JPS6316994B2 - - Google Patents

Info

Publication number
JPS6316994B2
JPS6316994B2 JP4858682A JP4858682A JPS6316994B2 JP S6316994 B2 JPS6316994 B2 JP S6316994B2 JP 4858682 A JP4858682 A JP 4858682A JP 4858682 A JP4858682 A JP 4858682A JP S6316994 B2 JPS6316994 B2 JP S6316994B2
Authority
JP
Japan
Prior art keywords
ozone
cooling water
ions
water
cooling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP4858682A
Other languages
Japanese (ja)
Other versions
JPS58166980A (en
Inventor
Akira Ikeda
Shigeki Nakayama
Kenji Ezaki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP4858682A priority Critical patent/JPS58166980A/en
Publication of JPS58166980A publication Critical patent/JPS58166980A/en
Publication of JPS6316994B2 publication Critical patent/JPS6316994B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 この発明は閉鎖ループ系冷却装置に関するもの
である。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a closed loop cooling device.

閉鎖ループ系冷却装置は、例えば、送水ポンプ
により、送水される冷却水によつて熱交換器が冷
却されたのち、この冷却水は、空気調整冷却塔に
導かれ、冷却されて、再び送水ポンプによつて、
熱交換器に送水されるように構成されている。
In a closed-loop cooling system, for example, after a heat exchanger is cooled by cooling water sent by a water pump, this cooling water is guided to an air conditioning cooling tower, cooled, and then sent to the water pump again. According to
The water is configured to be sent to a heat exchanger.

このような閉鎖ループ系冷却装置において、熱
交換器、冷却用水管および空気調整冷却塔は使用
中に壁面等に微生物の付着繁殖が生じ、熱交換能
力の低下や閉塞障害をひき起こす。
In such a closed-loop cooling system, microorganisms adhere to and propagate on the walls of the heat exchanger, cooling water pipes, and air conditioning cooling tower during use, causing a decrease in heat exchange capacity and clogging problems.

これらの障害を防ぐために、殺菌剤が用いられ
ている。殺菌剤としては、一般に塩素あるいは塩
素系薬剤、過酸化水素、あるいはオゾンなどが使
用される。閉鎖ループ系では、塩素や塩素系薬剤
を注入した場合、これら殺菌剤や殺菌剤と同伴さ
れて注入される塩素イオンが系内に蓄積濃縮され
て、腐食の問題が生じるという欠点がある。一
方、過酸化水素はその分解物が酸素と水であるた
めに、閉鎖ループ系に使用する殺菌剤としては好
ましいが、周知の如く、殺菌作用が他の殺菌剤に
比べて弱く、多量の注入が必要となり、運用と経
済性に問題がある。このような欠点を除去するた
めに、これらの殺菌剤より殺菌力が大きく、かつ
分解速度も速く、分解後酸素以外のものを残さな
いオゾン注入方法が、閉鎖ループ系の付着除去方
法として用いられている。
To prevent these disorders, fungicides are used. As disinfectants, chlorine or chlorine-based agents, hydrogen peroxide, ozone, etc. are generally used. A closed-loop system has the disadvantage that when chlorine or chlorine-based chemicals are injected, chlorine ions that are injected together with these disinfectants or disinfectants accumulate and concentrate within the system, causing corrosion problems. On the other hand, since hydrogen peroxide decomposes into oxygen and water, it is preferable as a disinfectant for use in closed-loop systems. , which poses operational and economical problems. In order to eliminate these drawbacks, the ozone injection method, which has greater bactericidal power than these disinfectants, has a faster decomposition rate, and leaves nothing but oxygen after decomposition, is used as a closed-loop adhesion removal method. ing.

