JPS63166952A - Manufacture of molybdenum material - Google Patents

Manufacture of molybdenum material

Info

Publication number
JPS63166952A
JPS63166952A JP31132286A JP31132286A JPS63166952A JP S63166952 A JPS63166952 A JP S63166952A JP 31132286 A JP31132286 A JP 31132286A JP 31132286 A JP31132286 A JP 31132286A JP S63166952 A JPS63166952 A JP S63166952A
Authority
JP
Japan
Prior art keywords
temperature
heat treatment
bar
wire
swaging
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP31132286A
Other languages
Japanese (ja)
Other versions
JPH0129863B2 (en
Inventor
Hiroyuki Seto
瀬戸 啓之
Hiroshi Inoue
弘 井上
Kuninari Kimura
木村 邦成
Hisashi Sugawara
菅原 恒
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Tungsten Co Ltd
Original Assignee
Tokyo Tungsten Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Tungsten Co Ltd filed Critical Tokyo Tungsten Co Ltd
Priority to JP31132286A priority Critical patent/JPS63166952A/en
Publication of JPS63166952A publication Critical patent/JPS63166952A/en
Publication of JPH0129863B2 publication Critical patent/JPH0129863B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)

Abstract

PURPOSE:To manufacture an Mo wire excellent in strength at high temp. and resistance to cold brittleness after high-heat treatment, by subjecting an Mo powder which is doped with Al, K, and Si and in which Fe, Ni, and Cr are allowed to enter into solid solution to compacting and sintering and then by subjecting the resulting bar stock or wire rod to secondary recrystallization treatment and further to wire drawing. CONSTITUTION:The Mo powder which contains trace amounts of Al, K, and Si as doping agents and in which Fe, Ni, Cr, etc., are allowed to enter into solid solution is compacted into square bar shape, which is sintered. This sintered compact is worked by swaging, working by means of grooved roll, or other methods so that a reduction in area of 50-80% is reached, and formed into a columnar bar-shaped sintered compact. Subsequently, this bar-shaped body is subjected to heat treatment at a temp. in a range from 400 deg.C, as the recrystallization temp., to 2,000 deg.C, so that recrystallized grains are formed in the bar-shaped body. By subjecting the above bar-shaped body further to swaging and wire drawing at >=97% draft, the Mo wire excellent in strength at high temp. and resistance to cold brittleness after high-heat treatment can be manufactured.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は高温強度にすぐれ、且つ高温炭熱処理後常温
における耐脆性にもすぐれたMo材の製造方法に関する
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for producing a Mo material that has excellent high-temperature strength and excellent brittle resistance at room temperature after high-temperature coal heat treatment.

〔従来の技術〕[Conventional technology]

炉用ヒータや蒸着用ボートなどの高温下で使用されてい
るモリブデン材枠(以下Mo材と言う)としてはQl、
Si、KをドープしたMo材があり、常温における高伸
性のMo材にはPe、 Ni、 Go、 Crなどを固
溶させたものがある。
Molybdenum material frames (hereinafter referred to as Mo materials) used under high temperature conditions such as furnace heaters and vapor deposition boats include Ql,
There are Mo materials doped with Si and K, and Mo materials with high elongation at room temperature include those in which Pe, Ni, Go, Cr, etc. are dissolved in solid solution.

これらのMo材は従来、マンドレル、アンカー、サポー
ト、Mo箔材などに使用されている。そしてこれらの使
用態様は比較的低い温度、例えば再結晶温度以下であっ
た。このMo材が、JIS H4タイプの自動車用のハ
ロゲンランプに使われるMoサポートとして使用される
例を第1図により説明する。
These Mo materials have conventionally been used for mandrels, anchors, supports, Mo foil materials, etc. And these usage modes were at relatively low temperatures, for example, below the recrystallization temperature. An example in which this Mo material is used as a Mo support for a JIS H4 type automobile halogen lamp will be explained with reference to FIG.

