JPS63167211A - Distance detecting device - Google Patents
Distance detecting deviceInfo
- Publication number
- JPS63167211A JPS63167211A JP31401886A JP31401886A JPS63167211A JP S63167211 A JPS63167211 A JP S63167211A JP 31401886 A JP31401886 A JP 31401886A JP 31401886 A JP31401886 A JP 31401886A JP S63167211 A JPS63167211 A JP S63167211A
- Authority
- JP
- Japan
- Prior art keywords
- distance
- signal
- output
- electrodes
- light
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000001514 detection method Methods 0.000 claims abstract description 20
- 239000004065 semiconductor Substances 0.000 claims abstract description 4
- 238000005259 measurement Methods 0.000 abstract description 14
- 230000006866 deterioration Effects 0.000 abstract 1
- 238000010586 diagram Methods 0.000 description 8
- 238000006243 chemical reaction Methods 0.000 description 4
- 230000003287 optical effect Effects 0.000 description 4
- 230000007274 generation of a signal involved in cell-cell signaling Effects 0.000 description 3
- 230000002542 deteriorative effect Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 1
- 230000000593 degrading effect Effects 0.000 description 1
Landscapes
- Focusing (AREA)
- Automatic Focus Adjustment (AREA)
- Length Measuring Devices By Optical Means (AREA)
- Measurement Of Optical Distance (AREA)
Abstract
Description
【発明の詳細な説明】
[産業上の利用分野]
本発明は、半導体位置検出素子(以下PSDと略称する
)を用いた距離検出装置に関する。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a distance detection device using a semiconductor position detection element (hereinafter abbreviated as PSD).
[従来の技術]
従来よりPSDを用いた距離検出装置は種々提案されて
いるが、その基本的構成は第8図、第9図、第10図に
示すようになっている。すなわち、第8図、第9図にお
いて、1は赤外光を投射する発光体、2は投光用レンズ
、3は被写体、4は受光用レンズ、5はPSDである。[Prior Art] Various distance detection devices using PSD have been proposed in the past, and their basic configurations are shown in FIGS. 8, 9, and 10. That is, in FIGS. 8 and 9, 1 is a light emitting body that projects infrared light, 2 is a light projecting lens, 3 is a subject, 4 is a light receiving lens, and 5 is a PSD.
発光体1は適宜の回路系によりパルス光を投射するよう
になっている。このパルス光は投光用レンズ2で集光さ
れて被写体3に照射され、その反側光が受光レンズ4に
よってPAD5上に結像される。その結像位置は受光レ
ンズ4の光軸y2からの距離をXとすると、被写体まで
の距離01基線長S1受光レンズとPADとの間隔fに
よって表され、
x−s−f/e
となる、PAD5は周知の如く入射光の位置から両端の
信号電極d+、dzまでの距離の比の逆で光電流を分流
し、信号電極d1、d2から信号電流II、12を出力
するもので、PAD5の中心と受光レンズ4の光軸y2
とを合わせた場合、上記距離×の入射光位置における信
号電流11.12の比は、PSD5の全長をtとすると
、
!+ : 12 =j / 2+x :t / 2−
Xとなる。The light emitter 1 is configured to project pulsed light using an appropriate circuit system. This pulsed light is focused by the light projecting lens 2 and irradiated onto the subject 3, and the light on the opposite side is imaged on the PAD 5 by the light receiving lens 4. The image formation position is expressed by the distance to the subject 01 the baseline length S1 the distance f between the light receiving lens and the PAD, where X is the distance from the optical axis y2 of the light receiving lens 4, and becomes x-s-f/e. As is well-known, the PAD5 divides the photocurrent with the opposite ratio of the distance from the position of the incident light to the signal electrodes d+ and dz at both ends, and outputs the signal currents II and 12 from the signal electrodes d1 and d2. Center and optical axis y2 of light receiving lens 4
When combined, the ratio of the signal current 11.12 at the incident light position of the above distance x is, when the total length of the PSD 5 is t, ! +: 12 =j/2+x:t/2-
It becomes X.
