JPS63168501A - Displacement meter for magnetic bearing - Google Patents

Displacement meter for magnetic bearing

Info

Publication number
JPS63168501A
JPS63168501A JP31170286A JP31170286A JPS63168501A JP S63168501 A JPS63168501 A JP S63168501A JP 31170286 A JP31170286 A JP 31170286A JP 31170286 A JP31170286 A JP 31170286A JP S63168501 A JPS63168501 A JP S63168501A
Authority
JP
Japan
Prior art keywords
displacement
magnetic pole
rotating shaft
magnetic
rotary shaft
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP31170286A
Other languages
Japanese (ja)
Inventor
Masushirou Hisatani
益士郎 久谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Engineering and Shipbuilding Co Ltd
Original Assignee
Mitsui Engineering and Shipbuilding Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Engineering and Shipbuilding Co Ltd filed Critical Mitsui Engineering and Shipbuilding Co Ltd
Priority to JP31170286A priority Critical patent/JPS63168501A/en
Publication of JPS63168501A publication Critical patent/JPS63168501A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C32/00Bearings not otherwise provided for
    • F16C32/04Bearings not otherwise provided for using magnetic or electric supporting means
    • F16C32/0406Magnetic bearings
    • F16C32/044Active magnetic bearings
    • F16C32/0444Details of devices to control the actuation of the electromagnets
    • F16C32/0446Determination of the actual position of the moving member, e.g. details of sensors
    • F16C32/0448Determination of the actual position of the moving member, e.g. details of sensors by using the electromagnet itself as sensor, e.g. sensorless magnetic bearings

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
  • Measurement Of Resistance Or Impedance (AREA)
  • Magnetic Bearings And Hydrostatic Bearings (AREA)

Abstract

PURPOSE:To correct the axial center of a rotary shaft with high accuracy, by dividing a fixed magnetic pole into an even number of magnetic pole pieces to separate them into groups and detecting the change in capacity generated at lach group through the rotary shaft. CONSTITUTION:Magnetic pole pieces U1-U4, L1-L4 are arranged to the peripheral surface of a rotary shaft 2q at predetermined intervals to form electrostatic capacities C1-C4 between the magnetic poles opposed to each other and, when the center of the rotary shaft 21 composed of a dielectric body moves in an x-direction, displacement is detected on the basis of the change quantities of the capacities C1, C2. A bridge circuit is formed of two reference capacities C0 and the capacities C1, C2 and equilibrium is lost by the displacement of the axial center of the rotary shaft 21 to obtain the displacement signal 25a in the x-direction. In the same way, the displacement signal 29a in a y-direction is obtained. A control signal is outputted from a control circuit 31 by discriminating the displacement quantities in both directions to control coils K(K1-K4) and magnetic attraction force is changed to correct the displacement of the axial center of the rotary shaft 21.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は磁力により非接触状態で支持された回転軸の軸
中心の変位を検出する磁気軸受の変位計に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a displacement meter for a magnetic bearing that detects displacement of the center of a rotating shaft supported in a non-contact state by magnetic force.

〔従来技術〕[Prior art]

第4図は従来の磁気軸受装置を示したブロック構成図で
ある。固定磁極1に捲回したコイル10の磁気吸引力に
より回転軸2を非接触状態で支持している。回転軸2の
軸中心が変位すると、検出コイル3を流れる電流が変化
し、この電流の変化に基づいて回転軸2の軸中心の変位
を変位検出部4で検出する。具体的に説明すると、高周
波発振回路6からブリッジ回路5を介して検出コイル3
に高周波電流を供給しており、回転軸2の軸中心の変位
が零であれば、ブリッジ回路5の各インピーダンスがZ
、・ Zz”Z:+・z4のバランス状態となる。ここ
で回転軸2の軸中心が変位すると、上記バランスがくず
れ各インピーダンスは、Z+−Zz#Zy・Z4となり
、このインピーダンスの変化を信号検出部7で検出し、
リニアライザ8で線形化した信号に変換して出力する。
FIG. 4 is a block diagram showing a conventional magnetic bearing device. The rotating shaft 2 is supported in a non-contact manner by the magnetic attraction force of the coil 10 wound around the fixed magnetic pole 1. When the axial center of the rotating shaft 2 is displaced, the current flowing through the detection coil 3 changes, and the displacement of the axial center of the rotating shaft 2 is detected by the displacement detecting section 4 based on the change in this current. Specifically, the detection coil 3 is connected to the high frequency oscillation circuit 6 via the bridge circuit 5.
If a high-frequency current is supplied to the rotary shaft 2 and the displacement at the center of the rotating shaft 2 is zero, each impedance of the bridge circuit 5 is Z.
,・Zz"Z:+・z4 becomes a balanced state. If the axis center of the rotating shaft 2 is displaced here, the above balance is broken and each impedance becomes Z+-Zz#Zy・Z4, and this change in impedance is used as a signal. Detected by the detection unit 7,
A linearizer 8 converts the signal into a linearized signal and outputs the signal.

次に回転軸2の軸中心の変位を修正する場合について説
明する。制御回路11がリニアライザ8の出力に基づい
て回転軸2の軸中心の変位方向と変位量を判別すると、
該判別結果に応じて制御信号を出力する。パワーアンプ
12には、制御回路11の制御信号を電力増幅してコイ
ル10に出力し、コイル10の磁気吸引力を変化させる
ことにより回転軸2の軸中心の変位を修正する。
Next, a case will be described in which the displacement of the axis center of the rotating shaft 2 is corrected. When the control circuit 11 determines the displacement direction and displacement amount of the axis center of the rotating shaft 2 based on the output of the linearizer 8,
A control signal is output according to the determination result. The power amplifier 12 amplifies the power of the control signal from the control circuit 11 and outputs the amplified signal to the coil 10, and changes the magnetic attraction force of the coil 10 to correct the displacement of the axis center of the rotating shaft 2.

しかしながら、第4図に示した従来装置では、検出コイ
ル3が別個独立して設けられているため、この検出コイ
ル3を設置するためのスペースを必要とする。
However, in the conventional device shown in FIG. 4, since the detection coil 3 is provided separately and independently, a space is required for installing the detection coil 3.

また、回転軸2の軸中心の変位を検出する位置と、コイ
ル10の電流変化により回転軸2の軸中心の変位を修正
する位置とが異なることから、特に回転軸2が弾性ロー
タとして曲げ振動を行う場合には修正精度が問題となり
、改良の余地が残されていた。
In addition, since the position where the displacement of the axis center of the rotating shaft 2 is detected is different from the position where the displacement of the axis center of the rotating shaft 2 is corrected by the current change of the coil 10, the rotating axis 2 is particularly susceptible to bending vibration as an elastic rotor. When performing this, the accuracy of correction became an issue, and there was still room for improvement.

〔発明の目的〕[Purpose of the invention]

本発明は、上記問題点に鑑みてなされたもので、回転軸
の軸中心の修正を高精度で行なうことができ、且つ装置
全体の小型化を図ることのできる磁気軸受の変位計を提
供することを目的とする。
The present invention has been made in view of the above-mentioned problems, and provides a displacement meter for a magnetic bearing that can correct the axis center of a rotating shaft with high precision and can reduce the size of the entire device. The purpose is to

〔発明の構成〕[Structure of the invention]

以上の目的を達成するための本発明の変位計の構成は、
回転軸の周囲に磁極面を前記回転軸に対面させて固定磁
極を配設し、該固定磁極に捲回したコイルにより発生す
る磁力で前記回転軸を非接触状態で支持するとともに、
前記コイルの励磁電流を制御することにより前記回転軸
の軸中心の変位を修正する磁気軸受において、前記固定
磁極を偶数の磁極片に分割し、該磁極片を組分けし、前
記回転軸を介して各組毎に磁極片に生ずる容量の変化を
検出する容量変化検出手段と、該容量変化検出手段の出
力に基づいて前記回転軸の軸中心の変位に相応する変位
信号を出力する変位信号出力手段とを設けたことを特徴
とする。
The configuration of the displacement meter of the present invention to achieve the above object is as follows:
A fixed magnetic pole is disposed around the rotating shaft with a magnetic pole surface facing the rotating shaft, and the rotating shaft is supported in a non-contact state by magnetic force generated by a coil wound around the fixed magnetic pole.
In a magnetic bearing that corrects displacement of the axial center of the rotating shaft by controlling an excitation current of the coil, the fixed magnetic pole is divided into an even number of magnetic pole pieces, the magnetic pole pieces are divided into groups, and the magnetic bearings are connected to each other via the rotating shaft. capacitance change detection means for detecting a change in capacitance occurring in each set of magnetic pole pieces; and a displacement signal output for outputting a displacement signal corresponding to the displacement of the axis center of the rotating shaft based on the output of the capacitance change detection means. It is characterized by providing means.