ランプ中にArガスとBrz又はC)1.Brガスにご
く少量のH2ガスを封入する。図において1は石英又は
硬質ガラスランプである。2.4はWフィラメント、5
はMoサポート上に6のMoスリーブが溶接され、Mo
スリーブを通してWフィラメントの各々の足がかしめ止
められている。また、3はMOミラーでその一端にMo
スリーブが溶接され、1のフィラメントの片側の足がか
しめ止められている。また、5のMoサポートは、8の
Mo箔を介して外側のMoサポート7に連結している。
Ar gas and Brz or C)1. A very small amount of H2 gas is enclosed in Br gas. In the figure, 1 is a quartz or hard glass lamp. 2.4 is W filament, 5
6 Mo sleeves are welded onto the Mo support, and the Mo
Each leg of the W filament is crimped through the sleeve. In addition, 3 is an MO mirror with Mo
The sleeve is welded and one leg of filament 1 is caulked. Moreover, the Mo support 5 is connected to the outer Mo support 7 via the Mo foil 8.

一方、7のMoサポートはFe−Niリード線に溶接さ
れ連結している。
On the other hand, the Mo support No. 7 is welded and connected to the Fe-Ni lead wire.

第1図のハロゲン電球において、Wフィラメントは凡そ
2800℃以上の高温度で点灯されているが、封入ガス
中のBrzによりW + Brz 4WBr2の如きW
の再生ハロゲンサイクルによりタングステンが蒸発して
もBrzガスによりWBrzが形成され、それがハロゲ
ンサイクルにより再び分解してWフィラメント上にWが
析出する。このことによりWフィラメントの劣化は著し
く抑制されるという原理であるが、実際はWとBrzの
反応は可逆反応であるのでWがある一定量蒸発すると球
内のWBrgとの間に平衡関係が生まれWフィラメント
の蒸発を抑制する。このメカニズムによって高効率、高
寿命のハロゲンランプが得られる。
In the halogen light bulb shown in Figure 1, the W filament is lit at a high temperature of approximately 2800°C or higher, but due to Brz in the filled gas, W such as W + Brz 4WBr2
Even if tungsten evaporates during the regenerating halogen cycle, WBrz is formed by the Brz gas, which is decomposed again during the halogen cycle, and W is deposited on the W filament. The principle is that the deterioration of the W filament is significantly suppressed by this, but in reality, the reaction between W and Brz is a reversible reaction, so when a certain amount of W evaporates, an equilibrium relationship is created between WBrg in the sphere and WBrz. Suppress filament evaporation. This mechanism provides a halogen lamp with high efficiency and long life.

既述の如く、Wフィラメントの蒸発の抑制はWの再生ハ
ロゲンサイクルによるが、その反応を円滑にするために
フィラメント近傍の外壁温度は凡そ700℃程度の温度
に保持されていなければならないが、激しく蒸発して球
の黒化現象を併発して効率は低下して短寿命となる。
As mentioned above, the suppression of evaporation of the W filament is due to the W regeneration halogen cycle, but in order to make the reaction smooth, the temperature of the outer wall near the filament must be maintained at approximately 700°C, but the Evaporation causes the bulb to darken, reducing efficiency and shortening its lifespan.

外壁の温度が異常となる原因はタングステン線とモリブ
デンサポートの耐垂下性に起因する。タングステン線に
関する耐垂下性はハロゲンランプ用として改良が加えら
れているが、Moサポートについてはこれまで余り問題
にされてなかったが最近は、Moサポートの耐垂下性(
耐変形性ともいう)がWと同様に重要であることが判っ
た。“本発明は既述、1項において得られた材料を更に
粗大結晶化開始温度の100℃以上において、ハロゲン
ランプ用に組立てる前に加熱処理することによって”、
使用中に繊維構造より粗大結晶化する過程において生ず
る変形をあらかじめ除去することによってMoサポート
の変形を防止して、Wの再生ハロゲンサイクルを正常化
する。
The reason why the temperature of the outer wall becomes abnormal is due to the sagging resistance of the tungsten wire and molybdenum support. The sagging resistance of tungsten wire has been improved for use in halogen lamps, but Mo supports have not been much of an issue until now, but recently the sagging resistance of Mo supports (
It was found that deformation resistance (also called deformation resistance) is as important as W. “The present invention is achieved by further heat-treating the material obtained in Section 1 above at 100°C or higher, the temperature at which coarse crystallization begins, before assembling it into a halogen lamp.”
By removing in advance the deformation that occurs during the process of coarse crystallization from the fiber structure during use, deformation of the Mo support is prevented and the regeneration halogen cycle of W is normalized.