第1図は従来の閉鎖ループ系冷却装置を示す系
統図であり、図において、1は閉鎖ループ型の冷
却用水管、2はこの冷却用水管に接続する貯水
槽、3はこの貯水槽に貯えられた冷却水、4はこ
の冷却水を冷却用水管1に送水する送水ポンプ、
5は冷却用水管1に設けられた熱交換器、6はこ
の熱交換器の出口側の冷却用水管1に接続する散
水孔7を有する空気調整冷却塔、8は散水孔7の
下部に設けられた充填層、9はこの充填層の下部
へ送風する送風機、10は乾燥器11を介してオ
ゾン発生器12に空気を送る送風機、13はオゾ
ン発生器12からガス混合器14にオゾン化空気
を導くオゾン送気管、15はガス混合器14に送
水するガス混合用ポンプ、16はガス混合器14
からオゾン水を冷却用水管1に導くオゾン水注入
管である。
FIG. 1 is a system diagram showing a conventional closed-loop cooling system. In the figure, 1 is a closed-loop cooling water pipe, 2 is a water tank connected to this cooling water pipe, and 3 is a water tank connected to the water tank. 4 is a water pump that sends this cooling water to the cooling water pipe 1;
5 is a heat exchanger provided in the cooling water pipe 1; 6 is an air conditioning cooling tower having water sprinkling holes 7 connected to the cooling water pipe 1 on the outlet side of the heat exchanger; 8 is provided at the bottom of the water sprinkling hole 7; 9 is a blower that blows air to the lower part of this packed bed, 10 is a blower that sends air to the ozone generator 12 via the dryer 11, and 13 is a blower that sends ozonized air from the ozone generator 12 to the gas mixer 14. 15 is a gas mixing pump that sends water to the gas mixer 14; 16 is a gas mixer 14;
This is an ozonated water injection pipe that guides ozonated water from the cooling water pipe 1 to the cooling water pipe 1.

上記のように構成された閉鎖ループ系冷却装置
においては、貯水槽2内の冷却水3は送水ポンプ
4によつて冷却用水管1に送られ、熱交換器5を
冷却後、空気調整冷却塔6の散水孔7から散水さ
れ、充填材を充填した充填層8を流下する。この
とき、流下する冷却水は送風機9によつて送気さ
れる空気と接触し、冷却水の一部が送気空気に蒸
発することにより冷却されて、貯水槽2に貯えら
れる。貯水槽2の冷却水3は再び送水ポンプ4に
よつて冷却用水管1に送られるという閉鎖ループ
を構成する。
In the closed loop cooling system configured as described above, the cooling water 3 in the water storage tank 2 is sent to the cooling water pipe 1 by the water pump 4, and after cooling the heat exchanger 5, it is transferred to the air conditioning cooling tower. Water is sprayed from the water sprinkling holes 7 of 6 and flows down the packed bed 8 filled with filler. At this time, the cooling water flowing down comes into contact with the air blown by the blower 9, and a part of the cooling water evaporates into the blown air, thereby being cooled and stored in the water storage tank 2. The cooling water 3 in the water storage tank 2 is again sent to the cooling water pipe 1 by the water pump 4, forming a closed loop.

このとき、無声放電によつて生成されたオゾン
が連続または間欠的に冷却用水管1に注入され
る。これに用いられるオゾンは、送風機10で加
圧された空気が空気乾燥器11で露点が−40℃以
下になるまで乾燥されてオゾン発生器12に送ら
れ、このオゾン発生器12内で無声放電により空
気中の酸素の一部がオゾン化され、高濃度のオゾ
ン含有空気となる。この高濃度オゾン含有空気は
オゾン送気管13を経てガス混合器14(この従
来例では水エゼクタ)に送られ、ガス混合用ポン
プ15から送られた水の中に微細泡として注入さ
れて溶解する。この微細泡を含んだオゾン水はオ
ゾン水注入管16を通つて冷却用水管1に注入さ
れ、上記冷却用水管1の壁面に付着している微生
物を死滅させて障害を防止することができる。こ
のとき、オゾンは、有効残留オゾン濃度が
0.1ppm程度になるように連続して注入されるか、
または高濃度のオゾンを比較的長い周期、すなわ
ち1日1回、5分間づつ5〜10ppmの有効残留オ
ゾン濃度で注入される。
At this time, ozone generated by silent discharge is continuously or intermittently injected into the cooling water pipe 1. Ozone used for this purpose is produced by air pressurized by a blower 10, dried in an air dryer 11 until the dew point becomes -40°C or less, and sent to an ozone generator 12, where a silent discharge occurs. This converts some of the oxygen in the air into ozone, resulting in air containing highly concentrated ozone. This highly concentrated ozone-containing air is sent to the gas mixer 14 (water ejector in this conventional example) through the ozone air pipe 13, and is injected as microbubbles into the water sent from the gas mixing pump 15, where it is dissolved. . This ozonated water containing microbubbles is injected into the cooling water pipe 1 through the ozonated water injection pipe 16, and can kill microorganisms adhering to the wall surface of the cooling water pipe 1 to prevent trouble. At this time, ozone has an effective residual ozone concentration of
It is continuously injected to a level of about 0.1ppm, or
Alternatively, high-concentration ozone is injected over a relatively long period, ie, once a day for 5 minutes at an effective residual ozone concentration of 5 to 10 ppm.