〔実施例〕〔Example〕

次に本発明の実施例を図面を参照して詳細に説明する。 Next, embodiments of the present invention will be described in detail with reference to the drawings.

第1図は本発明の要部の一実施例を示した要部構成図、
第2図は第1図実施例が適用される磁気軸受装置の全体
構成図である。
FIG. 1 is a main part configuration diagram showing an embodiment of the main part of the present invention,
FIG. 2 is an overall configuration diagram of a magnetic bearing device to which the embodiment of FIG. 1 is applied.

第1図に示すように本実施例に使用する磁気軸受装置は
、回転軸21の同心円上にそれぞれ対の8個の磁極片U
 I、U z、Us、 Us、  r、1. Lxおよ
びL3.L4を配設し、それぞれ対の磁極片にコイルに
++Kz+に3.Kaを捲回して磁気軸受用電磁石とし
ている。即ち、磁極片U、とU4にコイルに、を、磁極
片L3とL4にコイルに2を、磁極片Ul とU2にコ
イルに3を、磁極片L1とL2にコイルに4をそれぞれ
捲回して、各コイルK + 、K z 、K 3. K
 aに電流を通じて発生する磁力の作用により回転軸2
1を非接触状態で支持している。
As shown in FIG. 1, the magnetic bearing device used in this embodiment has eight magnetic pole pieces U in pairs on the concentric circle of the rotating shaft 21.
I, U z, Us, Us, r, 1. Lx and L3. L4 is arranged, and 3. Ka is wound to form an electromagnet for a magnetic bearing. That is, wind the coils around the pole pieces U and U4, wind the coils around 2 around the pole pieces L3 and L4, wind the coils around 3 around the pole pieces Ul and U2, and wind the coils around 4 around the pole pieces L1 and L2, respectively. , each coil K + , K z , K 3. K
Rotating shaft 2 due to the action of magnetic force generated through electric current in a
1 is supported in a non-contact manner.

ここで、回転軸21の周面に所定の間隙を開けて円周状
に磁極面を配設した固定磁極を複数の磁極片U I、 
U z、U3.U4、 L+、 L、t、 L3. L
4に分割していることから、相対する磁極片間によって
静電容量が構成される。即ち第1図に点線で示す等価回
路のように磁極片U1とり、との間に容量CIが、磁極
片U2とL2との間に容量C2が、磁極片U、とり、と
の間に容量C3が、磁極片U4とL4との間に容量C4
がそれぞれ存在する。これら容量C+、C,,C,,c
4は、誘電体である回転軸21の軸中心の変位に応じて
変化する。従って、容量C8と02の変化量により矢印
で示すX方向の変位を、また容t c sと04の変化
量によりX方向の変位をそれぞれ検出することができる
Here, a fixed magnetic pole having a circumferential magnetic pole surface arranged with a predetermined gap on the circumferential surface of the rotating shaft 21 is connected to a plurality of magnetic pole pieces U I,
Uz, U3. U4, L+, L, t, L3. L
Since it is divided into four parts, a capacitance is formed between the opposing magnetic pole pieces. That is, as shown in the equivalent circuit shown by the dotted line in FIG. C3 has a capacitance C4 between pole pieces U4 and L4.
exists respectively. These capacitances C+, C,,C,,c
4 changes depending on the displacement of the axis center of the rotating shaft 21, which is a dielectric material. Therefore, the displacement in the X direction shown by the arrow can be detected by the amount of change in the capacitances C8 and 02, and the displacement in the X direction can be detected by the amount of change in the capacitances t c s and 04, respectively.

次にX方向の変位の検出について説明する。Next, detection of displacement in the X direction will be explained.