また、第2図は真空炉を示し、第3図に示す10コイル
ヒーター13を使用するものである。
Further, FIG. 2 shows a vacuum furnace, in which a ten-coil heater 13 shown in FIG. 3 is used.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

従来、マンドレル、アンカー、サポート、Mo箔などの
電球用に使用されているMo材は常温における加工性と
経済性が主眼となっていた。しかしながら、ハロゲンラ
ンプの出現により一般照明、映写、光学及び自動車用電
球なども高効率、高寿命ランプと急転換している。この
ため、従来比較的低い温度(再結晶温度以下)で使用さ
れていたM。
Conventionally, Mo materials used for light bulbs such as mandrels, anchors, supports, and Mo foils have focused on workability and economy at room temperature. However, with the advent of halogen lamps, general lighting, projection, optical, and automobile light bulbs are rapidly changing to high-efficiency, long-life lamps. For this reason, M has conventionally been used at relatively low temperatures (below the recrystallization temperature).

材についても耐高温特性にすぐれ、且つ高温度処理を施
し再結晶後も、従来のMo材のように常温において脆化
しないで加工性のよいMo材を得ることが課題となって
いる。また、ハロゲンランプ用MO部品以外の炉用ヒー
ターなどにおいても同様な特性を要求されている。
It is also a challenge to obtain a Mo material that has excellent high-temperature resistance properties and has good workability without becoming brittle at room temperature like conventional Mo materials even after high-temperature treatment and recrystallization. Similar characteristics are also required for furnace heaters and the like other than MO parts for halogen lamps.

従って本発明の目的は、高温特性にすぐれ、且つ高温度
処理を施し再結晶後も常温下で脆化せず加工性にすぐれ
たMo材を得る製造方法を提供することである。
Therefore, an object of the present invention is to provide a manufacturing method for obtaining a Mo material that has excellent high-temperature properties, does not become brittle at room temperature even after recrystallization after high-temperature treatment, and has excellent workability.

〔問題点を解決するための手段〕[Means for solving problems]

本発明の第1は、^J、K及びStをMO粉末にドープ
し且つFe、 Ni、 Crを固溶させた粉末より成型
・焼結によって得られた焼結体の製造方法である。
The first aspect of the present invention is a method for producing a sintered body obtained by molding and sintering a powder in which MO powder is doped with J, K, and St, and Fe, Ni, and Cr are dissolved in solid solution.

本発明の第2は第1の製造方法で得られたMo棒、線材
を成型後又は成型前に2次再結晶処理をする方法である
The second aspect of the present invention is a method in which the Mo rod or wire obtained by the first manufacturing method is subjected to a secondary recrystallization treatment after or before molding.

(1)  本発明の製造方法は、圧粉体を焼結して14
X14鶴の角柱棒状体を作製する。ついでここの工程に
おいて棒状全体に加工歪を与える。この場合50%以下
の加工率では棒状体の加工歪が不均一となって、後工程
の熱処理において再結晶組織の周辺部のみが粗大結晶化
され以降の加工が不適当となる。また、80%を越える
とスェージ加工中に割れが発生する頻度が多くなって歩
留を著しく悪化する。ついで、スェージ加工して得られ
た棒状体を再結晶温度より400℃以上ないしは200
0°C以下の温度で加熱処理することによって棒状体に
再結晶粒が生成する。再結晶粒の粒径は加えられる加工
歪及び加熱温度に存在される。即ち、加工歪が大きいほ
ど結晶粒はこまかくなる。
(1) The manufacturing method of the present invention involves sintering a green compact and
A prismatic rod-shaped body of an X14 crane is prepared. Next, in this step, processing strain is applied to the entire rod shape. In this case, if the processing rate is less than 50%, the processing strain of the rod-like body will become non-uniform, and only the peripheral part of the recrystallized structure will be coarsely crystallized in the post-process heat treatment, making subsequent processing inappropriate. Moreover, if it exceeds 80%, cracks will occur more frequently during swaging, resulting in a significant decrease in yield. Then, the rod-shaped body obtained by swaging is heated to 400°C or more or 200°C higher than the recrystallization temperature.
Recrystallized grains are generated in the rod-shaped body by heat treatment at a temperature of 0°C or lower. The grain size of recrystallized grains depends on the applied processing strain and heating temperature. That is, the larger the processing strain, the finer the crystal grains.

