【発明の詳細な説明】[Detailed description of the invention]
この発明は、ハロゲンランプのサポート材等に
用いられるタンタル・タングステン・モリブデン
合金に関するものである。
ゲツタとしての働きをなすハロゲンランプ用材
料として、モリブデン−タンタル製リード線が公
知である(特開昭56−47544)。しかしながら、上
記従来の材料は高温加熱後の強度が充分ではな
く、自動車用電球や船舶用電球のように、震動の
激しい用途には適していなかつた。
この発明は、ゲツタ効果をそなえ、かつ耐震性
にすぐれたハロゲンランプ用材料を提供するもの
で、これについて以下に説明する。
この発明にかかるハロゲンランプ用材料は、タ
ンタル、タングステンおよびモリブデンを有効成
分とする合金からなり、その組成は重量比でタン
タル1〜10%、タングステン1〜50%を含有し、
残部が実質的にモリブデンであることを特徴とし
ている。これら有効成分のうちタンタル(Ta)
は、ゲツタとしての働きをなすもので、所望のゲ
ツタ効果が得られる量を含んでいればよい。その
含有量は1〜50%(重量%、以下同じ)とするの
が好ましく、2〜5%とするのがより好ましい。
タンタルは一般に高価であるので多量に添加する
のは不経済であり、強度的にも好ましくない。タ
ングステン(W)は合金の再結晶温度を上昇さ
せ、高温加熱による脆化を抑制する働きをなすも
ので、その好ましい含有量は前記の通り1〜50%
であるが、より好ましい範囲は5〜20%である。
タングステンの量が少なすぎると所期の耐震性が
得られず、多すぎると比重が高くなるとともに加
工性が悪くなる。成分中、モリブデン(Mo)
は、耐熱性、加工性、ガラスに対する封着性等が
良いことから管球材料として広く使用されている
ものである。
この合金は、粉末ヤ金法によつて製造すること
ができる。すなわち、タンタル粉末、タングステ
ン粉末およびモリブデン粉末を所望の割合に配合
し、充分混合したのち、加圧成形して所定寸法の
圧粉体とする。これを高温で加熱して焼結体と
し、圧延、スエージング、伸線等の必要な塑性加
工を施して目的とする製品を得るのである。この
合金はタングステンを含んでいるので再結晶温度
が高く、加工性にもすぐれている。また、高温で
の引張り強さが高いので耐震性にすぐれている。
次に本発明の実施例にいついて説明する。
実施例
−320メツシユのタンタル粉末、平均粒度3.5ミ
クロン(μm)のタングステン粉末および平均粒
度4.2ミクロンのモリブデン粉末を使用し、第1
表に示す配合比で配合して充分混合した。
The present invention relates to tantalum-tungsten-molybdenum alloys used as support materials for halogen lamps. A molybdenum-tantalum lead wire is known as a material for a halogen lamp that functions as a getter (Japanese Patent Laid-Open No. 56-47544). However, the above-mentioned conventional materials do not have sufficient strength after being heated to high temperatures, and are not suitable for applications that are subject to strong vibrations, such as automobile light bulbs and marine light bulbs. The present invention provides a material for a halogen lamp that has a getter effect and has excellent earthquake resistance, and will be described below. The material for a halogen lamp according to the present invention is made of an alloy containing tantalum, tungsten, and molybdenum as active ingredients, and its composition contains 1 to 10% tantalum and 1 to 50% tungsten by weight,
It is characterized in that the remainder is essentially molybdenum. Among these active ingredients, tantalum (Ta)
acts as a getter, and may be contained in an amount that provides the desired getter effect. Its content is preferably 1 to 50% (weight %, same hereinafter), more preferably 2 to 5%.
Since tantalum is generally expensive, it is uneconomical to add a large amount, and it is also undesirable in terms of strength. Tungsten (W) increases the recrystallization temperature of the alloy and suppresses embrittlement caused by high-temperature heating, and its preferable content is 1 to 50% as mentioned above.
However, a more preferable range is 5 to 20%.
If the amount of tungsten is too small, the desired earthquake resistance cannot be obtained, and if it is too large, the specific gravity will become high and workability will deteriorate. Among the ingredients, molybdenum (Mo)
is widely used as a tube material because of its good heat resistance, workability, and sealing properties to glass. This alloy can be manufactured by the powder gold method. That is, tantalum powder, tungsten powder, and molybdenum powder are blended in a desired ratio, thoroughly mixed, and then pressure-molded to form a green compact of a predetermined size. This is heated to a high temperature to form a sintered body, and the desired product is obtained by subjecting it to necessary plastic working such as rolling, swaging, and wire drawing. Since this alloy contains tungsten, it has a high recrystallization temperature and excellent workability. It also has high tensile strength at high temperatures, so it has excellent earthquake resistance.