従って、総電流すなわち、両信号電流の和で正規化され
た両信号の差出力■は下記のようになる。Therefore, the total current, that is, the difference output (2) between both signals normalized by the sum of both signal currents is as follows.
すなわち、PSD5の全長しに対する入射光位置×に比
例し、被写体距離eに反比例する。That is, it is proportional to the incident light position x with respect to the total length of the PSD 5, and inversely proportional to the subject distance e.
このため、上記出力Vを求めることによって被写体の距
離を検出できる。この入射光位置Xと出力Vとの関係を
示すと第10図の如くである。Therefore, by obtaining the output V, the distance to the subject can be detected. The relationship between the incident light position X and the output V is shown in FIG.
[発明が解決しようとする問題点]
上記従来例においては、反射光が非常に微小で回路ノイ
ズ等によって測距データにある幅が生じることから、距
1IIIeに対する出力信号■の変化を大きくとる傾向
にある。ここで、PSDの全長に対する反射光の移動量
を変えて距離eに対する出力信号■の変化量を異ならせ
た場合の例を第11図に示す。回路ノイズ等によって生
ずる出力信号VのバラツキAは同一の距離1/e+では
同じであるが、これを距!1eのバラツキ8に換算する
と、移動量Xを大きくして、距離eに対する出力信号■
の変化量を大きくとった場合LAの方が、上記移動量を
小さくした場合Sよりも、距離の誤差Bが小さく精度が
良いことがわかる。しかしながら、移動量を大きくする
と反射光がPSDからはずれる被写体距離、すなわち最
至近の検出可能距離が遠くなってしまうという欠点があ
った。逆に、最至近距離を近くにまで設定しようとする
と上記移動量を小さくしなければならず、上述した如く
測距精度が悪くなるという欠点があった。[Problems to be Solved by the Invention] In the above conventional example, since the reflected light is very small and a certain width occurs in the distance measurement data due to circuit noise, etc., there is a tendency for the change in the output signal ■ to be large with respect to the distance 1IIIe. It is in. Here, FIG. 11 shows an example in which the amount of change in the output signal (2) with respect to the distance e is varied by changing the amount of movement of the reflected light with respect to the entire length of the PSD. The variation A of the output signal V caused by circuit noise etc. is the same at the same distance 1/e+, but this is the distance! Converting to the variation 8 of 1e, by increasing the movement amount X, the output signal for the distance e is
It can be seen that the distance error B is smaller in LA when the amount of change is made larger than in S when the amount of movement is made smaller, and the accuracy is better. However, when the amount of movement is increased, there is a drawback that the subject distance at which the reflected light deviates from the PSD, that is, the closest detectable distance becomes longer. On the other hand, if the closest distance is to be set close, the amount of movement must be made small, which has the disadvantage that the distance measurement accuracy deteriorates as described above.
一方、上記欠点を1ljt11するために、2個の投光
用発光体を、!1線長を異ならせて配設し、これを被写
体距離に応じて選択させる方法も考えられているが、こ
の場合は、その分コスト高になり、スペースも大きくな
るという欠点がある。On the other hand, in order to eliminate the above drawbacks, two light emitters for projecting light are installed! A method of arranging the wires with different lengths and having the wires selected depending on the distance to the subject has been considered, but this method has the drawbacks of increasing cost and increasing space.
本発明は、上記不具合に鑑み成されたものであって、1
つの投光部−のみで、測距精度を悪化させることなく、
至近距離をより短くすることができる距離検出装置を提
供するものである。The present invention has been made in view of the above problems, and includes:
With only one light emitting unit, distance measurement accuracy is not deteriorated.
An object of the present invention is to provide a distance detection device that can shorten the close distance.