このことによって加熱処理前に棒状体にスェージ加工し
て、棒状体に均一な歪を加えることにより再結晶粒が均
一となり、しかも再結晶温度より300℃以上の温度に
加熱することにより25〜40μm程度のこまかい再結
晶粒が得られる。このMo棒状体の再結晶温度は棒状体
に与えられる加工歪が大きいほど再結晶温度が低下する
。例えば、50%の断面減少率では1500℃程度であ
り、70%の断面減少率では1300℃程度まで低下す
る。このことにより同じ温度で加熱処理しても大きな加
工歪を加えた方が結晶粒は細かくなる。この場合、加熱
温度を上述した範囲に限定した理由は加熱処理温度が再
結晶温度より300℃を越えない温度において再結晶し
た再結晶粒は大粒となって後工程で伸線加工を行なわれ
たときは、スェージ工程において割れを発生する。また
、加工歪が断面減少率80%以上与えられるときは結晶
粒は微細になりすぎて伸線加工においてクラックが発生
し易くなる。また、2000℃を越える温度では結晶粒
の微細効果が飽和状態に達する。
By swaging the rod-shaped body before heat treatment and applying uniform strain to the rod-shaped body, the recrystallized grains become uniform, and by heating to a temperature of 300°C or more above the recrystallization temperature, the grain size becomes 25 to 40 μm. Fine recrystallized grains can be obtained. The recrystallization temperature of this Mo rod-like body decreases as the processing strain applied to the rod-like body increases. For example, at a reduction rate of 50%, the temperature decreases to about 1500°C, and at a reduction rate of 70%, the temperature decreases to about 1300°C. As a result, even if the heat treatment is carried out at the same temperature, the crystal grains become finer when a large processing strain is applied. In this case, the reason why the heating temperature was limited to the above-mentioned range is that when the heat treatment temperature does not exceed 300°C above the recrystallization temperature, the recrystallized grains become large and are subjected to wire drawing in the subsequent process. In some cases, cracks occur during the swaging process. Furthermore, when the processing strain is applied with a reduction in area of 80% or more, the crystal grains become too fine and cracks are likely to occur during wire drawing. Further, at temperatures exceeding 2000° C., the effect of fine crystal grains reaches a saturated state.

の線径のMovAを製造する。A wire diameter of MovA is manufactured.

+21  +1)法で得られたAN、に、Si及びFe
、 Ni。
+21 +1) In the AN obtained by the method, Si and Fe
, Ni.

Cr含有のMo材は通常は1000〜1400°C間で
の歪取り焼鈍を行って2次成形加工を施す。
Cr-containing Mo material is usually subjected to strain relief annealing at 1000 to 1400°C and subjected to secondary forming processing.

〔実施例〕〔Example〕

(1)表1に711’ + St +  K及びFe、
 Ni、 Moを含有した焼結体の分析値と試料磁を示
す。
(1) Table 1 shows 711' + St + K and Fe,
The analytical values and sample magnets of a sintered body containing Ni and Mo are shown.

以下今日 表1 表1に示した各焼結体を1400℃以下でスェージ加工
を行い、中間で熱処理を行い97%以上のスェージ加工
及び伸線加工を行って各試料を作製した。
Table 1 below: Each sintered body shown in Table 1 was swaged at 1400° C. or below, heat treated in the middle, and swaged and wire drawn to a rate of 97% or higher to produce each sample.

以下舎臼 (2)  (11項における表11表2の試料Il&L
3によって作製された試料の線径0.8.0.60.0
.35fiφに関する実施例を示す。
Below is the mill (2) (Table 11 in Section 11 Table 2 Samples Il&L
Wire diameter of sample prepared by 3: 0.8.0.60.0
.. An example regarding 35fiφ will be shown.

試料隘3の焼結体を1400℃以下でスェージ加工を行
い、スェージ加工の途中線径8.9fiφにおいて18
00℃の温度で熱処理を行い、以降スェージ及び線引加
工を行って所望の試験線径とし、1300℃X20分の
歪取り処理を行い試験片を作製した。
The sintered body in sample chamber 3 was swaged at a temperature below 1400°C, and during the swaging process, the wire diameter was 8.9fiφ and 18
Heat treatment was performed at a temperature of 00°C, and thereafter swaging and wire drawing were performed to obtain a desired test wire diameter, and a strain relief treatment was performed at 1300°C for 20 minutes to prepare a test piece.

各線材の再結晶カーブを水素雰囲気中にて20分間保持
した加熱処理温度と最大引張応力(δuTs )の関係
において第4図に示す。第4図より粗大結晶化温度(臨
界点)は0.8fiφ1450℃、0、60 **φ1
550℃、0.35mφ1650℃を示す。
The recrystallization curve of each wire is shown in FIG. 4 in terms of the relationship between the heat treatment temperature maintained in a hydrogen atmosphere for 20 minutes and the maximum tensile stress (δuTs). From Figure 4, the coarse crystallization temperature (critical point) is 0.8fiφ1450℃, 0,60 **φ1
550℃, 0.35mφ1650℃.

第4図において、加熱処理温度0.8 wφ1500℃
、0、60 wφ1600℃、0.35 *sφ170
0℃の温度においてはδUTSは約100kg/w”の
値が50kg/龍2まで低下して以降安定値を示す。
In Figure 4, the heat treatment temperature is 0.8wφ1500℃
,0,60 wφ1600℃, 0.35 *sφ170
At a temperature of 0° C., δUTS decreases from about 100 kg/w” to 50 kg/Ryu2 and then shows a stable value.

第5図は上述の各々の温度における加熱処理後の顕微鏡
組織を示す。第5図から明らかなように、粗大結晶下部
(0点)においては未だ繊維構造を維持しているがδa
ysが急降下したT点のそれはクサビ状にかみ合った数
層の線軸に平行な長大な結晶に変換している。
FIG. 5 shows the microstructure after heat treatment at each of the above-mentioned temperatures. As is clear from Fig. 5, the fiber structure is still maintained in the lower part of the coarse crystals (point 0), but δa
The point at T, where ys suddenly falls, transforms into a long crystal parallel to the line axis of several interlocking layers in a wedge shape.

次に、加熱処理を施して最大結晶化した試片と処理前の
試片とをJIS 84460−1984 7項の加熱変
形試験法によ・って変形率を試験を行った結果を示す。
Next, the results of testing the deformation rate of specimens that were subjected to heat treatment to achieve maximum crystallization and specimens before treatment using the heat deformation test method of JIS 84460-1984 Section 7 are shown.

第6図は加熱変形試験装置を示す。11のようにヘアピ
ンに成形した試験片に所定のおもり12をかけたまま、
露点−40℃以下の水素ガス又はアンモニア分解ガスを
流したペルジャーの中で所定電流で一定時間通電加熱す
る。冷却後おもりを外して第6図のSを測定した後試験
を行う。
FIG. 6 shows a heating deformation test device. With a predetermined weight 12 applied to a test piece formed into a hairpin as shown in 11,
The sample is heated with a predetermined current for a predetermined period of time in a Pel jar in which hydrogen gas or ammonia decomposition gas having a dew point of -40° C. or lower is flowed. After cooling, remove the weight, measure S in Figure 6, and then conduct the test.

成形後、再び所定電流で一定時間通電加熱し、冷却後試
験片を取り外し、変形量を測定する。加熱温度はのぞき
窓より光高温計(パイロメーター)にて測定する。
After molding, the test piece is heated again with a predetermined current for a certain period of time, and after cooling, the test piece is removed and the amount of deformation is measured. The heating temperature is measured using an optical pyrometer through the viewing window.

成形及び試験条件を表3に示す。Table 3 shows the molding and test conditions.

以下舎日 変形量測定方法及び評価方法について説明する。Below is the date A method for measuring the amount of deformation and an evaluation method will be explained.

ヘアピンは加熱後、第7図のように変形する。変形のS
+ΔSを目盛板などで読みとり (S+ΔS)龍又は(
ΔS/Sx 100)%で表示する。
After heating, the hairpin deforms as shown in Figure 7. S of transformation
Read +ΔS with a scale plate, etc. (S+ΔS) Dragon or (
Displayed as ΔS/Sx 100)%.

表4に実験結果を示す。Table 4 shows the experimental results.

表4に各試験片の加工方法及び熱処理以降の工程の加工
損率を示す。その結果、本発明の方法においては加工の
損率が2%以下となるが、比較用の方法ではいずれも加
工損率が悪い。特に熱処理なしの1IkL10は90%
以上の損率である。この損率は線材のクラック欠陥であ
る。
Table 4 shows the processing method of each test piece and the processing loss rate of the steps after heat treatment. As a result, in the method of the present invention, the machining loss rate is 2% or less, but in all the comparative methods, the machining loss rate is poor. Especially 1IkL10 without heat treatment is 90%
This is the loss ratio. This loss factor is a crack defect in the wire.

以下今日 第  4 表 以下宗日Below today Table 4 Souichi below

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はMo材の使用されるJISHAタイプのハロゲ
ンランプの模式図、 第2図は真空炉を示す側断面図、 第3図は第2図の真空炉に用いられるコイルヒータを示
す側面図、 第4図は試料光3から得た3種の線径の線材の加熱処理
温度と最大引張応力との関係図、第5図は第4図で示す
3種の線材の加熱処理後の顕微鏡組織図、 第6図は加熱変形試験装置を示す側面図、第7図は加熱
変形量測定により変形したヘアピンを示す図である。 1・・・石英ガラス又は硬質ガラス、2・・・Wフィラ
メント、3・・・Moミラー、4・・・Wフィラメント
、5・・・Moサポート、6・・・財スリーブ、7・・
・Moサポート、8・・・Mo箔、9・・・Fe−Ni
リード線、10・・・封入部、11・・・試験片、12
・・・おもり、13・・・コイルヒータ。 第1図 第2図 第4図 第5図
Figure 1 is a schematic diagram of a JISHA type halogen lamp using Mo material, Figure 2 is a side sectional view showing a vacuum furnace, and Figure 3 is a side view showing a coil heater used in the vacuum furnace shown in Figure 2. , Figure 4 is a diagram of the relationship between heat treatment temperature and maximum tensile stress for wire rods of three diameters obtained from sample light 3, and Figure 5 is a microscope view of the three types of wire rods shown in Figure 4 after heat treatment. FIG. 6 is a side view showing the heating deformation testing device, and FIG. 7 is a diagram showing the hairpin deformed by measuring the amount of heating deformation. DESCRIPTION OF SYMBOLS 1... Quartz glass or hard glass, 2... W filament, 3... Mo mirror, 4... W filament, 5... Mo support, 6... Material sleeve, 7...
・Mo support, 8...Mo foil, 9...Fe-Ni
Lead wire, 10...Enclosed part, 11...Test piece, 12
...Weight, 13...Coil heater. Figure 1 Figure 2 Figure 4 Figure 5

Claims (1)

【特許請求の範囲】 1、Al、K、Siのドープ剤の存在下で、Fe、Ni
、Cr元素を固溶化させて焼結体を得、スエージ又は溝
ロール加工工程において焼結体からの断面減少率が50
〜80%となるように、棒状体の再結晶温度である40
0℃以上、2000℃以下の温度で加熱処理を行うとと
もに、更にそれ以降のスエージ及び線引加工を97%以
上行うことを特徴とするモリブデン材の製造方法。 2、前記モリブデン材から製造される線材又は棒材を粗
大結晶化温度より100℃以上高い温度で加熱処理を行
う特許請求の範囲第1項記載の製造方法。
[Claims] 1. Fe, Ni in the presence of Al, K, Si dopants
, a sintered body is obtained by solid solutioning the Cr element, and the area reduction rate from the sintered body is 50 in the swaging or groove rolling process.
40, which is the recrystallization temperature of the rod, so that the
A method for producing a molybdenum material, which comprises performing heat treatment at a temperature of 0° C. or higher and 2000° C. or lower, and further performing 97% or more of swaging and wire drawing. 2. The manufacturing method according to claim 1, wherein the wire rod or rod manufactured from the molybdenum material is heat-treated at a temperature 100° C. or more higher than the coarse crystallization temperature.
JP31132286A 1986-12-27 1986-12-27 Manufacture of molybdenum material Granted JPS63166952A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31132286A JPS63166952A (en) 1986-12-27 1986-12-27 Manufacture of molybdenum material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31132286A JPS63166952A (en) 1986-12-27 1986-12-27 Manufacture of molybdenum material

Publications (2)

Publication Number Publication Date
JPS63166952A true JPS63166952A (en) 1988-07-11
JPH0129863B2 JPH0129863B2 (en) 1989-06-14

Family

ID=18015740

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31132286A Granted JPS63166952A (en) 1986-12-27 1986-12-27 Manufacture of molybdenum material

Country Status (1)

Country Link
JP (1) JPS63166952A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017151737A1 (en) * 2016-03-03 2017-09-08 H.C. Starck Inc. Fabricaton of metallic parts by additive manufacturing

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59150071A (en) * 1983-02-10 1984-08-28 Toshiba Corp Production of molybdenum material
JPS6127459A (en) * 1984-07-17 1986-02-06 松下電器産業株式会社 Refrigeration cycle device for multi-chamber corresponding type air conditioner

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59150071A (en) * 1983-02-10 1984-08-28 Toshiba Corp Production of molybdenum material
JPS6127459A (en) * 1984-07-17 1986-02-06 松下電器産業株式会社 Refrigeration cycle device for multi-chamber corresponding type air conditioner

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017151737A1 (en) * 2016-03-03 2017-09-08 H.C. Starck Inc. Fabricaton of metallic parts by additive manufacturing
US10099267B2 (en) 2016-03-03 2018-10-16 H.C. Starck Inc. High-density, crack-free metallic parts
US10730089B2 (en) 2016-03-03 2020-08-04 H.C. Starck Inc. Fabrication of metallic parts by additive manufacturing
US10926311B2 (en) 2016-03-03 2021-02-23 H.C. Starck Inc. High-density, crack-free metallic parts
US11458519B2 (en) 2016-03-03 2022-10-04 H.C. Stark Solutions Coldwater, LLC High-density, crack-free metallic parts
US11554397B2 (en) 2016-03-03 2023-01-17 H.C. Starck Solutions Coldwater LLC Fabrication of metallic parts by additive manufacturing
US11826822B2 (en) 2016-03-03 2023-11-28 H.C. Starck Solutions Coldwater LLC High-density, crack-free metallic parts
US11919070B2 (en) 2016-03-03 2024-03-05 H.C. Starck Solutions Coldwater, LLC Fabrication of metallic parts by additive manufacturing

Also Published As

Publication number Publication date
JPH0129863B2 (en) 1989-06-14

Similar Documents

Publication Publication Date Title
KR100576901B1 (en) Tunsten wire, cathode heater, filament for vibration service lamp, probe pin, braun tube, and lamp
DE602005003240T2 (en) Highly-transformable and high-temperature tungsten wire and method for its production
JP2005015917A (en) Linear material of high melting-point metal, and manufacturing method therefor
US5158709A (en) Electric lamp containing molybdenum material doped wtih aluminum and potassium, molybdenum material for such a lamp, and method of its manufacture
JPS63166952A (en) Manufacture of molybdenum material
CN110957199A (en) Manufacturing method of tungsten filament
EP1335410B1 (en) Tungsten-rhenium filament and method for producing same
US1733752A (en) Refractory metal and its manufacture
JPS6127459B2 (en)
US4863527A (en) Process for producing doped tungsten wire with low strength and high ductility
JPH07278767A (en) Large-diameter molybdenum rod and its production
JPH03219039A (en) Rhenium-tungsten alloy material excellent in workability and its manufacture
JPH0222133B2 (en)
JP3320650B2 (en) Tungsten or molybdenum metal material, method for manufacturing secondary product material using the metal material, and heat treatment apparatus for performing the method
JP7373696B1 (en) Materials containing tungsten and DC discharge lamp electrodes
CN117894649A (en) Potassium-tungsten doped anode and preparation method and application thereof
JPH0565609A (en) High strength tungsten wire
JPS5959867A (en) Manufacture of rhenium-tungsten alloy material
JPS58133356A (en) Tungsten material and preparation thereof
JPH0232340B2 (en) MORIBUDENZAI
DE102009014615A1 (en) Electrode material, electrode and cold cathode fluorescent lamp
JPS63192839A (en) Lithium-tungsten alloy and its production
JPH1186800A (en) Tungsten wire and manufacture thereof, and filament and its manufacture thereof
US3682720A (en) Manufacture of substantially non-sagging refractory metal wire
JPH0250187B2 (en)