しかしこのような構成においては、空気調整冷
却塔において、気液が直接に接触する際、オゾン
が難溶解性物質であるために冷却水に溶解したオ
ゾンの大部分が大気へ放散されて、オゾンによる
公害をひき起こすという問題があつた。このよう
なオゾンの大気への放散を除去するためには、水
によく溶ける殺菌剤、例えば次亜塩素酸イオンを
用いることが考えられるが、上記説明したよう
に、閉鎖ループ系では殺菌剤(次亜塩素酸イオ
ン)や塩素イオン等が系内に蓄積濃縮され、腐食
の問題をひき起こすという欠点がある。
However, in such a configuration, when gas and liquid come into direct contact in the air conditioning cooling tower, most of the ozone dissolved in the cooling water is dissipated into the atmosphere because ozone is a poorly soluble substance, and ozone There was a problem that it caused pollution. In order to eliminate such ozone dissipation into the atmosphere, it is possible to use a disinfectant that is highly soluble in water, such as hypochlorite ion, but as explained above, in a closed loop system, disinfectants ( The drawback is that hypochlorite ions), chlorine ions, etc. accumulate and concentrate in the system, causing corrosion problems.

本発明は、上記のような従来のものの欠点を解
決するためになされたもので、臭素イオンを含む
循環冷却水にオゾンを注入する装置を設けること
により、オゾンの大気放散がなく、強い殺菌力を
有し、これにより生物付着障害を防止することが
できる閉鎖ループ系冷却装置を提供することを目
的としている。
The present invention was made to solve the above-mentioned drawbacks of the conventional ones, and by providing a device for injecting ozone into circulating cooling water containing bromide ions, ozone does not diffuse into the atmosphere and has strong sterilizing power. An object of the present invention is to provide a closed-loop cooling device that has the following features and can thereby prevent biofouling damage.

オゾンは水中で臭素イオンと緩やかに反応し、
その反応生成物は大気への放散がなく、強い殺菌
力を有し、しかも反応生成物は分解すれば再び臭
素イオンにもどるため、循環冷却水中の臭素イオ
ン濃度は増加しない。本発明はこの点に着目して
なされたもので、連続的に臭素イオンを注入する
ことなく、事前に循環冷却水に臭素イオンを含ま
せ、オゾンと臭素イオンの反応によつて生成され
る反応生成物により微生物の付着を除去するよう
にしたので、殺菌剤の大気放散がなく、かつ循環
冷却水に腐食物質を蓄積、濃縮させることなく、
空気調整冷却塔を含めた閉鎖ループ全系の生物付
着を除去できる。
Ozone slowly reacts with bromine ions in water,
The reaction product does not dissipate into the atmosphere and has strong sterilizing power, and furthermore, when the reaction product decomposes, it returns to bromide ions, so the bromide ion concentration in the circulating cooling water does not increase. The present invention was made with attention to this point, and instead of continuously injecting bromine ions, the circulating cooling water is pre-impregnated with bromine ions, and a reaction is generated by the reaction between ozone and bromide ions. Since the product removes the adhesion of microorganisms, there is no release of disinfectant into the atmosphere, and there is no accumulation or concentration of corrosive substances in the circulating cooling water.
Biofouling can be removed from the entire closed loop system, including the air conditioning cooling tower.

第2図は本発明の一実施例による閉鎖ループ系
冷却装置を示す系統図である。図において、1な
いし16は第1図と同一または相当部分を示し、
閉鎖ループ系およびオゾンを発生させる微生物除
去装置は第1図と同様に構成されている。17は
臭素イオンを貯える貯留槽、18はこの貯留槽か
ら冷却用水管1に臭素イオンを注入する供給ポン
プである。
FIG. 2 is a system diagram showing a closed loop cooling device according to an embodiment of the present invention. In the figures, 1 to 16 indicate the same or corresponding parts as in Figure 1,
The closed loop system and the microorganism removal device that generates ozone are constructed in the same manner as shown in FIG. 17 is a storage tank for storing bromide ions, and 18 is a supply pump for injecting bromide ions from this storage tank into the cooling water pipe 1.