[問題点を解決する手段及び作用]
PSDを用いた距離検出装置において、被写体距離に応
じた電流を作りだすための電極として、PSDに設けら
れた一対の信号電極の間に少なくとも1個以上の中間電
極を設け、被写体距離に応じて上記一対の信号電極から
の出力電流を距離検出に用いる場合と、上記一対の信号
電極のうちの一方の信号電極と中間電極とによる出力電
流あるいは中間電極同士の出力電流を用いる場合とを切
換えるようにしたものである。[Means and effects for solving the problem] In a distance detection device using a PSD, at least one intermediate electrode is provided between a pair of signal electrodes provided on the PSD as an electrode for generating a current according to the distance of a subject. In the case where electrodes are provided and the output current from the pair of signal electrodes is used for distance detection depending on the subject distance, the output current from one signal electrode of the pair of signal electrodes and the intermediate electrode or the output current between the intermediate electrodes is used. It is designed to switch between using the output current.
[実施例]
第1図、第2図は本発明の一実施例を示す図である。な
お、図中、第8図、第9図として示した従来技術と同じ
物については同符号を付し、詳細は省略する。第1図、
第2図において、PSD50には、両端に設けられた信
号電極d、、d2の他に更にその間に中間電極d3が設
けられている。第1図に示すように、受光し、ンズ4の
光軸V+を前記PSD50の信号i!極d2と中間電極
d3との間の中央に設定し、dlをオープン状態とする
と%IIはゼロとなり光電流は電極d2及びd3に分流
される。このとき出力■を
Vz3− (13−12)/ (13+12 )とす
ると、第3図Hに示すように入射光位置Xがt1/2ま
では出力Vは位置Xに比例し、1172以上では1とな
る。これは(1/2以上では光電流は全て中間電極から
出力されるからである。[Embodiment] FIGS. 1 and 2 are diagrams showing an embodiment of the present invention. In the drawings, the same parts as those in the prior art shown in FIGS. 8 and 9 are given the same reference numerals, and details are omitted. Figure 1,
In FIG. 2, in addition to signal electrodes d, d2 provided at both ends of the PSD 50, an intermediate electrode d3 is further provided therebetween. As shown in FIG. 1, the signal i! of the PSD 50 receives the light and directs the optical axis V+ of the lens 4 to the signal i! If it is set at the center between the pole d2 and the intermediate electrode d3 and dl is in an open state, %II becomes zero and the photocurrent is shunted to the electrodes d2 and d3. At this time, if the output ■ is Vz3- (13-12)/(13+12), as shown in Figure 3H, the output V is proportional to the position X until the incident light position becomes. This is because (at 1/2 or more, all the photocurrent is output from the intermediate electrode).
次に中間電極をオーブンにして信号電極d2及びdlか
ら出力される信号電流をもとに出力■、すなわち
VIZ= (1+ −12)/ (II +I2 )を
求めると、同図にのようになる。ここで点線は入射光に
よる光電流が距離に関係なく安定して存在する場合であ
るが、このとき入射光の位置が電極d、及びd2の中央
すなわちX+のときに出力Vはll−I2どなるのでゼ
ロとなり、x1以上ではI+>I2となり正の値を示し
、×1以下では負の値を示す。しかし、実際には光ll
流は距離によって変化し、特に遠距離では小さくなって
、へではゼロ・となってしまう。従って、入射光の位置
がゼロに近い付近では出力■はゼロとなり、実線のよう
な形となる。Next, when the intermediate electrode is opened and the output ■, that is, VIZ = (1+ -12)/(II + I2), is calculated based on the signal currents output from the signal electrodes d2 and dl, it becomes as shown in the same figure. . Here, the dotted line indicates the case where the photocurrent due to the incident light exists stably regardless of the distance, but in this case, when the position of the incident light is at the center of the electrodes d and d2, that is, at X+, the output V becomes ll-I2 Therefore, it becomes zero, and when x1 or more, I+>I2, indicating a positive value, and below x1, a negative value. However, in reality the light
The flow changes depending on the distance, especially at long distances, it becomes small and becomes zero at a distance. Therefore, in the vicinity where the position of the incident light is close to zero, the output (2) becomes zero, resulting in a shape like a solid line.
