - Production of ferrite powder - Google Patents

Production of ferrite powder

Info

Publication number
JPS63170219A
JPS63170219A JP177387A JP177387A JPS63170219A JP S63170219 A JPS63170219 A JP S63170219A JP 177387 A JP177387 A JP 177387A JP 177387 A JP177387 A JP 177387A JP S63170219 A JPS63170219 A JP S63170219A
Authority
JP
Japan
Prior art keywords
flux
compd
iron
ferrite powder
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP177387A
Other languages
Japanese (ja)
Inventor
Kyoji Odan
恭二 大段
Hiroshi Miura
洋 三浦
Yoshitaka Ariki
有木 芳孝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ube Corp
Original Assignee
Ube Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Industries Ltd filed Critical Ube Industries Ltd
Priority to JP177387A priority Critical patent/JPS63170219A/en
Publication of JPS63170219A publication Critical patent/JPS63170219A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To easily and economically obtain the titled powder which is available for a magnetic card or the like and excellent in dispersibility and orientation properties and has narrow particle size distribution and uniform magnetic characteristics, by mixing flux with a starting raw material consisting of iron compd. and barium compd. or strontium compd., heating and calcining the mixture in the atmosphere of flux and thereafter washing the calcined powder. CONSTITUTION:A starting raw material (A) is obtained by mixing (a) iron compd. such as iron oxide (hydroxide) and iron oxyoxide with (b) barium compd. or strontium compd. [e.g. oxide (hydroxide) of Ba and Sr] in the proportion of (10-14)/1 atomic ratio of Fe/Ba or Fe/Sr and if necessary adding (c) one or more kinds of compds. selected from among In, Cr, Zn+V, Zn+Nb, Zn+Ta, Co+Ti, Co+V, Ni+Zn and Cu+Zr in the proportion of 0.2g atom for 1g atom Fe. A mixture obtained by adding 1-100wt.% flux such as (B) NaCl to the component A is heated and calcined at >=800 deg.C in the atmosphere of flux and the obtained calcined powder is dispersed in water, washed and flux is washed with water and removed and it is filtered and dried.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は六角板状マグネトプランバイト型BaまたはS
「フェライト粉末を経済的、実用的に製造する方法に関
するものである。
Detailed Description of the Invention (Field of Industrial Application) The present invention is directed to a hexagonal plate-like magnetoplumbite type Ba or S
``It concerns an economical and practical method for producing ferrite powder.

従来からBaまたはSrフェライト粉末は異方性フェラ
イト磁石用材料として、焼結磁石およびゴム、プラステ
ィック磁石に用いられており、最近では磁気カード、磁
気交通切符等にも使用されている。
Ba or Sr ferrite powder has conventionally been used as an anisotropic ferrite magnet material for sintered magnets, rubber, and plastic magnets, and recently has also been used for magnetic cards, magnetic traffic tickets, and the like.

(従来の技術およびその問題点) 現在、一般に工業的規模において量産化され、多量に使
用されている異方性フエライ1〜磁石用材料粉末は、原
料粉末を1100℃以上の温度で焼結し、それを粉砕す
るものである。したがって形状は不定形で六角板状を呈
していない、しかも結晶中に歪みを有するBaまたはS
「フェライト粉末である。このため、これらのフェライ
ト粉末を用いて例えば優れた性能を有する異方性フェラ
イト磁石を作ることには限界があった。
(Prior art and its problems) Currently, anisotropic ferrite 1 to magnet material powder, which is generally mass-produced on an industrial scale and used in large quantities, is produced by sintering raw material powder at a temperature of 1100°C or higher. , is what crushes it. Therefore, the shape is irregular and does not have a hexagonal plate shape, and moreover, Ba or S which has distortion in the crystal.
"These are ferrite powders. Therefore, there were limits to the use of these ferrite powders to create, for example, anisotropic ferrite magnets with excellent performance.