Next, examples of the present invention will be described. Example - Using tantalum powder of 320 mesh, tungsten powder with an average particle size of 3.5 microns (μm), and molybdenum powder with an average particle size of 4.2 microns, the first
They were blended at the blending ratio shown in the table and thoroughly mixed.
【表】
得られた混合粉末を2t/cm2の圧力で加圧成形し
て15×15×400(mm)の成形体とし、電気炉を用い
て水素気流中で予焼結を行なつた。予焼結は一次
(1200℃×1時間)と二次(1700℃×2時間)の
2回に分けて行なつた。つぎに、焼結炉として半
鐘炉(ベルジヤ式加熱炉)を使用し、水素気流中
で予焼結上りの成形体に直接通電して本焼結を行
なつた。通電スケジユールは、5分間で0から
2900Aまで通電電流を増加し、2900Aで25分間保
持したのち冷却した。この本焼結によつて、13.6
×13.3×357(mm)のインゴツトが得られた。つぎ
に、このインゴツトに段階的なスエージング加工
を施して直径3.0mmの丸棒とし、しかるのち落し
率8〜10%で線引き加工を施して直径0.35mmの線
材とした。上記加工の途中で、次の中間アンニー
ルを行なつた。先ず、直径3mmの段階で1370℃の
電気炉(ホツトゾーンの長さ約60cm)中を2m/
分の速度で通過させ、つぎに直径1.6mmの段階で
再度同様な中間アンニールを行なつた。得られた
線製品(0.35φ)を種々の温度で加熱したのち、
それぞれについて引張り強さと伸び率を測定した
結果は第1図および第2図に示す通りであつた。
これらの図には、参考としてタングステンを含ま
ない比較例(製造条件は実施例と同様である)の
データも記入されている。なお、本発明にかかる
合金線で自動車用小型ハロゲンランプのサポート
(タングステンフイラメントを支持するリード線
兼用の支持材)を試作したところ、すぐれた性能
が得られた。
以上に説明したように、本発明にかかるタンタ
ル・タングステン・モリブデン合金は、耐震性を
必要とするハロゲンランプ用材料としてきわめて
すぐれたものである。この合金を通常のハロゲン
ランプ用材料等特に耐震性を必要としない用途に
使用することができることは明らかである。[Table] The obtained mixed powder was press-molded at a pressure of 2t/ cm2 to form a compact of 15 x 15 x 400 (mm), and pre-sintered in a hydrogen stream using an electric furnace. . Pre-sintering was carried out in two stages: primary (1200°C x 1 hour) and secondary (1700°C x 2 hours). Next, a half-bell furnace (Belgear heating furnace) was used as a sintering furnace, and main sintering was performed by directly applying electricity to the pre-sintered compact in a hydrogen stream. The energization schedule is from 0 in 5 minutes.
The applied current was increased to 2900A, held at 2900A for 25 minutes, and then cooled. By this main sintering, 13.6
An ingot of ×13.3 × 357 (mm) was obtained. Next, this ingot was subjected to stepwise swaging processing to form a round bar with a diameter of 3.0 mm, and then wire drawing processing was performed at a drop rate of 8 to 10% to obtain a wire rod with a diameter of 0.35 mm. In the middle of the above processing, the following intermediate annealing was performed. First, at the stage of 3 mm in diameter, it was heated for 2 m/2 in an electric furnace at 1370°C (hot zone length approximately 60 cm).
Then, the same intermediate annealing was performed again at the stage of 1.6 mm in diameter. After heating the obtained wire product (0.35φ) at various temperatures,
The tensile strength and elongation percentage of each were measured and the results were as shown in FIGS. 1 and 2.
These figures also include data for a comparative example that does not contain tungsten (manufacturing conditions are the same as in the examples) for reference. When a support for a small halogen lamp for automobiles (a support material that also serves as a lead wire for supporting a tungsten filament) was manufactured using the alloy wire according to the present invention, excellent performance was obtained. As explained above, the tantalum-tungsten-molybdenum alloy according to the present invention is extremely excellent as a material for halogen lamps that require earthquake resistance. It is clear that this alloy can be used in applications that do not particularly require earthquake resistance, such as materials for ordinary halogen lamps.
【図面の簡単な説明】[Brief explanation of the drawing]
第1図は加熱温度と引張り強さとの関係をあら
わすグラフ、第2図は加熱温度と伸び率との関係
をあらわすグラフである。
FIG. 1 is a graph showing the relationship between heating temperature and tensile strength, and FIG. 2 is a graph showing the relationship between heating temperature and elongation rate.