上記のように構成された冷却装置においては、
オゾンを注入する前に、供給ポンプ18によつ
て、貯留槽17から冷却用水管1に臭素イオンを
注入し、循環冷却水中の臭素イオン濃度が数ppm
となつたとき供給ポンプ18を停止して臭素イオ
ンの供給を停止する。次にオゾン発生器12を稼
動させ、高濃度オゾン含有空気を生成する。この
高濃度オゾン含有空気はオゾン送気管13を経
て、ガス混合器14(この実施例では水エゼク
タ)に送られ、ガス混合用ポンプ15から送られ
る臭素イオンを含んだ水の中に微細泡として注入
され溶解する。このときオゾンと臭素イオンが反
応し、次亜臭素酸イオンが生成して生物を死滅さ
せ、生物付着障害を除去する。
In the cooling device configured as above,
Before injecting ozone, bromine ions are injected from the storage tank 17 into the cooling water pipe 1 by the supply pump 18, so that the bromine ion concentration in the circulating cooling water is several ppm.
When this happens, the supply pump 18 is stopped to stop the supply of bromide ions. Next, the ozone generator 12 is operated to generate air containing highly concentrated ozone. This highly concentrated ozone-containing air is sent to a gas mixer 14 (water ejector in this embodiment) through an ozone air pipe 13, and is formed as microbubbles in water containing bromide ions sent from a gas mixing pump 15. Injected and dissolved. At this time, ozone and bromine ions react, producing hypobromite ions that kill living organisms and remove biofouling problems.

本発明の効果を実証するために行つた3ケ月の
実験結果によれば、事前に臭素イオンを注入して
循環冷却水の臭素イオン濃度を約4ppmとし、実
験期間中途中で臭素イオンを注入することなく、
オゾンを循環冷却水量に対し0.1ppmの濃度で連
続的に注入した場合、空気調整冷却塔6の出口に
おける冷却水中および循環冷却水中に約1ppmの
次亜臭素酸イオンがヨードメトリ法により検出さ
れた。またオゾンを1日1回、5分間づつ5〜
10ppmの濃度で間欠的に注入した場合も、上記と
同様に約1ppmの次亜臭素酸イオンが検出された。
本実験終了後、付着状況を調べた結果、空気調整
冷却塔6を含めた閉鎖ループ全系において、付着
は全く認められなかつた。このとき、空気調整冷
却塔6の出口における冷却水を空気曝気し、冷却
水に残存するオゾン濃度を測定したが、オゾンは
検出されなかつた。
According to the results of a three-month experiment conducted to demonstrate the effects of the present invention, bromine ions were injected in advance to bring the bromine ion concentration to approximately 4 ppm in the circulating cooling water, and bromine ions were injected midway through the experiment period. without any
When ozone was continuously injected at a concentration of 0.1 ppm relative to the amount of circulating cooling water, about 1 ppm of hypobromite ions were detected in the cooling water at the outlet of the air conditioning cooling tower 6 and in the circulating cooling water by iodometry. Also, apply ozone once a day for 5 to 5 minutes each time.
When injected intermittently at a concentration of 10 ppm, about 1 ppm of hypobromite ion was detected as above.
After completing this experiment, we investigated the adhesion situation and found that no adhesion was observed in the entire closed loop system including the air conditioning cooling tower 6. At this time, the cooling water at the outlet of the air conditioning cooling tower 6 was aerated with air, and the ozone concentration remaining in the cooling water was measured, but no ozone was detected.

第3図はPH7.5において、生成した次亜臭素酸
イオンと次亜塩素酸イオンおよびオゾンの気相へ
の放散率を比較した曲線図であり、第3図より、
次亜臭素酸イオンは次亜塩素酸イオンと同等に気
相への放散が極めて少ないことがわかる。
Figure 3 is a curve diagram comparing the emission rate of generated hypobromite ions, hypochlorite ions, and ozone into the gas phase at pH 7.5. From Figure 3,
It can be seen that hypobromite ions, like hypochlorite ions, emit extremely little into the gas phase.

第4図は生成した次亜臭素酸イオンの寿命を示
す曲線図であり、第4図より、一旦生成した次亜
臭素酸イオンは比較的安定で、数日間の寿命をも
つことがわかる。第5図は生成した次亜臭素酸イ
オンと次亜塩素酸イオンおよびオゾンとの一般細
菌に対する殺菌力を比較した曲線図であり、第5
図より、次亜臭素酸イオンはオゾンよりは殺菌力
が劣るものの、次亜塩素酸イオンと同等以上の強
い殺菌力があることがわかる。本発明はこのよう
な大気への放散のない、かつ強い殺菌力をもつ次
亜臭素酸イオンによつて、微生物の付着繁殖を除
去するものである。
FIG. 4 is a curve diagram showing the lifetime of the generated hypobromite ions. From FIG. 4, it can be seen that once generated, the hypobromite ions are relatively stable and have a lifetime of several days. Figure 5 is a curve diagram comparing the sterilizing power of generated hypobromite ions, hypochlorite ions, and ozone against general bacteria.
The figure shows that although hypobromite ions are inferior in sterilizing power to ozone, they have a strong sterilizing power equal to or greater than that of hypochlorite ions. The present invention eliminates the adhesion and propagation of microorganisms using hypobromite ions that do not emit into the atmosphere and have strong sterilizing power.

なお、上記実施例では、オゾンを生成するため
に、乾燥空気を用いた場合について説明したが、
乾燥空気の代りに酸素を用いてもよい。また、比
較的長い周期でオゾンを注入してもよいので、オ
ゾン発生装置は無声放電により発生したオゾンを
低温シリカゲルや四塩化炭素に貯留し、貯留され
たオゾンを使用するように構成しても、上記実施
例と同様の効果を奏する。さらに閉鎖ループ系冷
却装置の構成も図示のものに限定されない。
In addition, in the above example, a case was explained in which dry air was used to generate ozone.
Oxygen may be used instead of dry air. Furthermore, since ozone can be injected in relatively long cycles, the ozone generator may be configured to store ozone generated by silent discharge in low-temperature silica gel or carbon tetrachloride, and use the stored ozone. , the same effect as the above embodiment is achieved. Further, the configuration of the closed loop cooling device is not limited to that shown in the drawings.

以上のように、本発明によれば、事前に循環冷
却水に臭素イオンを含ませてオゾンを注入し、臭
素イオンとオゾンの反応により次亜臭素酸イオン
を生成させるように構成したので、殺菌剤の大気
への放散がなく、かつ循環冷却水に腐食物質を蓄
積濃縮させることがなく、空気調整冷却塔を含め
た閉鎖ループ全系における微生物の繁殖、付着に
よる障害を除去することができる効果がある。
As described above, according to the present invention, circulating cooling water is impregnated with bromide ions and ozone is injected in advance, and hypobromite ions are generated by the reaction between bromide ions and ozone, so that sterilization is possible. The effect is that there is no release of chemicals into the atmosphere, no accumulation and concentration of corrosive substances in the circulating cooling water, and the ability to eliminate problems caused by microbial growth and adhesion in the entire closed loop system, including the air conditioning cooling tower. There is.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の閉鎖ループ系冷却装置を示す系
統図、第2図は本発明の一実施例による閉鎖ルー
プ系冷却装置を示す系統図、第3図は次亜臭素酸
イオンの大気への放散率を示す曲線図、第4図は
次亜臭素酸イオンの寿命を示す曲線図、第5図は
各種殺菌剤の殺菌力の比較を示す曲線図である。 各図中、同一符号は同一または相当部分を示
し、1は冷却用水管、2は貯水槽、4は送水ポン
プ、5は熱交換器、6は空気調整冷却塔、7は散
水孔、8は充填層、11は乾燥器、12はオゾン
発生器、14はガス混合器、17は貯留槽、18
は供給ポンプである。
Fig. 1 is a system diagram showing a conventional closed-loop cooling system, Fig. 2 is a system diagram showing a closed-loop cooling system according to an embodiment of the present invention, and Fig. 3 is a system diagram showing the flow of hypobromite ions into the atmosphere. FIG. 4 is a curve diagram showing the emission rate, FIG. 4 is a curve diagram showing the lifespan of hypobromite ions, and FIG. 5 is a curve diagram showing a comparison of the bactericidal powers of various disinfectants. In each figure, the same reference numerals indicate the same or equivalent parts, 1 is a cooling water pipe, 2 is a water storage tank, 4 is a water pump, 5 is a heat exchanger, 6 is an air conditioning cooling tower, 7 is a water sprinkling hole, and 8 is a Filled bed, 11 is a dryer, 12 is an ozone generator, 14 is a gas mixer, 17 is a storage tank, 18
is the supply pump.

Claims (1)

【特許請求の範囲】 1 循環冷却水により冷却される熱交換器を備え
た閉鎖ループ系冷却装置において、臭素イオンを
含む循環冷却水にオゾンを注入する装置を備えた
ことを特徴とする閉鎖ループ系冷却装置。 2 循環冷却水に臭素イオンを注入する装置を備
えたことを特徴とする特許請求の範囲第1項記載
の閉鎖ループ系冷却装置。 3 オゾンを連続的または間欠的に注入すること
を特徴とする特許請求の範囲第1項または第2項
記載の閉鎖ループ系冷却装置。
[Scope of Claims] 1. A closed loop cooling device equipped with a heat exchanger cooled by circulating cooling water, characterized in that it is equipped with a device for injecting ozone into the circulating cooling water containing bromide ions. System cooling device. 2. The closed loop cooling device according to claim 1, further comprising a device for injecting bromine ions into the circulating cooling water. 3. The closed loop cooling device according to claim 1 or 2, characterized in that ozone is injected continuously or intermittently.
JP4858682A 1982-03-26 1982-03-26 Closed loop cooler Granted JPS58166980A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4858682A JPS58166980A (en) 1982-03-26 1982-03-26 Closed loop cooler

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4858682A JPS58166980A (en) 1982-03-26 1982-03-26 Closed loop cooler

Publications (2)

Publication Number Publication Date
JPS58166980A JPS58166980A (en) 1983-10-03
JPS6316994B2 true JPS6316994B2 (en) 1988-04-12

Family

ID=12807499

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4858682A Granted JPS58166980A (en) 1982-03-26 1982-03-26 Closed loop cooler

Country Status (1)

Country Link
JP (1) JPS58166980A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3734341B2 (en) * 1997-07-24 2006-01-11 三菱電機株式会社 Cooling water system biological obstacle prevention method and apparatus

Also Published As

Publication number Publication date
JPS58166980A (en) 1983-10-03

Similar Documents

Publication Publication Date Title
US5514345A (en) Method and apparatus for disinfecting an enclosed space
JP4749544B2 (en) Stable oxidative bromine formulation, process for its preparation and process used for controlling microbial fouling
US7758807B2 (en) Microbial control with reduced chlorine
US20080003171A1 (en) Microbial Control Using Hypochlorous Acid Vapor
US20190151486A1 (en) Apparatus And Process For Focused Gas Phase Application Of Biocide
JPS592559B2 (en) Microorganism removal device
JPS6316994B2 (en)
JP3734341B2 (en) Cooling water system biological obstacle prevention method and apparatus
JP4869122B2 (en) Cooling method and cooling device
US20050079123A1 (en) Method and apparatus for microbial decontamination
JP2000157985A (en) Ozone sterilizer of cooling tower
KR101944407B1 (en) Apparatus for treating laundry including flow path inside
JP2004130006A (en) Ozone sterilization method, and its apparatus
JPS6211918B2 (en)
JPS6026081Y2 (en) Biofouling control device
JPH02144191A (en) Method for purifying water circulating in cooling tower
KR20090027907A (en) Method of sterilizing a room and room sterilizing equipment
JP3392754B2 (en) Ozone sterilizer for cooling tower
US20230002227A1 (en) Systems, apparatus and methods to accelerate generation of chlorine dioxide gas
JP4161071B2 (en) Water-based disinfectant manufacturing equipment
JP5238970B2 (en) Ozone nutrient solution generator
WO2023127825A1 (en) Sterilization method and sterilization device
CN209952808U (en) Portable device for producing high-purity gas
JPH04156994A (en) Method for injecting batericidal and algaecidal agent to cooling water
JPH07110198A (en) Cooling tower for air conditioner