この問題点を解決するために六角板状で、粒子が−個一
個バラバラであり、分散性、配向性の優れたBaまたは
S「フェライト粉末の製造法が提案されており1例えば
特公昭55−49030号公報、特開昭57−1203
08号公報記載の方法がある。しかしながら、これらの
方法においても、得られるBaまたはSrフェライト粉
末は粒度分布が広く、粒子−個一個の磁気特性が均一で
ないという問題があった。
To solve this problem, a method for producing Ba or S ferrite powder, which is hexagonal plate-shaped, has individual particles, and has excellent dispersibility and orientation, has been proposed. Publication No. 49030, JP-A-57-1203
There is a method described in Publication No. 08. However, these methods also have the problem that the resulting Ba or Sr ferrite powder has a wide particle size distribution and the magnetic properties of individual particles are not uniform.

(発明の目的) 本発明の目的は、前記従来法の欠点を解決し、粒度分布
が狭く、磁気特性が均一であるBaまたはS「フェライ
ト粉末の51J’A方法を提供することにある。
(Objective of the Invention) An object of the present invention is to solve the drawbacks of the conventional methods and provide a 51J'A method for producing Ba or S ferrite powder, which has a narrow particle size distribution and uniform magnetic properties.

本発明の他の目的は磁気カード、磁気テープなどの塗膜
、インキ等を製造する場合の分散性、配向性に優れ、さ
らにゴム、プラスチック磁石の製造工程における樹脂へ
の分散性能および配向性能が優れたBaまたはSrフェ
ライト粉末を容易かつ経済的に製造することができる方
法を提供することにある。
Another object of the present invention is to provide excellent dispersibility and orientation when manufacturing coatings and inks for magnetic cards, magnetic tapes, etc., and to provide excellent dispersibility and orientation performance in resins in the manufacturing process of rubber and plastic magnets. The object of the present invention is to provide a method that can easily and economically produce excellent Ba or Sr ferrite powder.

(間通点を解決するための技術的手段)本発明は、マグ
ネトプランバイトをBaまたはS「フェライト粉末を製
造するに当り、鉄化合物とバリウムまたはストロンチウ
ム化合物とからなる出発原料および出発原料に対して1
〜100重量%の融剤を混合し、混合物を融剤の雰囲気
中で800℃以上の温度で加熱焼成し、次いで焼成粉末
を洗浄して融剤を除去することを特徴とするフェライト
粉末の製法に関するものである。
(Technical means for solving the problem) The present invention uses magnetoplumbite as a Ba or S ferrite powder. te1
A method for producing ferrite powder, which comprises mixing ~100% by weight of a flux, heating and firing the mixture at a temperature of 800°C or higher in an atmosphere of the flux, and then washing the fired powder to remove the flux. It is related to.

本発明においては、まず出発原料の鉄化合物とバリウム
またはストロンチウム化合物に融剤を混合する。
In the present invention, first, a flux is mixed with the starting materials, an iron compound and a barium or strontium compound.

鉄化合物としては水酸化鉄、オキシ酸化鉄、酸化鉄等が
用いられる。
As the iron compound, iron hydroxide, iron oxyoxide, iron oxide, etc. are used.

バリウムまたはストロンチウムの化合物としては、それ
らの酸化物、さらにそれらの水酸化物、炭酸塩などの分
解により酸化物に転化しうる化合物が用いられる。
As the compound of barium or strontium, compounds that can be converted into oxides by decomposition of their oxides, hydroxides, carbonates, etc. are used.

鉄化合物とバリウムまたはストロンチウム化合物の割合
は、原子比でFe7’M(MはBaまたはSr)が10
/1〜14/1の範囲であることが好ましい、この範囲
を4まずれるとマグネトプランバイト型の結晶が生成し
難くなる。
The ratio of iron compounds to barium or strontium compounds is as follows: Fe7'M (M is Ba or Sr) is 10% in atomic ratio.
The range is preferably from /1 to 14/1.If the ratio is outside this range by 4/1, magnetoplumbite type crystals become difficult to form.

−fiに、マグネトプランバイト型のBaまたはS「フ
ェライト粉末の保磁力は、2000〜40000eであ
り、異方性フェライト磁石材料には適しているが、磁気
カード用には保磁力が500〜3QOOOeであること
が好ましい、この範囲に保磁力をコントロールするため
に、rn、cr、zn十V、Zll +Nb、Zn 十
Ta、CO+Ti、Co 十V。
-fi is magnetoplumbite type Ba or S "The coercive force of ferrite powder is 2000 to 40000e, which is suitable for anisotropic ferrite magnet material, but the coercive force is 500 to 3QOOOe for magnetic cards. In order to control the coercive force within this range, preferably rn, cr, zn 10 V, Zll + Nb, Zn 10 Ta, CO + Ti, Co 10 V.

co +Zn、Ni +zn、cu 十zrの一種以上
の元素または元素の組合わせを、鉄1グラム原子は対し
0.2グラム原子以下の量でそれぞれの元素の化合物と
して添加することもできる。それぞれの元素の化合物と
しては、酸化物、塩化物、炭酸塩、硝酸塩などが用いら
れる。
One or more elements or a combination of elements such as co + Zn, Ni + zn, and cu + zr can be added as a compound of each element in an amount of 0.2 gram atom or less per gram atom of iron. As compounds of each element, oxides, chlorides, carbonates, nitrates, etc. are used.

融剤としては、800℃以上の温度で融解し、分解しな
いもので、水に容易に溶解するものであれば、特に制限
はない0例えば、塩化ナトリウム、塩化カリウム、塩化
バリウム、塩化ストロンチウム等の単独または混合系が
一般に使用される0価格の面から安価な塩化ナトリウム
が望ましい。
There are no particular restrictions on the flux as long as it melts at a temperature of 800°C or higher, does not decompose, and easily dissolves in water.For example, sodium chloride, potassium chloride, barium chloride, strontium chloride, etc. Sodium chloride is desirable because it is inexpensive and is generally used alone or in a mixed system.

融剤の使用社は、出発原料に対して1〜100重量%で
ある。その量が少なずぎると目的とする粒子形態のもの
が得られない、また多すぎても多くしたことによる利点
はなく、経済的でない。
The amount of flux used is 1 to 100% by weight based on the starting material. If the amount is too small, it will not be possible to obtain the desired particle shape, and if the amount is too large, there will be no advantage to increasing the amount and it will be uneconomical.

出発原料と融剤の混合はボールミル、ニーダ−等を用い
た通常の混合方法で十分である。
A conventional mixing method using a ball mill, kneader, etc. is sufficient for mixing the starting materials and the flux.

得られた混合物は、粉末のままで焼成を行う。The obtained mixture is fired in powder form.

焼成は800℃以上の温度で、かつ融剤の融点以上で行
う、800℃より低い温度では結晶化が不十分となる。
The calcination is carried out at a temperature of 800° C. or higher and above the melting point of the flux; if the temperature is lower than 800° C., crystallization will be insufficient.

本発明においては、焼成は融剤の雰囲気下で行うことが
必要である。融剤の雰囲気がない場合には、焼成物の表
面部分において融剤の昇華が起り、それによって融剤な
しで熱処理が進行するために、焼結が起りやすくなり、
したがって磁気特性が不均一になり、また形状的にも粒
度分布の広いものとなる。
In the present invention, it is necessary to perform the firing in an atmosphere of a flux. If there is no flux atmosphere, the flux will sublimate on the surface of the fired product, and the heat treatment will proceed without the flux, making sintering more likely.
Therefore, the magnetic properties become nonuniform, and the particle size distribution becomes wide in terms of shape.

t2>られな焼成物は水に分散させ、融剤を水洗除去し
た後、濾過、乾燥することにより、粒度分布が狭く、磁
気特性が均一なりaまたはSrフェライト粉末となる。
The fired product with t2> is dispersed in water, the flux is removed by washing with water, and then filtered and dried to obtain a or Sr ferrite powder with a narrow particle size distribution and uniform magnetic properties.

(実施例) 次に実施例ならびに比較例により、本発明を説明する。(Example) Next, the present invention will be explained with reference to Examples and Comparative Examples.

尚、実施例ならびに比較例の粒子形状および平均粒子径
、厚みは走査型電子顕微鏡により観察、測定した。
The particle shapes, average particle diameters, and thicknesses of Examples and Comparative Examples were observed and measured using a scanning electron microscope.

実施例1 水酸化鉄[Fe(oH)3]と炭酸バリウム(BaCo
  )をモル比でFe(O)口 :l3aC○3=11
.5:1となるように全量で100g取り、これに融剤
として塩化ナトリウム20gを加え、これらをボールミ
ルを用いて混合した0次いで、密閑された焼成炉内に混
合物とさらに別の容器に入れた塩化ナトリウムとを入れ
、900℃で2時間混合物を焼成した後、混合物のみを
水洗、乾燥してBaフェライト粉末を得た。
Example 1 Iron hydroxide [Fe(oH)3] and barium carbonate (BaCo
) in molar ratio Fe(O):l3aC○3=11
.. A total of 100g was taken so that the ratio was 5:1, 20g of sodium chloride was added as a fluxing agent, and these were mixed using a ball mill.Next, the mixture was placed in a separate container in a tightly closed firing furnace. After baking the mixture at 900° C. for 2 hours, the mixture alone was washed with water and dried to obtain Ba ferrite powder.

得られたBaフェライト粉末は走査型電子顕微鏡観察の
結果、六角板状をしており、平均粒子径0.42μmで
、粒径と厚みの比は4.6であった。
As a result of scanning electron microscope observation, the obtained Ba ferrite powder was found to have a hexagonal plate shape, an average particle size of 0.42 μm, and a particle size to thickness ratio of 4.6.

また、磁気特性は保磁力25300e、飽和磁化61.
5emu/gであった。この粉を塩化ビニル−酢酸ビニ
ル系ポリマーをバインダーとして・「ンクを調製し、塗
j模を形成した。得られた塗膜の角形比は0.83であ
り、また光沢度は31.5%であった。
The magnetic properties are coercive force 25300e and saturation magnetization 61.
It was 5 emu/g. Using this powder as a binder, a vinyl chloride-vinyl acetate polymer was used to prepare a coating and form a coating. The squareness ratio of the resulting coating was 0.83, and the gloss was 31.5%. Met.

実施例2 BaCOをSrCO3にかえたほかは、実施例1と同様
にしてSrフェライト粉末を得た。
Example 2 Sr ferrite powder was obtained in the same manner as in Example 1 except that BaCO was replaced with SrCO3.

得られたSrフェライト粉末は六角板状をしており、平
均粒子径0.41μmで粒径と厚みの比は5.0であっ
た。また、磁気特性は保磁力2610oe、飽和磁゛化
63.5emu/gであった。塗膜の角型比は0.82
であり、光沢度29%であった。
The obtained Sr ferrite powder had a hexagonal plate shape, an average particle size of 0.41 μm, and a particle size to thickness ratio of 5.0. The magnetic properties were a coercive force of 2610 oe and a saturation magnetization of 63.5 emu/g. The squareness ratio of the coating film is 0.82
The glossiness was 29%.

実施例3 原料としてFc(OH)3、T i O2、COOおよ
び5rC03をモル比でFc(OH)3:Ti O2:
Co O: Sr Co3=10.50 : 0.84
 : 0.84 二1となるように混合したものを用い
たほがは実施例1と同様にしてS「フェライト粉末を得
た。
Example 3 As raw materials, Fc(OH)3, TiO2, COO and 5rC03 were used in a molar ratio of Fc(OH)3:TiO2:
CoO: SrCo3=10.50: 0.84
: 0.84 ferrite powder was obtained in the same manner as in Example 1 using the mixture.

得られたSrフェライト粉末は六角板状をしており、平
均粒子径0.41μmで、粒径と厚みの比は5.2であ
った。また磁気特性は保磁力16000e、飽和磁化6
1.1emu/gであった。塗膜の角型比は0.80で
あり、光沢度35.5%であった。また得られたSrフ
ェライト粉末の保磁力の分布を示ずBHトレーサーによ
るI−H微分曲線を第1図に示す。
The obtained Sr ferrite powder had a hexagonal plate shape, an average particle size of 0.41 μm, and a particle size to thickness ratio of 5.2. Also, the magnetic properties are coercive force 16000e, saturation magnetization 6
It was 1.1 emu/g. The squareness ratio of the coating film was 0.80, and the glossiness was 35.5%. Further, FIG. 1 shows an I-H differential curve obtained by a BH tracer without showing the coercive force distribution of the obtained Sr ferrite powder.

比較例1 実施例3において、焼成を開放焼成炉内で行い、塩化ナ
トリウムの雰囲気操作をしなかったほかは、実施例3と
同様にして、Srフエラ、イト粉末を得た。
Comparative Example 1 Sr ferrite powder was obtained in the same manner as in Example 3, except that the firing was performed in an open firing furnace and the sodium chloride atmosphere was not operated.

得られたSrフェライ1〜粉末は六角板状をしており、
平均粒子径0.51μmで、粒径と厚みの比は3.9で
あった。また磁気特性は保磁力22000e、飽和磁化
5 B、 S e tn u 、/ gであった。塗膜
の角型比は0.75であり、光沢度は25.5%であっ
た。また得られたSrフェライト粉末の保磁力の分布は
第2図に示すように広いものであった。
The obtained Sr ferrite 1 ~ powder has a hexagonal plate shape,
The average particle size was 0.51 μm, and the ratio of particle size to thickness was 3.9. The magnetic properties were a coercive force of 22,000e and a saturation magnetization of 5 B, S e tn u , /g. The squareness ratio of the coating film was 0.75, and the glossiness was 25.5%. Furthermore, the coercive force distribution of the obtained Sr ferrite powder was wide as shown in FIG.

【図面の簡単な説明】[Brief explanation of the drawing]

第1UAおよび第2図は、本発明の実施例3および比較
例1で得られたSrフェライト粉末の保磁力の分布を示
す図である。
FIG. 1 UA and FIG. 2 are diagrams showing the coercive force distribution of the Sr ferrite powder obtained in Example 3 of the present invention and Comparative Example 1.

Claims (2)

【特許請求の範囲】[Claims] (1)マグネトプランバイト型BaまたはSrフェライ
ト粉末を製造するに当り、鉄化合物とバリウムまたはス
トロンチウム化合物とからなる出発原料および出発原料
に対して1〜100重量%の融剤を混合し、混合物を融
剤の雰囲気中で800℃以上の温度で加熱焼成し、次い
で焼成粉末を洗浄して融剤を除去することを特徴とする
フェライト粉末の製法。
(1) In producing magnetoplumbite type Ba or Sr ferrite powder, a starting material consisting of an iron compound and a barium or strontium compound and a fluxing agent of 1 to 100% by weight are mixed with the starting material, and the mixture is A method for producing ferrite powder, which comprises heating and firing at a temperature of 800° C. or higher in a flux atmosphere, and then washing the fired powder to remove the flux.
(2)出発原料にIn、Cr、Zn+V、Zn+Nb、
Zn+Ta、Co+Ti、Co+V、Co+Zn、Ni
+Zn、Cu+Zrの一種以上の元素または元素の組合
わせを、鉄1グラム原子に対し0.2グラム原子以下の
量でそれぞれの元素の化合物として添加する特許請求の
範囲第1項記載のフェライト粉末の製法。
(2) Starting materials include In, Cr, Zn+V, Zn+Nb,
Zn+Ta, Co+Ti, Co+V, Co+Zn, Ni
The ferrite powder according to claim 1, wherein one or more elements or combinations of elements +Zn, Cu+Zr are added as a compound of each element in an amount of 0.2 gram atom or less per 1 gram atom of iron. Manufacturing method.
JP177387A 1987-01-09 1987-01-09 Production of ferrite powder Pending JPS63170219A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP177387A JPS63170219A (en) 1987-01-09 1987-01-09 Production of ferrite powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP177387A JPS63170219A (en) 1987-01-09 1987-01-09 Production of ferrite powder

Publications (1)

Publication Number Publication Date
JPS63170219A true JPS63170219A (en) 1988-07-14

Family

ID=11510893

Family Applications (1)

Application Number Title Priority Date Filing Date
JP177387A Pending JPS63170219A (en) 1987-01-09 1987-01-09 Production of ferrite powder

Country Status (1)

Country Link
JP (1) JPS63170219A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010117070A1 (en) * 2009-04-09 2010-10-14 Dowaエレクトロニクス株式会社 Ferrite powder for bonded magnet, method for producing same and bonded magnet using same
JP2014078757A (en) * 2009-04-09 2014-05-01 Dowa Electronics Materials Co Ltd Ferrite powder for bond magnet and bond magnet employing the same

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5673698A (en) * 1979-11-21 1981-06-18 Toda Kogyo Corp Manufacture of magnetoplumbite type composite ferrite particle powder assuming hexagonal plate form

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5673698A (en) * 1979-11-21 1981-06-18 Toda Kogyo Corp Manufacture of magnetoplumbite type composite ferrite particle powder assuming hexagonal plate form

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010117070A1 (en) * 2009-04-09 2010-10-14 Dowaエレクトロニクス株式会社 Ferrite powder for bonded magnet, method for producing same and bonded magnet using same
JP2010263201A (en) * 2009-04-09 2010-11-18 Dowa Electronics Materials Co Ltd Ferrite powder for bonded magnet, method of manufacturing the same, and bonded magnet using the same
CN102388423A (en) * 2009-04-09 2012-03-21 同和电子科技有限公司 Ferrite powder for bonded magnet, method for producing same and bonded magnet using same
JP2014078757A (en) * 2009-04-09 2014-05-01 Dowa Electronics Materials Co Ltd Ferrite powder for bond magnet and bond magnet employing the same
US8951635B2 (en) 2009-04-09 2015-02-10 Dowa Electronics Materials Co., Ltd. Ferrite powder for bonded magnet, method for manufacturing ferrite powder, and bonded magnet using ferrite powder

Similar Documents

Publication Publication Date Title
US4664831A (en) Preparation of finely divided ferrite powders
US4425250A (en) Preparation of finely divided ferrite powders
EP2709117B1 (en) Ferrite magnet with salt and manufacturing method of the same
JP4538991B2 (en) Permanent magnet and method for manufacturing the same
JP6106303B2 (en) Surface-modified iron-based oxide magnetic particle powder and method for producing the same
Hibst Hexagonal ferrites from melts and aqueous solutions, magnetic recording materials
KR100876660B1 (en) Permanent magnet and method for preparation thereof
KR20030072211A (en) Permanent magnet and method for preparation thereof
JPH0261418B2 (en)
US4401643A (en) Preparation of finely divided barium ferrite of high coercivity
EP1052658B1 (en) Ferrite magnet powder and magnet using said magnet powder, and method for preparing them
US4469669A (en) Preparation of ferrites from iron (II) sulfate
JPH02258634A (en) Preparation of fine powder magnetic hexaferrite and use thereof
JPS63170219A (en) Production of ferrite powder
JPS60255628A (en) Fine powder of ba ferrite plate particle for magnetic recording use and its preparation
KR960002626B1 (en) Process for producing microcrystalline co/ti-substituted barium ferrite platelets
JPH01274403A (en) Fine magnetic hexaferrite pigment of precipitated magnetite containing potassiom, its manufacture and its application
JP2610445B2 (en) Method for producing soft magnetic hexagonal ferrite
JPS63170218A (en) Production of ferrite powder
JPH0359008B2 (en)
JPH0296302A (en) Manufacture of soft magnetic hexagonal system ferrite sintered body
JPH0266902A (en) High coercive force platelike magnetoplumbite type ferrite particle powder and manufacture thereof
US5626788A (en) Production of magnetic oxide powder
JPS63156018A (en) Production of ferrite powder
JP2001284113A (en) Permanent magnet and manufacturing method for the same