第2図において、22は容量変化検出手段であり、基準
の容量C0を有する2個のコンデンサと前記磁極片間容
量C,,C,とでブリッジ回路を形成している。この容
量変化検出手段22に対して交流電源23から電源が供
給されており、回転軸21の軸中心の変位が零であれば
各容量はC1−Go =Cz・C0となりブリッジ回路
のバランスが維持される。
In FIG. 2, 22 is a capacitance change detection means, which forms a bridge circuit with two capacitors having a reference capacitance C0 and the capacitances C, , C, between the pole pieces. Power is supplied to this capacitance change detection means 22 from an AC power supply 23, and if the displacement of the axis center of the rotating shaft 21 is zero, each capacitance becomes C1-Go = Cz・C0, and the balance of the bridge circuit is maintained. be done.

ここで、回転軸21の軸中心がX方向に変位したとする
と、磁極片間容量C3と02が相互に変化して上記バラ
ンスがくずれ、 C,−C@〜Ct”Coとなり、この
容量の変化に応じた交流電流を整流回路24に出力する
。整流回路24は、上記交流電流を整流する。フィルタ
回路25は、整流回路24の整流出力を平均化処理して
X方向の変位信号25aを出力する。
Here, if the axial center of the rotating shaft 21 is displaced in the X direction, the capacitances C3 and 02 between the pole pieces change each other, the above balance is disrupted, and C, -C@~Ct"Co, and this capacitance becomes An alternating current according to the change is output to the rectifier circuit 24.The rectifier circuit 24 rectifies the alternating current.The filter circuit 25 averages the rectified output of the rectifier circuit 24 to generate a displacement signal 25a in the X direction. Output.

次にX方向の変位の検出について説明する。Next, detection of displacement in the X direction will be explained.

前述したと同様に容量変化検出手段26は、基準の容量
C0を有する2個のコンデンサと前記磁極片間容量C,
,C,とでブリッジ回路を形成している。この容量変化
検出手段26は、交流電源27から電源供給を受けてお
り、回転軸21の軸中心の変位が零であれば各容量は、
C3・Co ”’ C−・C0となりブリッジ回路のバ
ランスが維持される。
As described above, the capacitance change detection means 26 detects two capacitors having a reference capacitance C0 and the capacitance C between the pole pieces.
, C, form a bridge circuit. This capacitance change detection means 26 receives power supply from an AC power supply 27, and if the displacement of the axis center of the rotating shaft 21 is zero, each capacitance is
C3.Co ''' C-.C0, and the balance of the bridge circuit is maintained.

ここで、回転軸21の軸中心がX方向に変位したとする
と、磁極片間容量C3と04が相互に変化して上記バラ
ンスがくずれ、C1・C0#C4・C0となり、この容
量の変化に応じた交流電流を整流回路28に出力する。
Here, if the axial center of the rotating shaft 21 is displaced in the X direction, the capacitances C3 and 04 between the magnetic pole pieces change mutually and the above balance is disrupted, resulting in C1・C0#C4・C0, and due to this change in capacitance A corresponding alternating current is output to the rectifier circuit 28.

整流回路28は、ダイオード等の整流素子を内蔵してお
り、上記ブリッジ回路からの交流電流を整流する。フィ
ルタ回路29は、整流回路28の整流出力を平均化処理
してX方向の変位信号29aを出力する。
The rectifier circuit 28 has a built-in rectifier element such as a diode, and rectifies the alternating current from the bridge circuit. The filter circuit 29 averages the rectified output of the rectifier circuit 28 and outputs an X-direction displacement signal 29a.

次に回転軸21の変位を修正する場合について説明する
。31は制御回路であり、X方向の変位信号25a、!
:yの変位信号29aを入力すると、各方向における変
位量を判別し、この判別結果に基づいて制御信号を出力
する。電力増幅回路32は、制御回路31の制御信号を
電力増幅して制御コイルKに出力する。即ち、第1図に
示すようにX方向の修正である場合には、制御コイルK
1.に、に、またX方向の修正である場合には制御コイ
ルKs、に4に前記電力増幅した制in (を号を送出
して各コイルに、、に、、に3゜K4の磁気吸引力を変
化させることにより回転軸21の軸中心の変位を修正す
る。
Next, a case in which the displacement of the rotating shaft 21 is corrected will be explained. 31 is a control circuit, which outputs displacement signals 25a, ! in the X direction.
When the :y displacement signal 29a is input, the amount of displacement in each direction is determined, and a control signal is output based on the determination result. The power amplification circuit 32 amplifies the power of the control signal from the control circuit 31 and outputs it to the control coil K. That is, in the case of correction in the X direction as shown in FIG.
1. , , , and in the case of correction in the X direction, the power amplified control signal is sent to the control coil Ks, and the magnetic attraction force of 3°K4 is applied to each coil. By changing , the displacement of the axis center of the rotating shaft 21 is corrected.

第3図は本発明の要部の他の実施例を示した要部構成図
である。
FIG. 3 is a block diagram showing another embodiment of the main part of the present invention.

第3図では、複数の磁極片L +、 L !+ L 3
. L 4及びU +、 U z、 U 3. U a
の内、互いに隣り合う磁極片間の容量の変化を検出する
ようにしたことを特徴とする。即ち、X方向の変位検出
に対しては、磁極片U3〜U4間の容量C1と磁極片L
3〜L4間の容1czの各容量変化を検出するとともに
、X方向の変位検出に対しては、磁極片U I−U を
間の容量C1と磁極片Ll”Ll間の容tcnの各容量
変化を検出する。この第3図に示す要部構成は、第2図
の全体構成に組み込まれ、前述と同様に磁極片間の各容
量CI。
In FIG. 3, a plurality of pole pieces L +, L ! + L 3
.. L 4 and U +, U z, U 3. U a
Among these, a feature is that a change in capacitance between adjacent magnetic pole pieces is detected. That is, for displacement detection in the X direction, the capacitance C1 between the magnetic pole pieces U3 and U4 and the magnetic pole piece L
In addition to detecting each capacitance change of 1cz between 3 and L4, for displacement detection in the X direction, each capacitance of tcn between the magnetic pole piece U The main structure shown in FIG. 3 is incorporated into the overall structure shown in FIG. 2, and each capacitance CI between the magnetic pole pieces is detected as described above.

Cz、 C3,Caの変化を検出し、該検出結果に基づ
いて回転軸21の軸中心の変位を修正することができる
。なお、前記第1図3図のコイルは、第4図のように巻
き着けることもできる。
Changes in Cz, C3, and Ca can be detected, and the displacement of the axis center of the rotating shaft 21 can be corrected based on the detection results. Incidentally, the coil shown in FIG. 1 and FIG. 3 can also be wound as shown in FIG. 4.

本発明の変位計は、第5図によっても実施することがで
きる0図に示すように周方向に4分割した固定磁極を更
に回転軸の方向に2分割し、それぞれにコイルを捲回し
て磁極片u1. Ut、 U3゜U4.Ll、LZ、L
3.Laとすると、第3図と同様に磁極片間の各容量C
+、Cz、C3,Caの変化を検出して回転軸21の軸
中心の変位を修正することができる。又、固定磁極片を
周方向だけの4分割として磁極片U +、 U z、 
L l+ L zとし、第6図に示すように各磁極片間
の容量CI+ Cz、 C3゜C4を測定することもで
きる。このときは、前記各容量を用いてプリフジ回路を
作り、各端子に符号が異なるか、又は位相が180°ず
れた2つの交流電源を接続し、4つの端子に生じる電圧
e1.ez、e3.e4を求め、el−C3をX方向の
検出値、et−C4をX方向の検出値として制御信号に
用いることによりどうらうの制御を行うことができる。
The displacement meter of the present invention can also be implemented according to FIG. 5. As shown in FIG. Piece u1. Ut, U3゜U4. Ll, LZ, L
3. Assuming La, each capacitance C between the magnetic pole pieces is as shown in Fig. 3.
By detecting changes in +, Cz, C3, and Ca, the displacement of the axis center of the rotating shaft 21 can be corrected. In addition, the fixed magnetic pole piece is divided into four parts only in the circumferential direction, and the magnetic pole piece U +, U z,
It is also possible to measure the capacitance CI+ Cz, C3°C4 between each magnetic pole piece as shown in FIG. In this case, a pre-Fuji circuit is created using each of the capacitances described above, two AC power supplies with different signs or 180 degrees out of phase are connected to each terminal, and the voltage e1. ez, e3. By determining e4 and using el-C3 as the detected value in the X direction and et-C4 as the detected value in the X direction as a control signal, it is possible to perform control.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明によれば、回転軸の周囲に配
設した磁気軸受用の偶数の磁極を配設し、これを2ケづ
つ組分けして、各組毎に回転軸を介して生ずる静電容量
が、軸の位置によって変化する量を検出する容量変化検
出手段と、該容量変化検出手段の出力に基づいて前記回
転軸の軸中心の変位に相応する変位信号を出力する変位
信号出力手段とを設けたことで、固定磁極とセンサーと
しての変位検出部を一体化することができ、磁気軸受装
置の全体構成を小型化することができ、また、回転軸の
軸中心の変位を検出する位置と、変位を修正する位置と
を一敗させたことにより変位修正精度を向上させること
ができるという効果が得られる。
As explained above, according to the present invention, an even number of magnetic poles for magnetic bearings are arranged around the rotating shaft, and these are divided into groups of two, and each group is connected to the magnetic poles via the rotating shaft. capacitance change detection means for detecting the amount by which the generated capacitance changes depending on the position of the shaft; and a displacement signal for outputting a displacement signal corresponding to the displacement of the axial center of the rotating shaft based on the output of the capacitance change detection means. By providing an output means, it is possible to integrate the fixed magnetic pole and the displacement detecting section as a sensor, and the overall configuration of the magnetic bearing device can be downsized. By making the position to be detected and the position at which displacement is corrected one-and-done, it is possible to improve the accuracy of displacement correction.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の要部の一実施例を示した要部構成図、
第2図は第1図実施例が適用される磁気軸受装置の全体
構成図、第3図は本発明の要部の他の実施例を示した要
部構成図、第4図は第3図の変形例を示した要部構成図
、第5図及び第6図は別の実施例による要部構成図、第
7図は第6図の実施例の回路説明図、第8図は従来の磁
気軸受装置を示したブロック構成図である。 U+、Uz、U3.U*+L+、U2. U3.La・
・・磁極片、K1.Kg、に3.に4・・・制御コイル
、C,、C,、C,。 Ca、C(1・・・静電容量、21・・・回転軸、22
.26・・・容量変化検出手段、23.27・・・交流
電源、24.28・・・整流回路、25.29・・・フ
ィルタ回路、31・・・制御回路、32・・・電力増幅
回路。
FIG. 1 is a main part configuration diagram showing an embodiment of the main part of the present invention,
FIG. 2 is an overall configuration diagram of a magnetic bearing device to which the embodiment shown in FIG. 1 is applied, FIG. FIGS. 5 and 6 are main part configuration diagrams showing a modified example of , FIG. 5 and 6 are main part configuration diagrams according to another embodiment, FIG. 7 is a circuit diagram of the embodiment of FIG. FIG. 2 is a block configuration diagram showing a magnetic bearing device. U+, Uz, U3. U*+L+, U2. U3. La・
...Magnetic pole piece, K1. Kg, to 3. 4...control coil, C,,C,,C,. Ca, C (1... Capacitance, 21... Rotating shaft, 22
.. 26... Capacitance change detection means, 23.27... AC power supply, 24.28... Rectifier circuit, 25.29... Filter circuit, 31... Control circuit, 32... Power amplifier circuit .

Claims (1)

【特許請求の範囲】[Claims] 回転軸の周囲に磁極面を前記回転軸に対面させて固定磁
極を配設し、該固定磁極に捲回したコイルにより発生す
る磁力で前記回転軸を非接触状態で支持するとともに、
前記コイルの励磁電流を制御することにより前記回転軸
の軸中心の変位を修正する磁気軸受において、前記固定
磁極を偶数の磁極片に分割し、該磁極片を組分けし、前
記回転軸を介して各組毎に磁極片に生ずる容量の変化を
検出する容量変化検出手段と、該容量変化検出手段の出
力に基づいて前記回転軸の軸中心の変位に相応する変位
信号を出力する変位信号出力手段とを設けたことを特徴
とする磁気軸受の変位計。
A fixed magnetic pole is disposed around the rotating shaft with a magnetic pole surface facing the rotating shaft, and the rotating shaft is supported in a non-contact state by magnetic force generated by a coil wound around the fixed magnetic pole.
In a magnetic bearing that corrects displacement of the axial center of the rotating shaft by controlling an excitation current of the coil, the fixed magnetic pole is divided into an even number of magnetic pole pieces, the magnetic pole pieces are divided into groups, and the magnetic bearings are connected to each other via the rotating shaft. capacitance change detection means for detecting a change in capacitance occurring in each set of magnetic pole pieces; and a displacement signal output for outputting a displacement signal corresponding to the displacement of the axis center of the rotating shaft based on the output of the capacitance change detection means. A displacement meter for a magnetic bearing, characterized in that it is provided with means.
JP31170286A 1986-12-30 1986-12-30 Displacement meter for magnetic bearing Pending JPS63168501A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31170286A JPS63168501A (en) 1986-12-30 1986-12-30 Displacement meter for magnetic bearing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31170286A JPS63168501A (en) 1986-12-30 1986-12-30 Displacement meter for magnetic bearing