従って、被写体距離に応じて、使用する電極の組合せを
変えることによって遠距離方向での測距精度を悪化させ
ることなく、測距範囲の至近を近づけることが可能とな
る。Therefore, by changing the combination of electrodes used depending on the subject distance, it is possible to bring the distance measurement range closer to the object without deteriorating the distance measurement accuracy in the long distance direction.
第4図は、上記PSD50を用いた距離検出回路の一実
施例である。FIG. 4 shows an embodiment of a distance detection circuit using the PSD 50 described above.
図中、PSD50の共通電極do−は第1及び第2のO
Pアンプ7.8の非反転入力端子に接がれるとともに基
準電圧y refに接がれている。In the figure, the common electrode do- of the PSD 50 is connected to the first and second O
It is connected to the non-inverting input terminal of the P amplifier 7.8 and to the reference voltage y ref.
また、中間電極d3はアナログスイッチ20を介してO
Pアンプ7の反転入力端子に接がれている。さらに信号
電極d、はアナログスイッチ21を介してOPアンプ7
の反転入力端子に接がれ、信号電極d2はOPアンプ8
の反転入力端子に接がれている。さらにこのOPアンプ
7.8は各々抵抗9.10により負帰還ががけられ、電
流・電圧変換回路を形成している。フィルター11.1
2は各々OPアンプ7.8の出力端に接がれ、背景光等
により定常的に発生している光電流から前記発光体1の
投光により発生する光電流の変化分を検出するようにな
っている。Further, the intermediate electrode d3 is connected to the O via the analog switch 20.
It is connected to the inverting input terminal of the P amplifier 7. Furthermore, the signal electrode d is connected to the OP amplifier 7 via the analog switch 21.
The signal electrode d2 is connected to the inverting input terminal of the OP amplifier 8.
is connected to the inverting input terminal of Further, each of the OP amplifiers 7.8 is subjected to negative feedback by a resistor 9.10, thereby forming a current/voltage conversion circuit. Filter 11.1
2 are connected to the output terminals of the OP amplifiers 7 and 8, respectively, so as to detect a change in the photocurrent generated by the emission of light from the light emitter 1 from the photocurrent constantly generated due to background light, etc. It has become.
差信号発生回路13はフィルタ11とフィルタ12とに
接続され、これら両者の出力の差を出力するようになっ
ている。和信号発生回路14はフィルタ11とフィルタ
12とに接続されこれら両者の出力の和を出力するよう
になっている。距離信号出力回路15は上記和信号発生
回路14と差信号発生回路13とに接続され、上記差出
力と和出力との比、すなわち距離に対応した信号を出力
するようになっている。比較回路16は前記距離信号出
力回路15の出力と比較電圧■2とを入力され両人カの
大小関係を判別して出力する。この比較電圧v2は検出
精度、至近撮影距離等の要素を適宜考慮して定められる
一定電圧である。トランジスタ18は前記発光体1に接
続されており、制御回路23がらの出力により、レリー
ズ釦の押下時等にパルス状にOnするようになっている
。アナログスイッチ2oは前記中間電極d3とOPアン
プ7の反転入力端との間に介挿され、インバータ22を
介して制御回路23に接続されている。アナログスイッ
チ21は前記信号電極dIとOPアンプ7の反転入力端
子との間に介挿され、制御回路23に接続されている。The difference signal generation circuit 13 is connected to the filter 11 and the filter 12, and outputs the difference between the outputs of these two. The sum signal generating circuit 14 is connected to the filter 11 and the filter 12 and outputs the sum of their outputs. The distance signal output circuit 15 is connected to the sum signal generation circuit 14 and the difference signal generation circuit 13, and outputs a signal corresponding to the ratio of the difference output to the sum output, that is, the distance. The comparison circuit 16 receives the output of the distance signal output circuit 15 and the comparison voltage (2), determines the magnitude relationship between the forces of both persons, and outputs the result. This comparison voltage v2 is a constant voltage determined by appropriately considering factors such as detection accuracy and close shooting distance. The transistor 18 is connected to the light emitting body 1, and is turned on in a pulsed manner by an output from the control circuit 23 when the release button is pressed. The analog switch 2o is inserted between the intermediate electrode d3 and the inverting input terminal of the OP amplifier 7, and is connected to the control circuit 23 via the inverter 22. The analog switch 21 is inserted between the signal electrode dI and the inverting input terminal of the OP amplifier 7, and is connected to the control circuit 23.
上記各アナログスイッチ20.21はHレベルの信号を
受けたときOnするようになっている。Each of the analog switches 20 and 21 is turned on when receiving an H level signal.
次に上記実施例の動作を説明する。Next, the operation of the above embodiment will be explained.
初期状態で、制御回路23の制御端子24がらはLレベ
ルの信号が出力されている。このときアナログスイッチ
21はoffとなり、アナログスイッチ20がon状態
となる。従って、電流−電圧変換回路を形成するOPア
ンプ7の反転端子にはPSD50の中間電極d3が接続
され、PSD50の電極dlはオーブン状態となってい
る。ここで制御回路23の出力により、レリーズ釦の押
下等に連動してトランジスタ18をonさせ発光体1を
パルス状に点灯させると被写体からの反射光によるPS
D50の光電流は、その入射位置に応じて中間電極d3
と信号電極d2とに分流されて出力される。この分流さ
れた信号電流はそれぞれOPアンプ7.8にて電流−電
圧変換され、フィルタ11.12によって定常光による
光電流から分離されて出力される。このフィルタ11.
12からの出力は差信号出力回路13、和信号出力回路
14及び距離信号出力回路15により演算される。中間
電極d3及び信号電極d2から出力される信号電流をそ
れぞれl−112とすると、距離信号出力回路15の出
力■は、
Vz3 =f((I コ − 12 )/ (1
3+12 ))となる。ここで、fは電流−電圧変換
に関する係数である。従って、受光レンズ4の光軸とP
SD50の位置を第1図に示した関係に設定しておくと
第3回目に示した出力が得られ、被写体距離に反比例し
たアナログ出力が得られる。In the initial state, the control terminal 24 of the control circuit 23 outputs an L level signal. At this time, the analog switch 21 is turned off, and the analog switch 20 is turned on. Therefore, the intermediate electrode d3 of the PSD 50 is connected to the inverting terminal of the OP amplifier 7 forming the current-voltage conversion circuit, and the electrode dl of the PSD 50 is in an oven state. Here, when the output of the control circuit 23 turns on the transistor 18 in conjunction with pressing the release button, etc., and lights up the light emitter 1 in a pulsed manner, the PS due to the reflected light from the subject
The photocurrent D50 is applied to the intermediate electrode d3 depending on its incident position.
and the signal electrode d2 and output. The shunted signal currents are each subjected to current-to-voltage conversion by an OP amplifier 7.8, separated from the photocurrent due to the stationary light by a filter 11.12, and output. This filter 11.
The output from 12 is calculated by a difference signal output circuit 13, a sum signal output circuit 14, and a distance signal output circuit 15. When the signal currents output from the intermediate electrode d3 and the signal electrode d2 are respectively l-112, the output ■ of the distance signal output circuit 15 is Vz3 = f((I co-12)/(1
3+12)). Here, f is a coefficient related to current-voltage conversion. Therefore, the optical axis of the light receiving lens 4 and P
If the position of the SD 50 is set in the relationship shown in FIG. 1, the output shown in the third example can be obtained, and an analog output that is inversely proportional to the subject distance can be obtained.
一方、上記距離信号出力回路15よりの出力■が比較電
圧v2より大のときはコンパレータ16の出力がしとな
り、制御回路23は制御端子24の出力をHにして再度
発光体1をパルス状に点灯させる。このときアナログス
イッチ20はoffとなり、アナログスイッチ21がO
nシてOPアンプ7の反転端子には前記PSD50の信
号電極d1が接続され、中間電極d3はオーブン状態と
なる。従って反射光による光電流は信号電極d1とd2
とに分流され、それぞれの信号電流をII、12とする
と、前記測距動作と同様にして、信号出力回路15がら
はVrz−f((II 12>/CII+12))な
る出力が得られる。この結果第3図Kに示したような出
力が得られる。On the other hand, when the output ■ from the distance signal output circuit 15 is higher than the comparison voltage v2, the output of the comparator 16 becomes low, and the control circuit 23 sets the output of the control terminal 24 to H to pulse the light emitter 1 again. Turn it on. At this time, the analog switch 20 is turned off, and the analog switch 21 is turned off.
Then, the signal electrode d1 of the PSD 50 is connected to the inverting terminal of the OP amplifier 7, and the intermediate electrode d3 is in an oven state. Therefore, the photocurrent due to reflected light is generated by the signal electrodes d1 and d2.
Assuming that the respective signal currents are II and 12, the signal output circuit 15 obtains an output of Vrz-f ((II 12>/CII+12)) in the same way as in the distance measuring operation. As a result, an output as shown in FIG. 3K is obtained.
従って、第1回目の測距時に距離信号出力回路15の出
力が比較電圧v2より低くなるような被写体距離、すな
わちコンパレータ16の出力がHとなるときは第1回目
の測距結果をそのまま被写体の距離信号として用い、■
2以上となる被写体距離すなわちコンパレータ16の出
力がLのときは、第2回目の測距結果を適宜換算して用
いて距離信号とすることによって、■2以下となるよう
な被写体距離までは、測距精度を劣化させることなく、
測距範囲をより至近に近づけることができる。なお、第
2回目の測距時は、反射光の移動量に対する距離信号と
なる出力の変化量が第1回目の測距に対して小さくなり
、精度が悪くなる方向であるが、近距離においては、反
射光そのものが大きく、回路ノイズ等の影響が小さいの
で、特に問題とはならない。Therefore, when the object distance is such that the output of the distance signal output circuit 15 becomes lower than the comparison voltage v2 during the first distance measurement, that is, when the output of the comparator 16 becomes H, the first distance measurement result is used as is for the object. Used as a distance signal,■
When the object distance is 2 or more, that is, the output of the comparator 16 is L, the second distance measurement result is appropriately converted and used as a distance signal.■ Until the object distance is 2 or less, Without degrading distance measurement accuracy,
The distance measurement range can be brought closer. In addition, during the second distance measurement, the amount of change in the output that becomes the distance signal with respect to the amount of movement of the reflected light is smaller than the first distance measurement, and the accuracy tends to deteriorate, but at short distances Since the reflected light itself is large and the influence of circuit noise etc. is small, this does not pose a particular problem.
第5図は本発明の他の実施例を示す図である。FIG. 5 is a diagram showing another embodiment of the present invention.
図中、PSD51の両端には信号電極d、、d2が設け
られており、この信号電極d+、d2問には中間電極d
3.d、が設けられている。In the figure, signal electrodes d, d2 are provided at both ends of the PSD 51, and an intermediate electrode d is provided between the signal electrodes d+ and d2.
3. d is provided.
ここで信号電極d1とd2及び中間電極d3とd4の各
中心が同じになるようにそれぞれの電極の位置を設定し
である。上記信号電極d1とd2、中間電極d3と64
の組合せの一方を選択して信号電流を検出すれば、反射
光の入射位置を中心からの距離×で表わして、第6図に
示すような出力が得られる。ここで、Pは信号電極d
+dzを選択した場合、Qは中間電極d3d4を選択し
た場合を示す。Here, the positions of the signal electrodes d1 and d2 and the intermediate electrodes d3 and d4 are set so that their respective centers are the same. The signal electrodes d1 and d2, the intermediate electrodes d3 and 64
If one of the combinations is selected and the signal current is detected, an output as shown in FIG. 6 can be obtained by expressing the incident position of the reflected light as the distance x from the center. Here, P is the signal electrode d
When +dz is selected, Q indicates the case where intermediate electrodes d3d4 are selected.
第7図は上記PSD51を用いた回路例であり、第4図
と同じ素子には同じ符号を付し、説明は省略する。上記
第4図に示した回路との差は、信号1!ff1dzと中
間電極d4とを選択するためのアナログスイッチ41及
び42が追加されており、制御回路23の制御端子24
がHのときは電極d+、d2をOPアンプ7.8に接続
し、Lのときは電極d3、d4をoPアンプ7.8に接
続するよう構成した点にある。FIG. 7 shows an example of a circuit using the above-mentioned PSD 51, and the same elements as in FIG. 4 are denoted by the same reference numerals, and the explanation thereof will be omitted. The difference from the circuit shown in FIG. 4 above is that the signal is 1! Analog switches 41 and 42 for selecting ff1dz and intermediate electrode d4 are added, and the control terminal 24 of the control circuit 23
When is H, the electrodes d+ and d2 are connected to the OP amplifier 7.8, and when is L, the electrodes d3 and d4 are connected to the op amplifier 7.8.
その他は第4図の回路と同様であるので、説明は省略す
る。The rest of the circuit is the same as the circuit shown in FIG. 4, so a description thereof will be omitted.
[発明の効果]
本発明によれば、発光体すなわち投光、部を2個設けず
とも、測距精度を劣化させずに最至近検出可能距離を短
くすることができる。[Effects of the Invention] According to the present invention, the closest detectable distance can be shortened without deteriorating the distance measurement accuracy without providing two light emitters, that is, light projectors.
第1図は本発明の一実施例の平面図、第2図は上記実施
例の検出素子の正面図、第3図は上記実施例の出力特性
を示す図、第4図は上記実施例の検出素子を用いる回路
図、第5図は本発明の他の実施例の検出素子を示す正面
図、第6図は上記他の実施例の出力特性を示す図、第7
図は上記他の実施例の検出素子を用いる回路図、第8図
は従来例を示す平面図、第9図は従来例の検出素子を示
す平面図、第10図は従来例の出力特性を示す図、第1
1図は検出素子の出力特性のバラツキ度を示す図である
。Fig. 1 is a plan view of an embodiment of the present invention, Fig. 2 is a front view of the detection element of the above embodiment, Fig. 3 is a diagram showing the output characteristics of the above embodiment, and Fig. 4 is a diagram of the above embodiment. A circuit diagram using a detection element, FIG. 5 is a front view showing a detection element of another embodiment of the present invention, FIG. 6 is a diagram showing output characteristics of the other embodiment described above, and FIG.
The figure is a circuit diagram using the detection element of the other embodiment mentioned above, Figure 8 is a plan view showing the conventional example, Figure 9 is a plan view showing the detection element of the conventional example, and Figure 10 shows the output characteristics of the conventional example. Figure shown, 1st
FIG. 1 is a diagram showing the degree of variation in the output characteristics of the detection elements.
