JPS62129718A - Temperature compensated resolver type clinometer - Google Patents

Temperature compensated resolver type clinometer

Info

Publication number
JPS62129718A
JPS62129718A JP27029985A JP27029985A JPS62129718A JP S62129718 A JPS62129718 A JP S62129718A JP 27029985 A JP27029985 A JP 27029985A JP 27029985 A JP27029985 A JP 27029985A JP S62129718 A JPS62129718 A JP S62129718A
Authority
JP
Japan
Prior art keywords
resolver
phase
signal
secondary winding
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27029985A
Other languages
Japanese (ja)
Inventor
Seiji Katakura
片倉 聖二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toei Electric Co Ltd
Shibaura Machine Co Ltd
Original Assignee
Toshiba Machine Co Ltd
Toei Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Machine Co Ltd, Toei Electric Co Ltd filed Critical Toshiba Machine Co Ltd
Priority to JP27029985A priority Critical patent/JPS62129718A/en
Publication of JPS62129718A publication Critical patent/JPS62129718A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To improve absolute accuracy of rotating angle position detection at reduced temperature drift, by connecting in series electric resistances between the secondary winding of resolver and one side of a signal wire. CONSTITUTION:A detecting unit 118 is composed of filter, wave-forming circuit, etc. Further, in a signal processing unit 119, a signal V0' is received as a feedback signal corresponding to an operation condition of a rotation-available unit 112 and a controlling signal, etc. for the unit 112 is formed. In this case, a phase characteristic of output voltage does not depend on the secondary winding resistance, but on a compensating resistance RS. In the conventional method, in case when the resistance RS is not existing, a phase fluctuation by the resolver temperature was 3.0 deg. covering 0 deg.C-100 deg.C, however, this value was improved to 1.0 deg. in this case. Further, as it is assured that a phase drift is of approximately 0.8 deg. on the exciting winding side, the rate of improvement on the secondary winding side is from 2.2 deg. to 0.2 deg., resulting to a significant improvement of the phase characteristic.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明はレゾルバを使用した角度割り出し位置検出装置
に関し、特に、レゾルバの温度変化による出力信号の位
相変化を少なくするよう構成したレゾルバ式回転角度検
出装置に関する。
[Detailed Description of the Invention] [Technical Field of the Invention] The present invention relates to an angle indexing position detection device using a resolver, and particularly to a resolver-type rotation angle detection device configured to reduce phase changes in an output signal due to temperature changes in the resolver. Regarding equipment.

〔従来技術〕[Prior art]

従来のレゾルバを用いた回転角度検出装置は第1図に示
すように機械装置1)の可動部12に取付けられたレゾ
ルバ13と、前記レゾルバ13の2次巻線側の出力端に
接続された信号線14と、前記信号線14の他端側に接
続された制御装置15とからなる。
A conventional rotation angle detection device using a resolver, as shown in FIG. It consists of a signal line 14 and a control device 15 connected to the other end of the signal line 14.

第2図+alは2相励磁1相出力方弐のレゾルバ13の
信号形成状態を説明する図であり、同図で1次巻線13
A、13Bには夫々励磁信号E cos ωt、Es1
nωtが与えられ、2次巻線13CにはV H−Esi
i(ωL+θ)が誘起される。ここで、位を目角θは、
レゾルバ13のロータ軸AXが基準角位置から回転した
角度を表す。この場合、ロータ軸AXは前記回転可動部
に取り付けられており、従って、回転可動部の回転角位
置に対応するものである。
FIG. 2+al is a diagram for explaining the signal formation state of the resolver 13 of the two-phase excitation and one-phase output side, and in the same figure, the primary winding 13
Excitation signals E cos ωt and Es1 are applied to A and 13B, respectively.
nωt is given, and the secondary winding 13C is given VH-Esi
i(ωL+θ) is induced. Here, the angle of view θ is
It represents the angle by which the rotor axis AX of the resolver 13 rotates from the reference angular position. In this case, the rotor axis AX is attached to the rotary movable part, and thus corresponds to the rotational angular position of the rotary movable part.

第2図(blはレゾルバ13の出力等価回路であって、
参照符号りは2次巻線のインダクタンス、Rrは2次巻
綿の巻線抵抗、RLは負荷抵抗である。出力電圧■。は
次式で示される。
FIG. 2 (bl is the output equivalent circuit of the resolver 13,
The reference symbol is the inductance of the secondary winding, Rr is the winding resistance of the secondary cotton, and RL is the load resistance. Output voltage■. is expressed by the following equation.

また、位相特性は次式で示される。Further, the phase characteristic is expressed by the following equation.

従って、RL−e css、すなわち、無負荷とすれば
位イ目特性は平坦となり、人力■1 と出力V。
Therefore, if RL-e css is used, that is, no load, the A characteristic becomes flat, and the human power ■1 and the output V.

の位相差はOとなる。ここでωはレゾルバ13の励磁角
周波数を示すものとする。
The phase difference is O. Here, ω indicates the excitation angular frequency of the resolver 13.

〔従来技術の問題点〕[Problems with conventional technology]

第2図に示すような配置状態において、レゾルバ13を
無負荷状態で使用する場合は2次巻線に起因する出力信
号V0の温度ドリフトは問題とならないが、現実には第
1図に示すように、信号線14が介在しており、その分
布容量が負荷となり出力信号の位相に関する温度ドリフ
トを引き起こす。その原因としては2次巻線抵抗の温度
変化を挙げることが出来る。すなわち、レゾルバ13は
機械装置1)の特に回転可動部(通常はモータ軸に直結
)近傍に取り付けられているため、その可動状態に応し
て温度変化が大きいのである。なお、巻線抵抗の温度ド
リフトは一義的に銅線の温度係数から定められる。
In the arrangement shown in Fig. 2, if the resolver 13 is used in an unloaded state, the temperature drift of the output signal V0 due to the secondary winding will not be a problem, but in reality, as shown in Fig. 1. A signal line 14 is interposed therebetween, and its distributed capacitance acts as a load, causing a temperature drift in the phase of the output signal. The cause of this can be cited as a temperature change in the secondary winding resistance. That is, since the resolver 13 is attached particularly near a rotating movable part (usually directly connected to a motor shaft) of the mechanical device 1), the temperature changes greatly depending on its movable state. Note that the temperature drift of the winding resistance is uniquely determined from the temperature coefficient of the copper wire.

第2図FC+は第1図の信号線(ケーブル)14を考慮
した場合のレゾルバ出力等価回路であり、Lは2次巻線
のインダクタンス、R,は2次巻線抵抗、Cはケーブル
すなわち信号m14の分布容量である。出力電圧V0は
次式で示される。
Figure 2 FC+ is the resolver output equivalent circuit when considering the signal line (cable) 14 in Figure 1, L is the inductance of the secondary winding, R is the secondary winding resistance, and C is the cable or signal This is the distributed capacity of m14. The output voltage V0 is expressed by the following equation.

■ また、式(3)の位用特性は次式で示される。■ Further, the positional characteristic of equation (3) is expressed by the following equation.

弐(4)を参照すると明らかなように、信号線14の分
布容量がある限りレゾルバ出力信号を無負荷で受信した
としても、レゾルバ2次巻線抵抗の温度変化によって抵
抗値R,が変化すると、出力V0の位相が変化する。す
なわち、位相における温度ドリフトが生ずる。しかも、
通常のレイアウトにおいては信号線14の長さは数メー
トルから数十メートルにまで様々であり、分布容量Cの
値も種々に変わるという現実がある。
As is clear from reference 2 (4), even if the resolver output signal is received without load as long as the distributed capacitance of the signal line 14 exists, the resistance value R changes due to temperature changes in the resolver secondary winding resistance. , the phase of the output V0 changes. That is, a temperature drift in phase occurs. Moreover,
In a normal layout, the length of the signal line 14 varies from several meters to several tens of meters, and the value of the distributed capacitance C also varies.

〔発明の目的〕[Purpose of the invention]

本発明は、上述した信号線自体のもつ分布容量Cの存在
下において、2次巻線の温度変化により出力信号の位を
0特性が変化すること、特にレゾルバにおいては本来的
に位相角を検出する機能を利用するが故に、出力の位相
特性が回転可動部の回転量以外の要因により影響される
ことは好ましくないという点を解決しようとするもので
ある。すなわち、その目的とするところは、この位相に
関する温度ドリフトを低減せしめ、回転角位置検出の絶
対精度を向上させることにあり、それにより従来行われ
ていた温度ドリフト対策は負荷側(制御装置側)で行っ
ていたが、本発明では2次巻線側で行うことを特徴とす
るものである。
In the present invention, in the presence of the distributed capacitance C of the signal line itself, the zero characteristic of the output signal changes due to temperature changes in the secondary winding, and in particular, in a resolver, the phase angle is inherently detected. This is intended to solve the problem that it is undesirable for the phase characteristics of the output to be influenced by factors other than the amount of rotation of the rotary movable part because the function of the rotary movable part is utilized. In other words, the purpose is to reduce the temperature drift related to this phase and improve the absolute accuracy of rotational angle position detection, so that the temperature drift countermeasures that were conventionally taken are on the load side (control device side). However, the present invention is characterized in that it is performed on the secondary winding side.

〔発明の概要〕[Summary of the invention]

本発明は2相励磁、1相出力方式で機械装置内の回転可
動部に取り付けたレゾルバの2次巻線出力側の間近に直
列抵抗を接続し、同抵抗と直列に信号線を接続し、同信
号の他端側に制御装置を接続するようにしたレゾルバ弐
回転角検出装置を提供するものである。
The present invention employs a two-phase excitation, one-phase output method, in which a series resistor is connected close to the secondary winding output side of a resolver attached to a rotating movable part in a mechanical device, and a signal line is connected in series with the resistor. The present invention provides a resolver rotation angle detection device in which a control device is connected to the other end of the signal.

〔発明の実施例] 第3図は本発明の一実施例装置のレイアウトを示す図で
ある。同図で参照符号1)1.1)2.1)3は第1図
に示す機械装置1)、回転可動部12)レゾルバ13に
夫々対応しており、参照符号1)6はレゾルバ1)3の
2次巻線の出力端間近において信号線1)4と直列に接
続された温度補償用抵抗(R3)である。参照符号1)
5は制御装置を示し、その中には出力信号Vo’、すな
わち、パワーを取り出すための負荷抵抗1)7と、前記
信号Vo’を増幅する検出部1)8および前記検出部1
)8からの信号を処理する信号処理部1)9を含む。前
記検出部1)8はフィルタ、波形整形回路等からなって
いる。また、信号処理部1)9では回転可動部1)2の
動作状況に対応したフイードハ、り信号として信号Vo
’を受は取り、回転可動部1)2に対する制御用の信号
等を形成する。
[Embodiment of the Invention] FIG. 3 is a diagram showing the layout of an apparatus according to an embodiment of the present invention. In the figure, reference numerals 1) 1.1) 2.1) 3 correspond to the mechanical device 1) and rotary movable part 12) resolver 13 shown in FIG. 1, and reference numerals 1) and 6 correspond to the resolver 1). A temperature compensation resistor (R3) is connected in series with the signal line 1) 4 near the output end of the secondary winding No. 3. Reference number 1)
Reference numeral 5 denotes a control device, which includes a load resistor 1) 7 for extracting the output signal Vo', that is, power, a detecting section 1) 8 for amplifying the signal Vo', and the detecting section 1.
) 8; The detection section 1) 8 consists of a filter, a waveform shaping circuit, etc. In addition, the signal processing unit 1) 9 outputs a signal Vo as a feed signal corresponding to the operating status of the rotary movable unit 1) 2.
' is used to form control signals etc. for the rotary movable part 1)2.

第4図は第3図に示した温度補償抵抗を含むレゾルバ出
力の等価回路である。同図で出力Vo’の位相時性l 
V O’は次式で与えられる。
FIG. 4 is an equivalent circuit of the resolver output including the temperature compensation resistor shown in FIG. In the same figure, the phase temporality l of the output Vo'
V O' is given by the following equation.

ωC(Rr−1−R5) 式(5)において、R,<Rsとすると(例えば、25
゛CにおいてR,=170(Ω) 、R,−5(KΩ〕
)なる近似式が成り立つ。R,の温度係数は約4300
ppm/”Cであるから、抵抗R5の温度係数を±25
ppm/’cにすると、式(6)から明らかなように、
出力電圧の位相特性は2次Wg抵抗R,には依存せず補
償抵抗Rsによって定まる。
ωC(Rr-1-R5) In equation (5), if R,<Rs (for example, 25
゛At C, R, = 170 (Ω), R, -5 (KΩ)
) holds true. The temperature coefficient of R is approximately 4300
ppm/”C, so the temperature coefficient of resistor R5 is ±25
When expressed as ppm/'c, as is clear from equation (6),
The phase characteristic of the output voltage does not depend on the secondary Wg resistance R, but is determined by the compensation resistance Rs.

また、第4図の回路で共振点を鋭(シないためにその係
数をことすると となる。
Also, in order to avoid sharpening the resonance point in the circuit shown in FIG. 4, the coefficient is set to be smaller.

今、ζ−1とし、R,−170(Ω) 、L =50 
CmH)Cm0.01CμF〕とすると、R,=4.3
 CKΩ〕となる。 (ζ−1とすることは、共振点で
位相特性を急峻にしないためである。) 実際の例では、R5−5(KΩ) 、RL−1,5〔K
Ω〕で、励磁周波数ω/ 2 rc−5CKtlz)と
すると、信号線1)4が3m〜30mの範囲で出力電圧
Vo’は0.75(V)〜0.7CV〕が得られた。
Now, let ζ-1, R, -170 (Ω), L = 50
CmH)Cm0.01CμF], then R, = 4.3
CKΩ]. (The reason for setting ζ-1 is to prevent the phase characteristics from becoming steep at the resonance point.) In the actual example, R5-5 (KΩ), RL-1,5 [K
Ω] and the excitation frequency ω/2 rc-5CKtlz), the output voltage Vo' was 0.75 (V) to 0.7 CV] when the signal line 1)4 was in the range of 3 m to 30 m.

〔発明の効果〕〔Effect of the invention〕

従来の方式では、温度補償抵抗Rsがない場合は信号&
’A 3 mのときのレゾルバの温度による位相変化分
はO℃〜100°Cで3.0度あったが、本発明を適用
した例ではそれが1.0度に改善された。この場合、励
磁巻線側で0.8度の位相ドリフトのあることが確認さ
れているので、2次巻線側の政庁率は2.2度(3,0
度から0.8度を除外)から0.2度(1,0度から0
.8度を除外)となり、大幅な位相特性の改善が可能と
なる効果が得られた。
In the conventional method, if there is no temperature compensation resistor Rs, the signal &
The phase change due to resolver temperature at 'A 3 m was 3.0 degrees from 0°C to 100°C, but this was improved to 1.0 degrees in the example to which the present invention was applied. In this case, it has been confirmed that there is a phase drift of 0.8 degrees on the excitation winding side, so the government ratio on the secondary winding side is 2.2 degrees (3,0
(excluding 0.8 degrees from degrees) to 0.2 degrees (1,0 degrees to 0
.. 8 degrees), and the effect of making it possible to significantly improve the phase characteristics was obtained.

なお、通常、レゾルバの励6n周波数は数KHz(矩形
波の場合も含む)であり、また、信号線の分布容量Cと
レゾルバのインダスタンスLによって共振回路が形成さ
れる。特に、励磁周波数と共振回路の共振周波数を一敗
させて基本波を取り出す方法が用いられるが、その際、
共振点を鋭くすると、温度に対する位相特性の変化も大
きくなるため、補償用抵抗値の選定においては共振点を
ずらすようにするのが好ましい。
Note that the excitation frequency of the resolver is usually several KHz (including the case of a rectangular wave), and a resonant circuit is formed by the distributed capacitance C of the signal line and the inductance L of the resolver. In particular, a method is used to extract the fundamental wave by making the excitation frequency and the resonant frequency of the resonant circuit completely different, but in this case,
If the resonance point is made sharper, the change in phase characteristics with respect to temperature will also increase, so it is preferable to shift the resonance point when selecting the compensation resistance value.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来のレゾルバ式角度検出装置のレイアウトを
説明する図、 第2図ta+は2相励磁、1相出力方弐のレゾルバ構成
図、 第2図tb+は従来方式のレゾルバ出力等価回路図、 第2図(C)は従来の方式における信号線の分布容量を
考慮したレゾルバ出力等価回路図、第3図は本発明の実
施例におけるレイアウトを説明する図、 第4図は本発明におけるレゾルバ出力等価回路図である
。 1)1・・・機械装置     1)2・・・回転可動
部1)4・・・信号線      1)5・・・制御装
置1)6・・・温度補償抵抗 特許出願人  東芝機械株式会社 同 上   東栄電機株式会社 「lG1 1′) F I G、 2a L    Rr FIG、2c L    Rr
Figure 1 is a diagram explaining the layout of a conventional resolver type angle detection device. Figure 2 ta+ is a configuration diagram of a resolver with two-phase excitation and one-phase output. Figure 2 tb+ is an equivalent circuit diagram of a conventional resolver output. , FIG. 2(C) is a resolver output equivalent circuit diagram in consideration of the distributed capacitance of the signal line in the conventional system, FIG. 3 is a diagram explaining the layout in the embodiment of the present invention, and FIG. It is an output equivalent circuit diagram. 1) 1... Mechanical device 1) 2... Rotating movable part 1) 4... Signal line 1) 5... Control device 1) 6... Temperature compensation resistance patent applicant Toshiba Machine Co., Ltd. Top Toei Electric Co., Ltd. "lG1 1') F I G, 2a L Rr FIG, 2c L Rr

Claims (2)

【特許請求の範囲】[Claims] (1)機械装置側に取り付けられ、前記装置内の回転可
動部の回転角位置を2相励磁、1相出力方式で検出する
レゾルバと、前記レゾルバの2次巻線に一端側を接続さ
れた信号線および前記信号線の他端側に接続され前記検
出された1相出力信号から前記可動部の回転角位置に対
応する電気信号を形成する制御装置とからなるレゾルバ
式角度検出装置において、前記レゾルバの2次巻線と前
記信号線の一端側との間に電気抵抗を直列に接続せしめ
、前記レゾルバの温度変化に起因し且つ前記信号線の分
布容量の影響により生ずる制御装置側での検出信号の位
相変化を少なくするように構成することを特徴とする温
度補償付レゾルバ式角度検出装置。
(1) A resolver that is attached to a mechanical device and detects the rotational angular position of a rotating movable part in the device using a two-phase excitation, one-phase output method, and one end of which is connected to the secondary winding of the resolver. In the resolver type angle detection device comprising a signal line and a control device connected to the other end side of the signal line and forming an electric signal corresponding to the rotational angular position of the movable part from the detected one-phase output signal, An electric resistance is connected in series between the secondary winding of the resolver and one end of the signal line, and detection on the control device side is caused by the temperature change of the resolver and due to the influence of the distributed capacitance of the signal line. A temperature-compensated resolver type angle detection device characterized by being configured to reduce signal phase changes.
(2)特許請求の範囲第1項記載の装置において、温度
補償抵抗として精密抵抗を用いた温度補償付レゾルバ式
角度検出装置。
(2) A temperature-compensated resolver-type angle detection device using a precision resistor as the temperature-compensating resistor in the device according to claim 1.
JP27029985A 1985-11-29 1985-11-29 Temperature compensated resolver type clinometer Pending JPS62129718A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27029985A JPS62129718A (en) 1985-11-29 1985-11-29 Temperature compensated resolver type clinometer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27029985A JPS62129718A (en) 1985-11-29 1985-11-29 Temperature compensated resolver type clinometer

Publications (1)

Publication Number Publication Date
JPS62129718A true JPS62129718A (en) 1987-06-12

Family

ID=17484330

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27029985A Pending JPS62129718A (en) 1985-11-29 1985-11-29 Temperature compensated resolver type clinometer

Country Status (1)

Country Link
JP (1) JPS62129718A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0277622U (en) * 1988-12-01 1990-06-14
US6546639B2 (en) * 2000-12-10 2003-04-15 Federico Singer Inclination measurement apparatus
US6722049B2 (en) 2001-07-30 2004-04-20 Yuval Singer Inclination measurement apparatus
JP4911271B1 (en) * 2010-12-24 2012-04-04 トヨタ自動車株式会社 Torque detection device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5149056B1 (en) * 1970-08-24 1976-12-24

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5149056B1 (en) * 1970-08-24 1976-12-24

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0277622U (en) * 1988-12-01 1990-06-14
US6546639B2 (en) * 2000-12-10 2003-04-15 Federico Singer Inclination measurement apparatus
US6722049B2 (en) 2001-07-30 2004-04-20 Yuval Singer Inclination measurement apparatus
JP4911271B1 (en) * 2010-12-24 2012-04-04 トヨタ自動車株式会社 Torque detection device
WO2012086045A1 (en) * 2010-12-24 2012-06-28 トヨタ自動車株式会社 Torque detection device

Similar Documents

Publication Publication Date Title
US5767670A (en) Method and apparatus for providing improved temperature compensated output for variable differential transformer system
US4599560A (en) AC excited transducer having stabilized phase sensitive demodulator circuit
JP6438580B2 (en) Position sensor assembly
US5522269A (en) Apparatus and method for transducing torque applied to a magnetostrictive shaft while minimizing temperature induced variations
EP0768515B1 (en) Variable differential transformer apparatus and method
JPS62129718A (en) Temperature compensated resolver type clinometer
EP2674725A2 (en) Rotation Angle Detecting Device
JP2541169B2 (en) Resolver detection error correction method
US6320524B1 (en) R/D converter
JPH08205502A (en) Reluctance resolver
US2848711A (en) Means for providing linear indications of shaft rotations greater than ninety degrees
CA1196382A (en) Current sensing circuit for motor controls
JP3161133B2 (en) Force detection device
JP2776693B2 (en) Temperature compensation device for torque measuring device
JPH0622166Y2 (en) Resolver type position detector
JPH11160099A (en) Rotational position detector
JPH04204319A (en) Output signal processing device for detection coil
JP2556383B2 (en) Magnetic resolver
US20210165013A1 (en) Adaptive filter for motor speed measurement system
US3222660A (en) Magnetic position encoder
EP0189361B1 (en) Differential torquer
US10962387B2 (en) Method for measuring a displacement
EP0010303A1 (en) Signal conditioner
JPH045337B2 (en)
JP4975082B2 (en) Angle detector