Publications (1)

Publication Number Publication Date
JPS63168501A true JPS63168501A (en) 1988-07-12

Family

ID=18020439

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31170286A Pending JPS63168501A (en) 1986-12-30 1986-12-30 Displacement meter for magnetic bearing

Country Status (1)

Country Link
JP (1) JPS63168501A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02297012A (en) * 1989-05-12 1990-12-07 Matsushita Electric Ind Co Ltd Rotating body position detecting device
WO2009054562A1 (en) * 2007-10-23 2009-04-30 Korea Institute Of Science And Technology Airfoil-magnetic hybrid bearing and a control system thereof
CN103225651A (en) * 2013-04-24 2013-07-31 中国科学院电工研究所 Superconducting magnetic levitation and static suspension mixing suspension supporting arrangement
CN110986749A (en) * 2019-12-17 2020-04-10 潘承燕 Adjustable cable meter rice device based on capacitance change

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02297012A (en) * 1989-05-12 1990-12-07 Matsushita Electric Ind Co Ltd Rotating body position detecting device
WO2009054562A1 (en) * 2007-10-23 2009-04-30 Korea Institute Of Science And Technology Airfoil-magnetic hybrid bearing and a control system thereof
US8772992B2 (en) 2007-10-23 2014-07-08 Korea Institute Of Science And Technology Airfoil-magnetic hybrid bearing and a control system thereof
CN103225651A (en) * 2013-04-24 2013-07-31 中国科学院电工研究所 Superconducting magnetic levitation and static suspension mixing suspension supporting arrangement
CN110986749A (en) * 2019-12-17 2020-04-10 潘承燕 Adjustable cable meter rice device based on capacitance change
CN110986749B (en) * 2019-12-17 2021-05-18 中策电缆集团有限公司 Adjustable cable meter rice device based on capacitance change

Similar Documents

Publication Publication Date Title
US4620752A (en) Magnetic bearing having triaxial position stabilization
US3823990A (en) Capacitive-inductive bridge type electrical suspension
JPH01187424A (en) Torque sensor
US6756779B2 (en) Inductive measuring transducer for determining the relative position of a body
CA1245322A (en) Radial displacement magnetic detector device for a rotor
JPH07506655A (en) magnetic bearing regulator
US6731107B2 (en) Star-connected sensor
US6020737A (en) Shaft position detectors with stray magnetic field compensation
US2991659A (en) Gyroscopes
CN105841598A (en) Magnetic bearing displacement measurement method based on integration of actuator and sensor
US5748005A (en) Radial displacement sensor for non-contact bearings
CN104280571B (en) Electromagnetic balance formula acceleration transducer
JP2019219049A (en) Magnetic bearing system and rotary machine
JPS63168501A (en) Displacement meter for magnetic bearing
US20180356254A1 (en) Sensor arrangement comprising an angle sensor and rolling bearing arrangement comprising sensor arrangement
US5304876A (en) Electromagnetic bearing
US3121839A (en) Capacitive pickoff for displacement signal generator
US4658658A (en) Coil system for inductive measurement of the velocity of movement of a magnetized body
EP2781887B1 (en) Variable inductance type position sensor system and method
EP0009347B1 (en) Gyroscopes
RU2457493C1 (en) Angular velocity sensor
US3222660A (en) Magnetic position encoder
JPS62129718A (en) Temperature compensated resolver type clinometer
JPH0231020A (en) Magnetic bearing device
JP2556383B2 (en) Magnetic resolver