Claims (1)
極を有する半導体位置検出素子を用いた距離検出装置に
おいて、 上記一対の信号電極の間に少なくとも1個以上の中間電
極を配設し、被写体距離に応じて、上記一対の信号電極
からの出力電流を距離検出に用いる場合と、上記一対の
信号電極のうちの一方の信号電極と中間電極とによる出
力電流あるいは中間電極同士の出力電流を距離検出に用
いる場合とを切換えることを特徴とする距離検出装置。[Claims] A distance detection device using a semiconductor position detection element having a pair of signal electrodes for generating a current according to the distance of an object, wherein at least one intermediate electrode is provided between the pair of signal electrodes. Depending on the subject distance, the output current from the pair of signal electrodes is used for distance detection, the output current from one signal electrode of the pair of signal electrodes and the intermediate electrode, or the output current between the intermediate electrodes. A distance detection device characterized by switching between using the output current for distance detection.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61314018A JPH0830653B2 (en) | 1986-12-27 | 1986-12-27 | Distance detector |
US07/136,725 US4849781A (en) | 1986-12-27 | 1987-12-22 | Range detector |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61314018A JPH0830653B2 (en) | 1986-12-27 | 1986-12-27 | Distance detector |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP11677093A Division JP2674468B2 (en) | 1993-05-19 | 1993-05-19 | Distance detection device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS63167211A true JPS63167211A (en) | 1988-07-11 |
JPH0830653B2 JPH0830653B2 (en) | 1996-03-27 |
Family
ID=18048213
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP61314018A Expired - Fee Related JPH0830653B2 (en) | 1986-12-27 | 1986-12-27 | Distance detector |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0830653B2 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6425006A (en) * | 1987-07-21 | 1989-01-27 | Rikagaku Kenkyusho | Optical method for detecting distance |
JPH01262410A (en) * | 1988-04-12 | 1989-10-19 | Nikon Corp | Distance measuring instrument using semiconductor position detecting element |
JPH0238805A (en) * | 1988-07-27 | 1990-02-08 | Rikagaku Kenkyusho | Constitution of optical three-dimensional coordinates input apparatus |
JPH04256807A (en) * | 1991-02-08 | 1992-09-11 | Sharp Corp | Distance sensor and cleaning apparatus utilizing distance sensor |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6082915A (en) * | 1983-10-14 | 1985-05-11 | Canon Inc | Distance measuring device |
JPS61155801A (en) * | 1984-12-28 | 1986-07-15 | Toshiba Corp | Compound type semiconductor position detecting element |
-
1986
- 1986-12-27 JP JP61314018A patent/JPH0830653B2/en not_active Expired - Fee Related
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6082915A (en) * | 1983-10-14 | 1985-05-11 | Canon Inc | Distance measuring device |
JPS61155801A (en) * | 1984-12-28 | 1986-07-15 | Toshiba Corp | Compound type semiconductor position detecting element |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6425006A (en) * | 1987-07-21 | 1989-01-27 | Rikagaku Kenkyusho | Optical method for detecting distance |
JPH01262410A (en) * | 1988-04-12 | 1989-10-19 | Nikon Corp | Distance measuring instrument using semiconductor position detecting element |
JPH0238805A (en) * | 1988-07-27 | 1990-02-08 | Rikagaku Kenkyusho | Constitution of optical three-dimensional coordinates input apparatus |
JPH04256807A (en) * | 1991-02-08 | 1992-09-11 | Sharp Corp | Distance sensor and cleaning apparatus utilizing distance sensor |
Also Published As
Publication number | Publication date |
---|---|
JPH0830653B2 (en) | 1996-03-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4983033A (en) | Automatic range finder for camera | |
US5512997A (en) | Distance measuring device | |
JPS5835410A (en) | Distance detecting device | |
US4849781A (en) | Range detector | |
JP2560747B2 (en) | Photoelectric conversion device | |
US5148011A (en) | Distance measuring apparatus using integration of reflected light and obtaining a plurality of distance signals | |
JPS63167211A (en) | Distance detecting device | |
JPS6082915A (en) | Distance measuring device | |
JPS60158309A (en) | Distance detector | |
JP2674468B2 (en) | Distance detection device | |
JPH11317541A (en) | Photocell for detecting object | |
JP2559393B2 (en) | Distance detector | |
JPS6227688A (en) | Photoelectric switch for setting distance | |
JPS6344117A (en) | Displacement switch | |
JP3066509B2 (en) | Displacement gauge | |
EP0525674B1 (en) | Distance measurement device | |
JPS6344169B2 (en) | ||
JPS63167212A (en) | Distance detecting device | |
JP2002026369A (en) | Photo-sensor circuit | |
JPH08254405A (en) | Optical displacement sensor | |
JPS63167213A (en) | Distance detecting device | |
JPH01287411A (en) | Distance measuring instrument | |
JPS61102817A (en) | Photoelectric switch | |
JPS63117210A (en) | Distance measuring device | |
JPS6225209A (en) | Distance measuring equipment |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |