JPS6316841A - Control method for molten surface fluctuation in continuous casting - Google Patents

Control method for molten surface fluctuation in continuous casting

Info

Publication number
JPS6316841A
JPS6316841A JP16229786A JP16229786A JPS6316841A JP S6316841 A JPS6316841 A JP S6316841A JP 16229786 A JP16229786 A JP 16229786A JP 16229786 A JP16229786 A JP 16229786A JP S6316841 A JPS6316841 A JP S6316841A
Authority
JP
Japan
Prior art keywords
molten metal
mold
fluctuation
flow
collision
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP16229786A
Other languages
Japanese (ja)
Other versions
JP2555872B2 (en
Inventor
Toshio Masaoka
政岡 俊雄
Yoichi Nimura
洋一 丹村
Takashi Mori
孝志 森
Kazuo Okimoto
一生 沖本
Toru Kitagawa
北川 融
Toshio Tejima
手嶋 俊雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP61162297A priority Critical patent/JP2555872B2/en
Publication of JPS6316841A publication Critical patent/JPS6316841A/en
Application granted granted Critical
Publication of JP2555872B2 publication Critical patent/JP2555872B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To optimize the fluctuation of molten surface and to obtain high quality of a cast slab by correcting a fluctuation index operated from flowing data of molten metal into a mold from a submerged nozzle by the fluctuation of molten surface caused by change of the nozzle and adjusting as giving an electromagnetic force in the prescribed range. CONSTITUTION:The fluctuation index R is operated 12 by the equation, which uses Q for a discharging flow quantity of molten metal 5 flowed in the mold 2 from the submerged nozzle 1, V for a colliding velocity against the inner wall of the mold 2, theta for a colliding angle, D for a depth of colliding position from the molten surface 3 and delta for the molten metal density. Further, the fluctuation of molten surface caused by a change with the passage of time of the nozzle 1 with time is detected by a vortex range finder 20, 21, to correct the operation 12 by a changing device. The molten surface is so adjusted 11 by the electromagnetic giving means 10 that the compensated fluctuation index R exists within the range of the prescribed values 1-10. The molten surface in the mold 2 is always fluctuated under the optimum condition in spite of the change of nozzle 1, to obtain the cast slab having high quality.

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は、鋼の連続鋳造等において、鋳型内[従来の
技術1 鋼の連続鋳造においては、タンディツシュ内の溶鋼が鋳
型内の溶鋼に浸漬された浸漬ノズルを介して鋳型内に注
入される。浸漬ノズルの吐出口はノズル本体の軸方向に
対して傾斜しており、この吐出口から溶鋼は吐出される
。一方、鋳型内湯面上には、鋳型内溶鋼を保温するパウ
ダが浮遊しており、このパウダは溶融すると鋳型と凝固
殻との間に介在して両者間をm*する作用も有する。
[Detailed Description of the Invention] [Field of Industrial Application] This invention provides a method for continuously casting steel, etc., in which the molten steel in the tundish is immersed in the molten steel in the mold. It is injected into the mold through a submerged nozzle. The discharge port of the immersion nozzle is inclined with respect to the axial direction of the nozzle body, and molten steel is discharged from this discharge port. On the other hand, powder that keeps the molten steel in the mold warm is floating on the surface of the molten metal in the mold, and when this powder melts, it is interposed between the mold and the solidified shell and has the effect of creating m* between the two.

[発明が解決しようとする問題点] しかしながら、このタンディツシュからの溶鋼流により
、鋳型内湯面が変動するいわゆるwinれ現象が激しく
なると、湯面上のパウダが鋳型的溶鋼中に混入して鋳型
内の凝固界面に捕捉され、鋳片に介在物欠陥を発生させ
る。一方、鋳型内湯面が静か過ぎても、例えば、鋳型と
鋳片との間の溶融スラグによるl1llW4が円滑にな
されない等の問題点が生じる。
[Problems to be Solved by the Invention] However, when the molten steel flow from the tundish causes a so-called "win" phenomenon in which the molten metal level in the mold fluctuates, the powder on the molten metal surface mixes into the molten steel in the mold and is trapped at the solidification interface of the slab and causes inclusion defects in the slab. On the other hand, if the molten metal level in the mold is too quiet, problems arise, such as the molten slag between the mold and the slab not being able to move smoothly.

この発明は、かかる事情に鑑みてなされたものであって
、鋳型内の溶湯による湯面の変動を高精度で所定の範囲
に制御して高品質の鋳片を製造す[問題点を解決するた
めの手段] この発明に係る連続鋳造における場面変動の制御方法は
、溶湯容器から浸漬ノズルを介して鋳型内に溶湯を注入
する連続鋳造における場面変動の制御方法において、浸
漬ノズルからの溶湯の吐出流!IQ、溶漬流溶湯型内壁
に衝突する際の衝突速度V及び衝突角度θ、並びに溶湯
流が鋳型内壁に衝突する位置の湯面からの衝突深さDの
関数として、下記(1)式の如く現される変動指数R(
Q。
This invention has been made in view of the above circumstances, and aims to manufacture high-quality slabs by controlling fluctuations in the level of the molten metal in the mold within a predetermined range with high precision. Means for controlling] A method for controlling scene fluctuations in continuous casting according to the present invention is a method for controlling scene fluctuations in continuous casting in which molten metal is injected into a mold from a molten metal container through an immersed nozzle. Flow! As a function of IQ, the collision speed V and collision angle θ when the molten metal flow collides with the inner wall of the mold, and the collision depth D from the molten metal surface at the position where the molten metal flow collides with the mold inner wall, the following equation (1) is calculated. The fluctuation index R (
Q.

■、θ、D)を算出する1lIIl工程と、場面変動を
検出する検出工程と、場面変動の検出結果を基に湯面変
動が変動指数と場面変動との間の予め求められた関係に
適合するように少なくとも1つの鋳造条件を変更する変
更工程と、浸漬ノズルからの溶湯流の流れ方向又はその
逆方向に電磁力を付与して場面変動を所定値に調整する
調整工程と、を有することを特徴とする。
■, θ, D), a detection step to detect scene variations, and based on the scene variation detection results, the hot water level variation conforms to the predetermined relationship between the variation index and scene variation. a changing step of changing at least one casting condition so that the casting condition is changed, and an adjusting step of adjusting the scene fluctuation to a predetermined value by applying an electromagnetic force in the flow direction of the molten metal flow from the immersion nozzle or in the opposite direction. It is characterized by

R=、OQv (1−sinθ)/(4D)  ・ (
1)但し、ρ:溶溶湯度(向/13)、 Q:溶湯流I(■3/秒)、 V:溶湯の衝突速度(−7秒)、 θ:溶湯の衝突角度、 D:溶湯の衝突深さく−)。
R=, OQv (1-sinθ)/(4D) ・(
1) However, ρ: molten metal degree (direction/13), Q: molten metal flow I (■3/sec), V: molten metal collision velocity (-7 sec), θ: molten metal collision angle, D: molten metal Impact depth -).

[作用] この溶湯の重さに対応づる溶湯流量Q及び衝突速度Vを
含む変動指数Rは、溶湯の運動量に対応する変数であり
、この変動指数により、湯面の変動を高精度で推定する
ことができる。従って、湯面変動量が所定範囲に入るよ
うな変動指数Rの範囲が存在する。このため、変動指数
Rがこの所定範囲(例えば1乃至10)に入るように、
溶湯に電磁力を付与することによって、場面変動を所定
範囲内に制御することができる。しかしながら、鋳造の
進行につれて、例えば、溶損等により浸漬ノズルの形状
が変化してくる。そうすると、変動指数と湯面変動との
間の関係が所定の状態からずれてくる。そこで、渦流距
離計等により場面変動を実測し、この場面変動が変動指
数Rに対応する変動量になるように、例えば、浸漬ノズ
ルの浸漬深さ、又は該当する場合には、浸漬ノズルへの
Arガス吹込み量若しくは又は鋳型内の電磁撹拌強度等
の鋳造条件を変更する。従って、この発明においては、
浸漬ノズルの溶損等積々の鋳造条件の経時的な変動にも
拘らず、場面変動と変動指数との関係を常に所定の関係
に保持することができ、この関係に基づいて溶湯流への
電磁力を調整することにより、場面変動を所定の範囲に
制御することができる。
[Function] The fluctuation index R, which includes the molten metal flow rate Q corresponding to the weight of the molten metal and the collision speed V, is a variable corresponding to the momentum of the molten metal, and the fluctuation of the molten metal level can be estimated with high accuracy by this fluctuation index. be able to. Therefore, there is a range of the fluctuation index R such that the amount of fluctuation in the hot water level falls within a predetermined range. For this reason, so that the fluctuation index R falls within this predetermined range (for example, 1 to 10),
By applying electromagnetic force to the molten metal, scene fluctuations can be controlled within a predetermined range. However, as casting progresses, the shape of the immersion nozzle changes due to, for example, melting damage. Then, the relationship between the fluctuation index and the hot water level fluctuation deviates from a predetermined state. Therefore, the scene variation is actually measured using an eddy current distance meter, etc., and the immersion depth of the immersion nozzle or, if applicable, the immersion nozzle is adjusted so that the scene variation corresponds to the variation index R. Change the casting conditions such as the amount of Ar gas blown or the strength of electromagnetic stirring in the mold. Therefore, in this invention,
Despite changes over time in casting conditions such as erosion of the immersion nozzle, the relationship between the scene fluctuation and the fluctuation index can always be maintained at a predetermined relationship, and based on this relationship, it is possible to maintain the relationship between the scene fluctuation and the fluctuation index. By adjusting the electromagnetic force, scene fluctuations can be controlled within a predetermined range.

[実施例] 本願発明者等は、鋳型内湯面の変動を支配する因子につ
いて、鋭意研究実験を重ねた結果、浸漬ノズルから吐出
した溶湯流が鋳型内壁に衝突して上方及び下方に分岐す
る場合に、この湯面に向かう溶鋼上昇流の運′動量が場
面変動に大きく影響を与えていることに想到した。この
ような溶鋼流の運動量に対応する変動指数R(Q、v、
θ、D)は、下記(1)式にて示すことができる。
[Example] The inventors of the present application have conducted extensive research and experiments on the factors that control the fluctuations in the mold surface. As a result, the present inventors have found that when the molten metal flow discharged from the immersion nozzle collides with the mold inner wall and branches upward and downward. In addition, we came to the conclusion that the momentum of the upward flow of molten steel toward the molten metal surface has a large effect on scene fluctuations. The fluctuation index R(Q, v,
θ, D) can be expressed by the following equation (1).

R−ρQV(1−sinθ) / (4D )  −(
1)但し、ρ:溶鋼密度(向/1)、 Q:溶鋼流鳳(−3/秒)、 ■=溶鋼の衝突速度(m/秒)、 □θ:溶鋼の衝突角度、 D=溶鋼の衝突深さくai)。
R-ρQV(1-sinθ)/(4D)-(
1) However, ρ: Molten steel density (direction/1), Q: Molten steel flow (-3/sec), ■ = Collision speed of molten steel (m/sec), □θ: Collision angle of molten steel, D = Collision angle of molten steel Impact depth ai).

この各溶鋼流動条件を示す因子を第1図に示す。Figure 1 shows factors indicating each molten steel flow condition.

浸漬ノズル1は鋳型2内の溶鋼3中に浸漬されており、
この溶鋼の場面上にはパウダ4が浮遊している。この場
合に、溶鋼流の中心の軌跡を矢印5にて示すが、溶鋼は
浸漬ノズル1の吐出口から鋳型内壁に向かってほぼ2次
曲線に沿って流動する。
The immersion nozzle 1 is immersed in the molten steel 3 in the mold 2,
Powder 4 is floating on this molten steel scene. In this case, the trajectory of the center of the molten steel flow is indicated by an arrow 5, and the molten steel flows from the discharge port of the immersion nozzle 1 toward the inner wall of the mold almost along a quadratic curve.

衝突角度θは、溶鋼が鋳型内壁に衝突する際の溶鋼の流
れ方向と、鋳型2の内壁に直交する方向とがなす角度と
して現される。衝突深さDは、この溶鋼が鋳型内壁に衝
突する位−と溶鋼湯面との間の距離である。
The collision angle θ is expressed as the angle between the flow direction of the molten steel when the molten steel collides with the inner wall of the mold and the direction perpendicular to the inner wall of the mold 2. The collision depth D is the distance between the point at which the molten steel collides with the inner wall of the mold and the molten steel surface.

浸漬ノズル1の吐出口は通常2個であるが、この場合に
各吐出口から吐出される溶鋼の注入流量はQ/2となる
。また、衝突前の速度(衝突速度)をVとすると、衝突
時の溶鋼流が持つ運動量はρQV/2と現される。衝突
後の溶鋼流は上方へ(1−sinθ)/2、下方へ(1
+sinθ)/2の比で振分けられる。従って、II突
後の上方に向かう溶鋼流の運動量は、(ρQ/2)(1
/2)v(1−sinθ)と現される。この衝突時に保
有していた運動量は、溶鋼流が上昇して湯面に到達する
までに減衰すると考えられる。このため、溶鋼流が湯面
に到達した時に保持している運動量は、衝突時に保有し
ていた運動量の1/D (通常、nは約1)になると考
えられる。従って、鋳型内溶鋼の上昇流はその濡面にお
いて、下記(1)式にて示す運動−を有している。
The immersion nozzle 1 usually has two discharge ports, and in this case, the injection flow rate of molten steel discharged from each discharge port is Q/2. Further, if the velocity before the collision (collision velocity) is V, the momentum of the molten steel flow at the time of collision is expressed as ρQV/2. The flow of molten steel after the collision is upward (1-sinθ)/2 and downward (1
+sin θ)/2. Therefore, the momentum of the upward molten steel flow after the II thrust is (ρQ/2)(1
/2)v(1-sinθ). It is thought that the momentum possessed at the time of this collision is attenuated by the time the molten steel flow rises and reaches the molten metal surface. Therefore, the momentum retained by the molten steel flow when it reaches the molten metal surface is considered to be 1/D (usually n is approximately 1) of the momentum retained at the time of collision. Therefore, the upward flow of molten steel in the mold has a motion expressed by the following equation (1) on its wetted surface.

R−ρQV (1−sinθ)/(4D)  ・ (1
)この(1)式の中で、溶鋼の密度ρは定数として入力
すればよく、流IQは鋳造鋳片サイズと鋳造速度により
決まる。一方、衝突角度θ及び衝突深さDは浸漬ノズル
1の吐出口からの溶鋼流動の軌跡から求めることができ
る。この軌跡は、浸漬ノズル1の中心から鋳型内壁に向
かう方向をX軸にとり、溶鋼吐出口から下方に向かう方
向をy軸にとって現すと、下記(2)式に示す回帰式に
より近似的に現すことができる。
R-ρQV (1-sinθ)/(4D) ・(1
) In this equation (1), the density ρ of the molten steel may be input as a constant, and the flow IQ is determined by the size of the cast slab and the casting speed. On the other hand, the collision angle θ and the collision depth D can be determined from the locus of the flow of molten steel from the discharge port of the submerged nozzle 1. If the direction from the center of the immersion nozzle 1 toward the inner wall of the mold is taken as the X-axis, and the direction from the molten steel discharge port downward is taken as the y-axis, this trajectory can be approximately expressed by the regression equation shown in equation (2) below. Can be done.

V= (bx +at α)GI X2− (b2+8
2 cN02X     −(2)但し、αは、浸漬ノ
ズルの吐出口の傾斜角度(下向きを正とする)であり、
al 、G2 、bl、b2は浸漬ノズルの形状で決ま
る定数である。なお、浸漬ノズルの内壁に溶鋼中の介在
物が付着することを防止するため、浸漬ノズルの内側に
Arガス等のガスを吹き込むことがあるが、この浸漬ノ
ズルへのガス吹き込みも、溶鋼の流動軌跡に影響を与え
る。この吹き込みガスの量は、前記(2)式におけるG
1及びG2に影響を及ぼすが、このGI及びG2は、下
記(3)式にて示される。
V= (bx +at α)GI X2- (b2+8
2 cN02X - (2) However, α is the inclination angle of the discharge port of the immersion nozzle (downward is positive),
al, G2, bl, and b2 are constants determined by the shape of the immersion nozzle. In order to prevent inclusions in the molten steel from adhering to the inner wall of the immersion nozzle, gas such as Ar gas is sometimes blown into the inside of the immersion nozzle. Affect trajectory. The amount of this blown gas is G in the equation (2) above.
GI and G2, which are expressed by the following equation (3).

Gl =exp  [−Ct  (Qsinθt)−=
QtlG213XIl  [−02(Qslnθt )
 −”Qt ]・・・(G3 但し、G1は、浸漬ノズルから吐出した直後の溶鋼流の
方向(実質吐出角)であり、Qlは、浸漬ノズルへのガ
ス吹き込み量である。また、C1、C2、ml 、m2
は浸漬ノズルにより決まる定数である。このG1は、例
えば、下記(4)式にて現すことができる。
Gl =exp [-Ct (Qsinθt)-=
QtlG213XIl [-02(Qslnθt)
-"Qt]...(G3 However, G1 is the direction (actual discharge angle) of the molten steel flow immediately after being discharged from the immersion nozzle, and Ql is the amount of gas blown into the immersion nozzle. Also, C1, C2, ml, m2
is a constant determined by the immersion nozzle. This G1 can be expressed by the following equation (4), for example.

θs −−tan −(dy/dx)、  (x−o、
i )・・・(4) 回帰式(2)は、種々のα、Q1θ1及びQlについて
、連続鋳造の溶鋼流動をシミュレートすろ水モデル実験
によりその流動軌跡を求め、そのデータを下に回帰翳1
算を実施して求めることができる。この回帰式は浸漬ノ
ズルの形状によって異なる。つまり、浸漬ノズルは、第
2図に示すように、溶鋼がノズルの軸方向に対して傾斜
した下方め下方に吐出されるプール型等がある。また、
その吐出口の形状が円形のもの又は角形のもの等があり
、その傾斜角度も異なる。このように浸漬ノズルの形式
が異なることによって、吐出溶鋼流の流動軌跡が異なる
ので、前記流動軌跡の回帰式は各ノズル形状毎に求めて
おく必要がある。なお、前記(2)、(3)式の各定数
はプール型の円形状孔を有する浸漬ノズルについて下記
の如くになる。
θs −−tan −(dy/dx), (x−o,
i)...(4) Regression equation (2) is calculated by calculating the flow trajectory using a drain water model experiment that simulates the flow of molten steel in continuous casting for various α, Q1θ1, and Ql, and then using the data as a regression model. 1
It can be obtained by performing calculations. This regression equation differs depending on the shape of the immersion nozzle. That is, as shown in FIG. 2, the immersion nozzle includes a pool type in which molten steel is discharged downwardly at an angle with respect to the axial direction of the nozzle. Also,
The shape of the discharge port may be circular or square, and the angle of inclination thereof also differs. Since the flow locus of the discharged molten steel flow differs due to the different types of immersion nozzles as described above, it is necessary to obtain a regression equation for the flow locus for each nozzle shape. The constants in equations (2) and (3) above are as follows for a submerged nozzle having a pool-shaped circular hole.

Q−0,005〜0.012  論3 /秒Q1=0〜
3.3X10−4  m3/秒at−0,003 a2=0.01466 bl =0. 1 779 b2−0.2684 C2−0,3551 m2−1. 2739 水モデル実験により観察された溶渇の流動をビデオカメ
ラにより記録し、この記録結果に基づいて求めた流動軌
跡のプロットと、その回帰式の一例を第4図に示す。第
4図において、横軸は浸漬ノズル中央からの水平距離X
であり、縦軸は溶鋼吐出開始点からの深さである。第4
図は溶si量が4.98t−27分の場合であり、この
第4図において、(a)、(b)及び(C)は、夫々、
浸漬ノズルの吐出口の傾斜角度αが一15°、−35°
及び−45°の場合のデータである。これらのグラフ図
から明らかなように、回帰式と実験データとはよく対応
しており、実験データの回帰式からのバラツキは小さい
。従って、各ノズル毎にこのような回帰式(回帰曲線)
を求めておくことにより、浸漬ノズルから吐出した溶鋼
の流動軌跡を推定することができる。つまり、各浸漬ノ
ズルの中心から鋳型壁までの距離は鋳型の鋳造断面の幅
寸法Wの1/2であるから、Xを(1/2)Wとして前
記(2)式に代入すれば、衝突深さDはそのときのyの
値として求まり、衝突角度θは下記(5)式から求める
ことができる。
Q-0,005~0.012 Theory 3/sec Q1=0~
3.3X10-4 m3/sec at-0,003 a2=0.01466 bl =0. 1 779 b2-0.2684 C2-0,3551 m2-1. 2739 The flow of dissolution and depletion observed in the water model experiment was recorded with a video camera, and a plot of the flow trajectory determined based on the recorded results and an example of its regression equation are shown in FIG. In Figure 4, the horizontal axis is the horizontal distance X from the center of the immersion nozzle.
, and the vertical axis is the depth from the molten steel discharge starting point. Fourth
The figure shows the case where the amount of molten Si is 4.98t-27min. In this figure, (a), (b) and (C) are respectively,
The inclination angle α of the discharge port of the immersion nozzle is -15°, -35°
and -45°. As is clear from these graphs, the regression equation and the experimental data correspond well, and the variation in the experimental data from the regression equation is small. Therefore, a regression equation (regression curve) like this is created for each nozzle.
By determining , it is possible to estimate the flow trajectory of the molten steel discharged from the immersion nozzle. In other words, since the distance from the center of each immersion nozzle to the mold wall is 1/2 of the width W of the casting cross section of the mold, if X is set to (1/2) W and substituted into equation (2) above, collision The depth D can be determined as the value of y at that time, and the collision angle θ can be determined from the following equation (5).

θ=−jan ”  (dy/dx) 、  (x=w
/2)・・・(5) 第5図(a)及び(b)は、溶S**が3.65トン/
分の場合に、浸漬ノズルへのガス吹き込み量が溶湯の流
動軌跡に及ぼす影響を示すグラフ図であり、(a)は浸
漬ノズルの吐出口の傾斜角度が一15°の場合、(b)
は−35″の場合である。この図から明らかなように、
ガス吹き込み量が多くなると、衝突角度θが小さくなる
と共に、衝突深さDが浅くなる。このため、前記(1)
式から明らかなように、ガス吹き込み量が多くなると、
湯面変動を現す変動指数Rが大きくなり、湯面変動が激
しくなることが推定される。
θ=-jan” (dy/dx), (x=w
/2)...(5) Figures 5 (a) and (b) show that the molten S** is 3.65 tons/
FIG. 3 is a graph showing the influence of the amount of gas blown into the immersion nozzle on the flow trajectory of the molten metal when the inclination angle of the discharge port of the immersion nozzle is 115°;
is the case of −35″.As is clear from this figure,
As the amount of gas blown increases, the collision angle θ becomes smaller and the collision depth D becomes shallower. For this reason, the above (1)
As is clear from the equation, as the amount of gas blown increases,
It is estimated that the fluctuation index R, which indicates the fluctuation of the hot water level, becomes larger and the fluctuation of the hot water level becomes more severe.

換言すれば、ガス吹き込み量を調節することにより、湯
面変動を多少調整することもできる。
In other words, by adjusting the amount of gas blown, the fluctuations in the hot water level can be adjusted to some extent.

次に、流速Vの回帰式について説明する。浸漬ノズルか
らの吐出流の流速Vは下記(6)式で現すことができる
Next, a regression equation for the flow velocity V will be explained. The flow velocity V of the discharge flow from the immersion nozzle can be expressed by the following equation (6).

v= (d十fQ/ (608))じに、  ・(6)
但し、S;浸漬ノズル内断面積(−2)L;流動軌跡に
沿う吐出口からの距all(1)k;浸漬ノズルの形状
で決まる定数(0,4〜0.7) d、f:浸漬ノズルで決まる定数 但し、円形゛形状の吐出口を有するプール型浸漬ノズル
の場合はdが0.01703であり、fは0.0915
2である。
v= (dfQ/ (608)), ・(6)
However, S: Internal cross-sectional area of the immersed nozzle (-2) L: Distance from the discharge port along the flow trajectory all (1) k: Constant determined by the shape of the immersed nozzle (0.4 to 0.7) d, f: Constants determined by the immersion nozzle However, in the case of a pool-type immersion nozzle with a circular discharge port, d is 0.01703 and f is 0.0915.
It is 2.

この速度の回帰式も水モデル実験による観察結果により
求めることができる。第6図にこのようにして求めた回
帰式の曲線を水モデル実験により求めたデータと共に示
す。第6図から明らかなように、前記(6)式により衝
突速度Vを求めることができる。
The regression equation for this velocity can also be determined from the observation results of water model experiments. FIG. 6 shows the curve of the regression equation thus obtained together with the data obtained from the water model experiment. As is clear from FIG. 6, the collision velocity V can be determined by the equation (6).

以上のようにして、各鋳造条件因子を下に、衝突角度θ
、衝突深さD及び衝突速度Vが求まる。
As described above, with each casting condition factor below, the collision angle θ
, the collision depth D and the collision velocity V are determined.

そして、このデータを前記(1)式に代入すると、変動
指数Rを算出することができ、この変動指数Rの大小に
より鋳型内溶鋼湯面の変動を推定することができる。第
7図は、横軸にこの変動指数Rをとり、縦軸に水モデル
実験により求められた湯面変動をとって、両者の関係を
示すグラフ図である。この図から明らかなように、変動
指数Rと湯面変動量との間には、極めて強い相関関係が
存在し、鋳造条件因子により決まる変動指数Rを下に、
湯面変動量を高II噴で推定することができる。湯面変
動量を1乃至7+mの範囲にすることが鋳片品質上必要
であるから、変動指数Rは1乃至10の範囲、好ましく
は2PJ至7の範囲に入ることが必要である。
Then, by substituting this data into the above equation (1), a fluctuation index R can be calculated, and a fluctuation in the molten steel level in the mold can be estimated based on the magnitude of this fluctuation index R. FIG. 7 is a graph showing the relationship between the fluctuation index R on the horizontal axis and the fluctuation in the hot water level determined by the water model experiment on the vertical axis. As is clear from this figure, there is an extremely strong correlation between the fluctuation index R and the amount of mold level fluctuation.
The amount of fluctuation in the hot water level can be estimated using the high II jet. Since it is necessary for the quality of the slab to have the amount of fluctuation in the melt level in the range of 1 to 7+m, the fluctuation index R needs to be in the range of 1 to 10, preferably in the range of 2PJ to 7.

第8図及び第9図はこの発明の実施状態を示す図であり
、第8図は鋳型の縦断面図、第9図は鋳型の平面図であ
る。鋳造断面が矩形のスラブ連続鋳造用鋳型2には、そ
の中央に浸漬ノズル1が配設されており、浸漬ノズル1
の下部に形成された吐出口が鋳型自溶鋼3に浸漬されて
いる。溶鋼3上には、パウダ4が浮遊しており、溶鋼3
を保温するようになっている。溶鋼3は鋳型2により冷
却されて凝固殻6を形成し、この凝固殻6に囲まれた未
凝固溶鋼を有する鋳片は鋳型から連続的に引抜かれる。
FIGS. 8 and 9 are diagrams showing the state of implementation of the invention, with FIG. 8 being a longitudinal sectional view of the mold, and FIG. 9 being a plan view of the mold. A slab continuous casting mold 2 having a rectangular casting cross section is provided with an immersion nozzle 1 at its center.
A discharge port formed at the bottom of the mold is immersed in the mold self-melting steel 3. Powder 4 is floating on the molten steel 3, and the molten steel 3
It is designed to keep warm. The molten steel 3 is cooled by the mold 2 to form a solidified shell 6, and the slab containing unsolidified molten steel surrounded by the solidified shell 6 is continuously drawn from the mold.

この鋳型2の長辺側の鋳型には、鋳型2を挟むようにし
て2対の電磁力印加装置10が設置さ−れている。この
電磁力調整装置10は鋳型2内の溶鋼流(矢印5にて示
す)に、内法矢印にて示す力F又はF′を印加する。力
Fは溶鋼の流動方向に対して抗する方向に作用し、溶鋼
流動に対して制動力として作用する。一方、力F′は溶
鋼の流動方向に作用し、溶鋼流動に対して加速力として
作用する。この電磁力印加装置10における力(F又は
F′)の方向及びその大きさは調整装置11により調整
される。演算装置12は、前述のようにして、変動指数
Rを算出し、この変動指数Rが1乃至10の範囲に入る
ように、電磁力印加装置10を介して溶鋼に電磁力を印
加する。鋳型自溶鋼湯面の上方には、14m距離計20
が設置されており、この渦流距離計20は瀉血変動を測
定してこの測定結果を変更装置13に出力する。
Two pairs of electromagnetic force applying devices 10 are installed on the longer sides of the mold 2 so as to sandwich the mold 2 therebetween. This electromagnetic force adjusting device 10 applies a force F or F' indicated by an internal arrow to the molten steel flow (indicated by an arrow 5) in the mold 2. The force F acts in a direction opposing the flow direction of the molten steel, and acts as a braking force on the flow of the molten steel. On the other hand, the force F' acts in the direction of flow of the molten steel and acts as an accelerating force on the flow of the molten steel. The direction and magnitude of the force (F or F') in this electromagnetic force applying device 10 are adjusted by an adjusting device 11. The calculation device 12 calculates the variation index R as described above, and applies electromagnetic force to the molten steel via the electromagnetic force application device 10 so that the variation index R falls within the range of 1 to 10. Above the mold self-melting steel surface, there is a 14m distance meter 20.
is installed, and this eddy current distance meter 20 measures bloodletting fluctuations and outputs the measurement results to the change device 13.

この発明の実施例においては、連続鋳造操業中に、鋳片
の引扱き速度が変更されたり、又は鋳型の鋳造断面の幅
変更が実施されたりすると、変動指数Rが変化する。例
えば、幅変更においては、浸漬ノズルの吐出角度は変化
しないから、鋳片の引抜き速度が一定であるとすると、
鋳型の幅を狭くしたときには、溶鋼流IQは減少し、衝
突位置りは浅くなる。一方、浸漬ノズルと鋳型壁との距
離は減少するから、衝突速度■は上昇する。これにより
、変動指数Rは幅変更の実施前に対して変化する。
In the embodiment of the present invention, the variation index R changes when the handling speed of the slab is changed or the width of the casting cross section of the mold is changed during the continuous casting operation. For example, when changing the width, the discharge angle of the immersion nozzle does not change, so assuming that the slab drawing speed is constant,
When the width of the mold is narrowed, the molten steel flow IQ decreases and the collision position becomes shallower. On the other hand, since the distance between the immersion nozzle and the mold wall decreases, the impact velocity (2) increases. As a result, the variation index R changes compared to before the width change is performed.

この場合に、変動指数Rが10.好ましくは7を超えた
場合には、場面の変動が大きくなるので、溶鋼の衝突速
度Vを低下させて変動指数Rを減少させるために、溶鋼
流動に制動力Fを印加する。
In this case, the fluctuation index R is 10. Preferably, when it exceeds 7, the fluctuation in the scene becomes large, so a braking force F is applied to the molten steel flow in order to reduce the collision speed V of the molten steel and the fluctuation index R.

つまり、演算装置12が変動指数Rを算出し、調整装置
11はこの変動指数Rが10又は7以下になるのに必要
な制動力Fを算出する。そして、電磁力印加装置10が
溶鋼流動に対してその流動方向に反対方向に電磁力Fを
印加し、溶鋼に制動力を印加して場面変動を抑制する。
That is, the calculation device 12 calculates the fluctuation index R, and the adjustment device 11 calculates the braking force F necessary for the fluctuation index R to become 10 or 7 or less. Then, the electromagnetic force applying device 10 applies an electromagnetic force F in a direction opposite to the flow direction of the molten steel, thereby applying a braking force to the molten steel and suppressing scene fluctuations.

一方、変動指数Rが1又は3未満になったときには、電
磁力印加装@10は溶鋼流動に対してその流動方向に電
磁力を印加し、溶鋼に加速力を印加する。これにより、
スラブのコーナ部の撹拌力が強化され、パウダに基づく
鋳片欠陥が減少する。
On the other hand, when the fluctuation index R becomes less than 1 or 3, the electromagnetic force applying device @10 applies an electromagnetic force to the molten steel flow in the direction of the flow, thereby applying an accelerating force to the molten steel. This results in
The stirring force at the corners of the slab is strengthened, reducing slab defects caused by powder.

ところで、鋳造の進行につれて、浸漬ノズルが溶損し、
その吐出口の大きさ及び形状が変化してくる。そうする
と、溶鋼の吐出流量、衝突速度、衝突角度及び衝突深さ
等が、鋳造初期の状態から変化してしまい、変動指数R
が変化し、湯面変動が第7図に従い変化する。このため
、場面変動を所定の範囲に制御すべく、第7図の関係を
基に、電磁力印加装!10の電磁力を調整して変動指数
Rを変更しても、実際には場面変動はその目標範囲から
づれてしまう。
By the way, as the casting progresses, the immersion nozzle gets melted and damaged.
The size and shape of the outlet vary. In this case, the discharge flow rate, collision speed, collision angle, collision depth, etc. of molten steel will change from the initial state of casting, and the fluctuation index R
changes, and the hot water level changes as shown in Fig. 7. Therefore, in order to control the scene fluctuations within a predetermined range, electromagnetic force is applied based on the relationship shown in Figure 7. Even if the variation index R is changed by adjusting the electromagnetic force of 10, the scene variation will actually deviate from its target range.

そこで、この実施例においては、渦流距離計20により
場面変動を実測し、その検出結果を変更装置13に出力
する。演算装置12はそのときの鋳造条件の変動指数R
における場面変動を変更装!113に出力しており、変
更装置113は、渦流距離計20により検出された場面
変動の実測値と変動指数Rにおける場面変動とを比較し
、これらが一致するように鋳造条件を変更する信号を、
例えば、鋳造作業を制御しているプロセスコンピュータ
等に出力する。このような変更すべき鋳造条件としては
、浸漬ノズルの浸漬深さ、浸漬ノズルに吹込むArガス
等の吹込み邑、及び鋳型内の電磁撹拌の強度等がある。
Therefore, in this embodiment, the scene change is actually measured by the eddy current distance meter 20, and the detection result is output to the change device 13. The calculation device 12 calculates the fluctuation index R of the casting conditions at that time.
Change the scene changes in! The changing device 113 compares the actual value of the scene variation detected by the eddy current distance meter 20 with the scene variation in the variation index R, and outputs a signal to change the casting conditions so that they match. ,
For example, it is output to a process computer controlling the casting operation. Such casting conditions to be changed include the immersion depth of the immersion nozzle, the amount of Ar gas or the like blown into the immersion nozzle, and the intensity of electromagnetic stirring within the mold.

これらの鋳造条件の変更により、その時の変動指数Rに
対応する湯面変動と、渦流距離計20により実測された
場面変動とが一致する。従って、鋳造条件変更後は、変
動指数Rと、湯面変動とが第7図に示す相関関係で対応
し、調整装置11による場面変動の調整をam度で実施
することができる。従って、この実施例によれば、鋳型
自溶鋼の場面を常に高精度で所定の範囲に制御すること
ができる。
By changing these casting conditions, the melt level fluctuation corresponding to the fluctuation index R at that time matches the scene fluctuation actually measured by the eddy current distance meter 20. Therefore, after the casting conditions are changed, the fluctuation index R and the melt level fluctuation correspond to each other in the correlation shown in FIG. 7, and the adjustment of the scene fluctuation by the adjustment device 11 can be carried out in degrees am. Therefore, according to this embodiment, the situation of self-melting steel in the mold can always be controlled within a predetermined range with high precision.

なお、タンディツシュから鋳型内への溶鋼注入量を制御
するために、スライディングノズルを使用している場合
には、鋳型内において、浸漬ノズルの2個の吐出口から
吐出される溶鋼流の流量に相互に差が生じることがある
。このような偏流が発生した場合には、湯面の変動は浸
漬ノズルの左右で異なり、変動指数Rのみにより一義的
に推定することは困難である。しかし、第8図に示すよ
うに浸漬ノズル1の左右に渦流距離計20.21を設置
し、この一対の渦流距離計により湯面の変動を実細すれ
ば、湯面変動が適正範囲外になった方に合わせて変動指
数Rを調整する等、湯面変動の実測値を補正項に使用す
ることにより、変動指数Rから湯面変動を推定すること
は可能である。
If a sliding nozzle is used to control the amount of molten steel injected into the mold from the tundish, the flow rate of the molten steel discharged from the two discharge ports of the submerged nozzle may be mutually controlled within the mold. There may be a difference in the When such a drift occurs, the fluctuation of the melt level differs between the left and right sides of the immersion nozzle, and it is difficult to uniquely estimate it only by the fluctuation index R. However, if eddy current distance meters 20 and 21 are installed on the left and right sides of the immersion nozzle 1 as shown in Fig. 8, and the fluctuations in the hot water level are measured by the pair of eddy current distance meters, the fluctuations in the hot water level will be out of the appropriate range. It is possible to estimate the hot water level fluctuation from the fluctuation index R by using the actual measured value of the hot water level fluctuation as a correction term, such as adjusting the fluctuation index R according to the change.

[発明の効果] この発明によれば、連続鋳造において、鋳型内溶湯の流
動に起因する湯面変動を、溶湯流の運動量を含む変動指
数Rにより、高精度で推定することができる。そして、
この変動指数Rが所定範囲に入るように、溶鋼に電磁力
を印加する。つまり、変動指数Rが大きい場合には、溶
鋼流動に制動力を付与して変動指数Rを減少させる。一
方、変動指数Rが小さい場合には、溶鋼流動に加速力を
印加して変動指数Rを大きくする。また、湯面変動を実
測しているから、鋳造の進行につれて8!漬ノズルが溶
損等しても、その変動指数Rと湯面変動との関係を実測
値から補正することができ、常に高精度で湯面変動を所
定の範囲に制御することができるから、高品質の鋳片を
製造することができる。
[Effects of the Invention] According to the present invention, in continuous casting, it is possible to estimate with high accuracy the fluctuation in the melt level caused by the flow of the molten metal in the mold using the fluctuation index R that includes the momentum of the molten metal flow. and,
Electromagnetic force is applied to the molten steel so that this fluctuation index R falls within a predetermined range. That is, when the fluctuation index R is large, a braking force is applied to the flow of molten steel to reduce the fluctuation index R. On the other hand, when the fluctuation index R is small, an accelerating force is applied to the molten steel flow to increase the fluctuation index R. In addition, since we are actually measuring the fluctuations in the melt level, we are measuring 8 as the casting progresses! Even if the submerged nozzle is damaged by erosion, the relationship between the fluctuation index R and the fluctuation in the hot water level can be corrected from the actual measurement value, and the fluctuation in the hot water level can always be controlled within a predetermined range with high precision. High quality slabs can be manufactured.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は変動指数Rを説明する図、第2図及び第3図は
浸漬ノズルを示す断面図、第4(a)図乃至第4(C)
図は流動軌跡の回帰曲線の正当性を示すグラフ図、第5
図(a)及び第5図(b)は浸漬ノズルへのガス吹込み
の影響を示すグラフ図、第6図は速度の回帰曲線の正当
性を示す示すグラフ図、第7図は変動指数Rと湯面変動
との関係を示すグラフ図、第8図及び第9図はこの発明
の実施状態を示す図である。 1:浸漬ノズル、2;鋳型、3;溶鋼、4;スラグ、6
:凝固殻、10:電磁力印加装置、11:調整装置、1
2;演算装置、13:変更装置、20.21 :渦流距
離計 出願人代理人 弁理士 鈴江武彦 第2図  第3図 虫 )・・・ 03♀17’)O U) ″)      蟻5A賢碧 C) 一史 岑・・− δ89!LoO 萌塾−5”cr韻r/ε ηN   2ノ 第8図 10 15不口
Fig. 1 is a diagram explaining the variation index R, Figs. 2 and 3 are cross-sectional views showing the immersion nozzle, and Figs. 4(a) to 4(C).
The figure is a graph showing the validity of the regression curve of the flow trajectory.
Figures (a) and 5(b) are graphs showing the influence of gas injection into the submerged nozzle, Figure 6 is a graph showing the validity of the velocity regression curve, and Figure 7 is the variation index R. Graphs illustrating the relationship between molten metal and hot water level fluctuations, and FIGS. 8 and 9 are diagrams illustrating the state of implementation of the present invention. 1: Immersion nozzle, 2; Mold, 3; Molten steel, 4; Slag, 6
: Solidified shell, 10: Electromagnetic force application device, 11: Adjustment device, 1
2; Arithmetic device, 13: Modification device, 20.21: Eddy current distance meter Applicant's agent, Patent attorney Takehiko Suzue Figure 2 Figure 3 Insect)... 03♀17')O U) '') Ant 5A Kenpeki C) Issumi...- δ89!LoO Moejuku-5"cr rhyme r/ε ηN 2 no 8 Figure 10 15 Dullity

Claims (1)

【特許請求の範囲】 溶湯容器から浸漬ノズルを介して鋳型内に溶湯を注入す
る連続鋳造における湯面変動の制御方法において、浸漬
ノズルからの溶湯の吐出流量Q、溶湯流が鋳型内壁に衝
突する際の衝突速度V及び衝突角度θ、並びに溶湯流が
鋳型内壁に衝突する位置の湯面からの衝突深さDの関数
として、下記(1)式の如く現される変動指数R(Q、
V、θ、D)を算出する演算工程と、湯面変動を検出す
る検出工程と、湯面変動の検出結果を基に湯面変動が変
動指数と湯面変動との間の予め求められた関係に適合す
るように少なくとも1つの鋳造条件を変更する変更工程
と、浸漬ノズルからの溶湯流の流れ方向又はその逆方向
に電磁力を付与して湯面変動を所定値に調整する調整工
程と、を有することを特徴とする連続鋳造における湯面
変動の制御方法。 R−ρQV(1−sinθ)/(4D)・・・(1)但
し、ρ:溶湯密度(kg/m^3)、 Q:溶湯流量(m^3/秒)、 V:溶湯の衝突速度(m/秒)、 θ:溶湯の衝突角度、 D:溶湯の衝突深さ(m)。
[Claims] In a method for controlling molten metal level fluctuation in continuous casting in which molten metal is injected into a mold from a molten metal container through an immersion nozzle, the flow rate Q of molten metal discharged from the immersion nozzle causes the molten metal flow to collide with the inner wall of the mold. As a function of the collision speed V and collision angle θ at the time of collision, and the collision depth D from the molten metal surface at the position where the molten metal flow collides with the inner wall of the mold, the variation index R (Q,
V, θ, D), a detection step to detect the hot water level fluctuation, and a hot water level fluctuation that is calculated in advance between the fluctuation index and the hot water level fluctuation based on the detection result of the hot water level fluctuation. a change step of changing at least one casting condition to match the relationship; and an adjustment step of adjusting the molten metal level fluctuation to a predetermined value by applying electromagnetic force in the flow direction of the molten metal flow from the immersion nozzle or in the opposite direction. A method for controlling melt level fluctuation in continuous casting, comprising: R-ρQV(1-sinθ)/(4D)...(1) However, ρ: Molten metal density (kg/m^3), Q: Molten metal flow rate (m^3/sec), V: Molten metal collision speed (m/sec), θ: Collision angle of molten metal, D: Collision depth of molten metal (m).
JP61162297A 1986-07-10 1986-07-10 Control method of fluctuation of molten metal level in continuous casting Expired - Fee Related JP2555872B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61162297A JP2555872B2 (en) 1986-07-10 1986-07-10 Control method of fluctuation of molten metal level in continuous casting

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61162297A JP2555872B2 (en) 1986-07-10 1986-07-10 Control method of fluctuation of molten metal level in continuous casting

Publications (2)

Publication Number Publication Date
JPS6316841A true JPS6316841A (en) 1988-01-23
JP2555872B2 JP2555872B2 (en) 1996-11-20

Family

ID=15751816

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61162297A Expired - Fee Related JP2555872B2 (en) 1986-07-10 1986-07-10 Control method of fluctuation of molten metal level in continuous casting

Country Status (1)

Country Link
JP (1) JP2555872B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0289544A (en) * 1988-09-27 1990-03-29 Nippon Steel Corp Method for controlling molten steel flow in mold in continuous casting
JPH06219638A (en) * 1992-12-15 1994-08-09 Heidelberger Druckmas Ag Sheet paper roller press with sample sheet papaer discharging device
US7540317B2 (en) 2002-03-01 2009-06-02 Jfe Steel Corporation Method and apparatus for controlling flow of molten steel in mold, and method for producing continuous castings
CN113927008A (en) * 2021-10-19 2022-01-14 攀钢集团西昌钢钒有限公司 Production method for inhibiting periodic fluctuation of liquid level of dual-phase steel crystallizer for slab production

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0289544A (en) * 1988-09-27 1990-03-29 Nippon Steel Corp Method for controlling molten steel flow in mold in continuous casting
JPH06219638A (en) * 1992-12-15 1994-08-09 Heidelberger Druckmas Ag Sheet paper roller press with sample sheet papaer discharging device
US7540317B2 (en) 2002-03-01 2009-06-02 Jfe Steel Corporation Method and apparatus for controlling flow of molten steel in mold, and method for producing continuous castings
US7762311B2 (en) 2002-03-01 2010-07-27 Jfe Steel Corporation Method for controlling flow of molten steel in mold and method for continuously producing a cast product
US7967058B2 (en) 2002-03-01 2011-06-28 Jfe Steel Corporation Apparatus for controlling flow of molten steel in mold
EP2425912A2 (en) 2002-03-01 2012-03-07 JFE Steel Corporation Method and apparatus for controlling flow of molten steel in mold, and method for producing continuously cast product
CN113927008A (en) * 2021-10-19 2022-01-14 攀钢集团西昌钢钒有限公司 Production method for inhibiting periodic fluctuation of liquid level of dual-phase steel crystallizer for slab production
CN113927008B (en) * 2021-10-19 2023-01-13 攀钢集团西昌钢钒有限公司 Production method for inhibiting periodic fluctuation of liquid level of dual-phase steel crystallizer for slab production

Also Published As

Publication number Publication date
JP2555872B2 (en) 1996-11-20

Similar Documents

Publication Publication Date Title
Thomas Modeling of continuous casting defects related to mold fluid flow
KR20090010962A (en) Automatic pouring method and storage medium storing ladle tilting control program
Thomas Fluid flow in the mold
JPS6316841A (en) Control method for molten surface fluctuation in continuous casting
KR101914084B1 (en) Molten material processing apparatus
JPS6316840A (en) Control method for molten surface fluctuation in continuous casting
JPH01262050A (en) Detection of leaning flow of molten steel in mold at continuous casting of steel and method for continuous casting steel
JP2002301549A (en) Continuous casting method
JPS6316842A (en) Control method for molten surface fluctuation in continuous casting
JP2895580B2 (en) Level control method of molten metal level in mold in continuous casting
JPS60180654A (en) Method and device for controlling shape of bath surface in mold for continuous casting
JPS5978763A (en) Controlling method of molten steel level in casting mold in continuous casting
JPS6257427B2 (en)
KR102277295B1 (en) Continuous casting process of steel material by controlling ends of refractory in submerged entry nozzle
JPH0484650A (en) Method for restraining drift of molten steel in continuous casting mold
JPS62197257A (en) Pouring method for molten steel in continuous casting
JPH05104223A (en) Method for controlling pouring rate in continuous casting for plural layer cast slab
WO2020170836A1 (en) Control method for continuous casting machine, control device for continuous casing machine, and manufacturing method for cast slab
JPS62252650A (en) Divagating flow control method in mold for molten steel continuous casting
JPH08174164A (en) Method for continuously casting stainless steel
JPS6293051A (en) Pouring method for molten steel in continuous casting
Mills et al. Heat Transfer in the Mould and Shell Solidification
JPH05277681A (en) Continuous casting method
JPH0195854A (en) Device for controlling molten metal surface level in mold
JP2000263198A (en) Method for continuously casting molten steel

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees