JPS63166937A - Recovering method for noble metal from fuel cell electrode waste material - Google Patents

Recovering method for noble metal from fuel cell electrode waste material

Info

Publication number
JPS63166937A
JPS63166937A JP61315190A JP31519086A JPS63166937A JP S63166937 A JPS63166937 A JP S63166937A JP 61315190 A JP61315190 A JP 61315190A JP 31519086 A JP31519086 A JP 31519086A JP S63166937 A JPS63166937 A JP S63166937A
Authority
JP
Japan
Prior art keywords
platinum
alkali
fuel cell
waste material
fluorine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61315190A
Other languages
Japanese (ja)
Other versions
JPH086152B2 (en
Inventor
Yasuhisa Chiba
千葉 泰久
Satoru Tsuruoka
鶴岡 哲
Hironobu Yamamoto
博信 山本
Hajime Yoshida
肇 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokuriki Honten Co Ltd
Original Assignee
Tokuriki Honten Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokuriki Honten Co Ltd filed Critical Tokuriki Honten Co Ltd
Priority to JP31519086A priority Critical patent/JPH086152B2/en
Publication of JPS63166937A publication Critical patent/JPS63166937A/en
Publication of JPH086152B2 publication Critical patent/JPH086152B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/008Disposal or recycling of fuel cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/92Metals of platinum group
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/84Recycling of batteries or fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Energy (AREA)
  • Materials Engineering (AREA)
  • Inert Electrodes (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

PURPOSE:To recover the noble metals with high efficiency without discharging harmful gas to the outside nor infiltrating fluorine into a platinum recovery solution system, by burning fuel cell electrode waste material, etc., together with alkali carbonate. CONSTITUTION:The fuel cell electrode waste material, etc., are crushed and then burnt together with carbonate of alkali such as soda ash. At this time, polytetrafluoroethylene, etc., contained in the above waste material are decomposed, so that harmful fluorine-containing gas is generated. This gas is fixed in the form of alkali fluoride by means of the above alkali carbonate, so that discharge to the outside is prevented. The resulting burnt product is treated with aqua regia so as to recover the noble metals such as platinum. At this time, it is desirable that alkali fluoride in the above burnt product is treated with boride such as boric acid, to undergo complexing of fluorine so as to prevent the deterioration in the recovery rate of platinum and the like.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、使用済みの燃料電池の電極廃材等から、そこ
に含まれている白金等の貴金属を回収するための方法に
関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a method for recovering precious metals such as platinum contained therein from electrode waste materials of used fuel cells.

(従来の技術およびその問題点) 近年においては、省エネルギー、新エネルギー開発等の
要望から各種の燃料電池の製造、開発が活発に行われて
いる。この種の燃料電池の中でも、特に、リン酸型燃料
電池等においては、通常触媒活性剤として白金等の貴金
属を炭素電極に担持させており、従って、使用済みの電
極からはこのような貴金属を回収することが必要になる
。この貴金属の回収には、王水溶解法に代表される酸抽
出法を用いることができる。
(Prior Art and its Problems) In recent years, various fuel cells have been actively manufactured and developed due to demands for energy conservation, new energy development, and the like. Among these types of fuel cells, especially phosphoric acid fuel cells, noble metals such as platinum are usually supported on carbon electrodes as catalyst activators, and therefore, such noble metals are removed from used electrodes. It will be necessary to collect it. To recover this precious metal, an acid extraction method typified by the aqua regia dissolution method can be used.

ここに、燃料電池の廃材には一般にPTFB (ポリテ
トラフルオロエチレン)が含まれており、このために王
水を直接に作用させてもPTPBの存在によって王水の
白金抽出作用が阻害されて、回収効率が悪い。そこで、
このPTFEを除去するために王水処理の前工程で廃材
を焼成する必要がある。しかしながら、燃料電池の廃材
等には叙上のようにフッ素が含まれており、焼成工程に
おいて有害なフッ化ガスが発生するという問題点がある
Fuel cell waste generally contains PTFB (polytetrafluoroethylene), so even if aqua regia is applied directly, the platinum extraction action of aqua regia is inhibited by the presence of PTPB. Collection efficiency is poor. Therefore,
In order to remove this PTFE, it is necessary to sinter the waste material in a step prior to aqua regia treatment. However, as mentioned above, fuel cell waste materials contain fluorine, and there is a problem in that harmful fluoride gas is generated during the firing process.

本発明は、かかる点に鑑みて、有害ガスを外部に排出さ
せることなく、しかもフッ素を白金回収溶液系に入り込
ませることなく燃料電池の廃材等から効率良く貴金属を
回収することの可能な回収方法を開発することを目的と
している。
In view of these points, the present invention has been devised to provide a recovery method capable of efficiently recovering precious metals from fuel cell waste materials, etc., without emitting harmful gases to the outside and without introducing fluorine into the platinum recovery solution system. The purpose is to develop.

(問題点を解決するための手段) 上記の目的を達成するために、本発明では、先ず燃料電
池の電極廃材等から白金等の貴金属を回収する際に行わ
れる焼成工程において、前記廃材等を炭酸アルカリとと
もに焼成することによって、前記廃材等から発生するフ
ッ素含有ガスをフッ化アルカリとして固定し、これによ
って焼成工程において有害ガスが発生しないようにして
いる。
(Means for Solving the Problems) In order to achieve the above object, the present invention first uses the waste materials, etc., in the firing process performed when recovering precious metals such as platinum from the electrode waste materials of fuel cells. By firing with alkali carbonate, the fluorine-containing gas generated from the waste materials is fixed as alkali fluoride, thereby preventing the generation of harmful gases during the firing process.

さらに、上記の焼成工程において炭酸アルカリとともに
焼成することにより生成されたフッ化アルカリは、焼成
物をよく水洗いしても残留するので、それをホウ化物に
よりホウフッ化物として錯化して、白金を塩化白金酸錯
化合物とする工程で、白金フッ化錯化合物が生成するこ
とを防止するようにしている。
Furthermore, the alkali fluoride produced by firing with alkali carbonate in the above firing process remains even if the fired product is thoroughly washed with water. In the step of forming an acid complex compound, generation of a platinum fluoride complex compound is prevented.

すなわち、従来法では、上記のフッ化アルカリとして固
定されたフッ素が塩酸によって可逆変化して再び有害な
フッ化水素ガスとなり、それ自体がガラス等の反応容器
を犯すばかりか、王水によって溶けた白金イオンと反応
し、ヘキサクロロ白金酸アンモニウムより溶解度の大き
な白金フッ化錯化合物を生成し、白金溶液からの白金の
回収率を低下させる。そこで、本発明においては、生成
したフッ化アルカリを焼成品から除去する工程に引き続
いて、この焼成品をホウ酸で処理することによって、塩
酸の作用によって発生するフッ化水素ガスを錯化体にし
、より安定でかつ溶解度の高いホウフッ化物とし、でき
るだけ白金溶液系にフッ化物が混入することを防ぐよう
にしている。
In other words, in the conventional method, the fluorine fixed as alkali fluoride is reversibly changed by hydrochloric acid to become harmful hydrogen fluoride gas, which not only damages the reaction container such as glass but also dissolves in the aqua regia. It reacts with platinum ions to form a platinum fluoride complex compound with greater solubility than ammonium hexachloroplatinate, reducing the recovery rate of platinum from platinum solutions. Therefore, in the present invention, following the step of removing the generated alkali fluoride from the fired product, the fired product is treated with boric acid to convert the hydrogen fluoride gas generated by the action of hydrochloric acid into a complex. , a more stable and highly soluble borofluoride is used to prevent fluoride from being mixed into the platinum solution system as much as possible.

(発明の効果) このように、本発明の方法によれば、白金の抽出処理に
先行して行われる焼成工程において、過剰の炭酸アルカ
リとともに燃料電池の廃材等を焼成するようにいている
ので、廃材等から発生するフッ素含有ガスがフッ化アル
カリとして固定され、外部に放出されてしまうことを防
止できる。
(Effects of the Invention) As described above, according to the method of the present invention, in the firing step that is performed prior to the platinum extraction process, fuel cell waste materials are fired together with excess alkali carbonate. Fluorine-containing gas generated from waste materials and the like is fixed as alkali fluoride and can be prevented from being released to the outside.

第二の大きな効果として、本発明では、焼成品中の残存
フッ化アルカリを除去する工程においてホウ化物を加え
るようにしているので、この工程で使用される塩酸によ
って一旦フッ化アルカリとして固定されたフッ素が再び
有害なフッ化水素に戻ってしまわないように、フッ素が
錯化される。
The second major effect is that, in the present invention, boride is added in the step of removing residual alkali fluoride from the fired product, so that it is once fixed as alkali fluoride by the hydrochloric acid used in this step. Fluorine is complexed to prevent it from turning back into harmful hydrogen fluoride.

従って、発生したフッ化水素によって、白金フッ化錯化
合物を生成し、白金の回収率が低下してしまう弊害を解
消できるとともに、後の工程で使用されるガラス容器等
が発生したフッ素ガスによって浸される弊害も解消する
ことができる。この第二の効果がない場合には、たとえ
フッ素の無公害化処理がソーダ灰の混焼によって行われ
たとしても、それにより副生成するフッ素化合物が白金
回収溶液系に混入し、白金回収率を下げるのでは、本来
の目的を失うことになるので、この第二の効果がいかに
重要であるかが分かる。
Therefore, it is possible to eliminate the problem of the generation of platinum fluoride complex compounds caused by the generated hydrogen fluoride, which reduces the recovery rate of platinum, and also prevents the glass containers used in the subsequent process from being immersed in the generated fluorine gas. It is also possible to eliminate the negative effects caused by If this second effect does not exist, even if fluorine pollution-free treatment is carried out by co-firing soda ash, the fluorine compounds produced as a by-product will mix into the platinum recovery solution system and reduce the platinum recovery rate. If we lower it, we will lose the original purpose, so we can see how important this second effect is.

(実施例) 以下に、本発明の一実施例を詳細に説明する。(Example) An embodiment of the present invention will be described in detail below.

以下に述べる実施例は、燃料電池の電極廃触媒1100
(Iから白金を回収した例である。この回収品1000
gは、定量分析の結果、PTFE30.1%、P t 
9.25%、および炭素分等を60.6%から成ってい
た。
The embodiment described below is based on a fuel cell electrode waste catalyst 1100.
(This is an example of platinum recovered from I. This recovered product 1000
g is the result of quantitative analysis, PTFE30.1%, Pt
It consisted of 9.25% and 60.6% carbon content.

本実施例における処理工程は大略、次の10の工程から
なっている。
The processing steps in this example roughly consist of the following 10 steps.

A:脱リン、乾燥工程 B:粉砕工程 C:炭酸アルカリ混合工程 D=焼成工程 E:加水分解工程 F:残留NaFの錯化工程 G:王水溶解工程 H:中和処理工程 ■:白金塩沈殿工程 J:焙焼熔解工程 次に、各工程を詳細に説明する。A: Dephosphorization, drying process B: Grinding process C: Alkali carbonate mixing step D = firing process E: Hydrolysis step F: Complexing step of residual NaF G: Aqua regia dissolution process H: Neutralization process ■: Platinum salt precipitation process J: Roasting and melting process Next, each step will be explained in detail.

A:脱リン、乾燥工程 まず、上記の回収品1000gを水で良く洗浄して、燐
酸を除去した。この後、洗浄後の回収品を電気乾燥器に
入れて90℃で一晩乾燥した。乾燥後の重量は、984
gであった。なお、上記の洗浄水に含まれている白金は
、一旦イオン化後、亜鉛で還元して、粗白金とした。
A: Dephosphorization and drying step First, 1000 g of the above recovered product was thoroughly washed with water to remove phosphoric acid. Thereafter, the recovered product after washing was placed in an electric dryer and dried at 90° C. overnight. Weight after drying is 984
It was g. Note that the platinum contained in the above-mentioned washing water was once ionized and then reduced with zinc to obtain crude platinum.

B:粉砕工程 次に、乾燥した回収品を、粉砕機で粉砕した後、混合器
で混合した。この工程を経た後に、回収品の一部を採取
して定量分析した結果が、上述した値である。
B: Grinding process Next, the dried recovered product was ground in a grinder and then mixed in a mixer. After passing through this process, a portion of the recovered product was collected and quantitatively analyzed, and the above-mentioned values are the results.

C:炭酸アルカリ混合工程 上記の粉砕された回収品に、7〜8倍のソーダ灰(Na
2CO3)を投入して、これら画材を混合した。
C: Alkali carbonate mixing process Add 7 to 8 times more soda ash (Na
2CO3) and mixed these art materials.

このようにしてソーダ灰を混合した回収品を、混合器か
ら取り出した後、焼成炉の主燃焼室に仕込み、その上か
ら回収品表面を覆うようにソーダ灰粉末を振りかけた。
After the recovered product mixed with soda ash was taken out from the mixer, it was placed in the main combustion chamber of the kiln, and soda ash powder was sprinkled over it so as to cover the surface of the recovered product.

D:焼成工程 ここに、本例で用いた焼成炉は、主燃焼室、副燃焼室お
よび燃焼排ガス処理塔を備えた構造を有している。焼成
はまず主燃焼室において行われ、この主燃焼室での焼成
時に主燃焼室から飛散する灰分や未焼成分が、上記の副
燃焼室に集合されるようになっている。副燃焼室に集め
られた未焼成分は、ここにおいて再焼成される。この副
燃焼室によって廃材の焼成が確実に行われる。一方、上
記の排ガス処理塔にはNa2COiからなる吸収液が供
給されており、焼成によって主および副燃焼室から発生
する排ガスはこの吸収液と接触した後外部に排出される
構造になっている。
D: Firing Step The firing furnace used in this example has a structure including a main combustion chamber, a sub-combustion chamber, and a combustion exhaust gas treatment tower. Firing is first performed in the main combustion chamber, and ash and unburned components scattered from the main combustion chamber during firing in the main combustion chamber are collected in the sub-combustion chamber. The unfired components collected in the secondary combustion chamber are refired here. This auxiliary combustion chamber ensures that the waste material is burned. On the other hand, the above-mentioned exhaust gas treatment tower is supplied with an absorption liquid made of Na2COi, and the exhaust gas generated from the main and auxiliary combustion chambers during firing comes into contact with this absorption liquid and is then discharged to the outside.

上記構成の焼成炉を用いた回収品の焼成工程を説明する
。まず、上述したように、主燃焼室内に仕込まれソーダ
灰をふりかけた被焼成物は、この主燃焼室内において、
酸素供給下で電熱加熱によって焼成される。この焼成時
の温度を600〜700℃に保持した。この理由は、8
00℃以上にすると、Na2CO3が融解してカーボン
の燃焼が妨げられてしまうからであり、また、500℃
以下では反応速度が遅くカーボンの燃焼に時間がかかり
すぎるからである。
A firing process for recovered products using the firing furnace configured as described above will be explained. First, as mentioned above, the material to be burned that has been placed in the main combustion chamber and sprinkled with soda ash is
Calcined by electric heating under oxygen supply. The temperature during this firing was maintained at 600 to 700°C. The reason for this is 8
This is because if the temperature exceeds 00°C, Na2CO3 will melt and the combustion of carbon will be hindered.
This is because the reaction rate is slow and it takes too much time to burn the carbon.

主燃焼室内での焼成時にこの燃焼室から飛散した未焼成
分は副燃焼室に集められて再焼成される。
Unfired components scattered from the combustion chamber during firing in the main combustion chamber are collected in the auxiliary combustion chamber and refired.

この再焼成によって、白金の回収率の向上が達成された
。すなわち、後述するように、本例では白金の回収量の
3%をこの再焼成によって得ることができた。
This recalcination achieved an improvement in the recovery rate of platinum. That is, as will be described later, in this example, 3% of the recovered platinum could be obtained by this re-firing.

焼成時の主な反応機構は次の式に示す通りである。The main reaction mechanism during firing is as shown in the following equation.

PTF[i  +Na2CO3−NaF +CO2(1
)C+  02 →  CO□     (2)ここに
、上述のPTBFの熱分解過程で発生するHPまたはF
2等の有害ガスは、主燃焼室内でのNa2COsとの固
気相反芯式(1)によって大部分がNaF として固定
される。しかしながら、固定されずにそのまま排ガス中
に残るものは、排ガス処理塔に導入されてNa2CO:
+と接触することによって固定される。
PTF[i +Na2CO3-NaF +CO2(1
) C+ 02 → CO□ (2) Here, HP or F generated in the above-mentioned PTBF thermal decomposition process
Most of the harmful gases such as No. 2 are fixed as NaF by the solid-gas phase core system (1) with Na2COs in the main combustion chamber. However, Na2CO remains unfixed in the exhaust gas and is introduced into the exhaust gas treatment tower.
Fixed by contact with +.

このときの反応は次式で表せる。The reaction at this time can be expressed by the following formula.

8P   +  Na2CO,→ NaF    + 
  lI20   +  CO□   (3)Fi  
+ Na2Co3−+ NaF  +  CO2(4)
E:加水分解工程 次に、上記の工程によって得た焼成品、すなわち、主お
よび副燃焼室のそれぞれにおいて得られた焼成品を、加
水分解して、残留Na2CO+および生成NaFを除去
した。この後、固液分離し、白金、灰分等とともに残留
NaFを僅かに含む固形分を得た。
8P + Na2CO, → NaF +
lI20 + CO□ (3) Fi
+ Na2Co3-+ NaF + CO2 (4)
E: Hydrolysis step Next, the fired products obtained in the above steps, that is, the fired products obtained in each of the main and auxiliary combustion chambers, were hydrolyzed to remove residual Na2CO+ and generated NaF. Thereafter, solid-liquid separation was performed to obtain a solid content containing platinum, ash, etc. as well as a slight amount of residual NaF.

F:残留NaFの錯化工程 上記の工程によって得た固形分にホウ酸(83BO3)
を作用させると、固形分中に残存するNaF は可溶性
のホウフッ化物となり除去が容易になる。さらに完全に
NaFを分解するにはホウ酸を塩酸とともに作用させ一
旦生じるHPは以下の反応式に示すようにより安定で溶
解度の大きな)lBF4(ホウフッ酸)等の形態に錯化
されるので、白金溶液系にフッ素が混入しなくなる。
F: Complexing step of residual NaF Add boric acid (83BO3) to the solid content obtained in the above step.
When NaF 2 remains in the solid content, it becomes soluble borofluoride and can be easily removed. To further completely decompose NaF, boric acid is reacted with hydrochloric acid, and the HP generated is complexed into a form such as 1BF4 (borofluoric acid), which is more stable and has higher solubility, as shown in the reaction formula below. Fluorine will not be mixed into the solution system.

38F  +  83BO3→ )lBF3(OH) 
 +  2820   (5)118F3(叶) 十肝
→ HBF4    +  )+20   (6)なお
、)!、BO3の代わりに、NaBO□等を用いてもよ
い。
38F + 83BO3→ )lBF3(OH)
+ 2820 (5) 118F3 (Kano) Ten liver → HBF4 + ) + 20 (6) Furthermore, )! , BO3, NaBO□, etc. may be used.

ここで、従来法のように塩酸のみを用いてNaFを除去
する場合、発生したIFをそのままにしておくと、後述
の中和処理工程および白金塩沈澱工程において、このH
Fによって、白金フッ化錯化合物が生成され、このイオ
ンによって白金の回収率が低下してしまうとともに、以
降の工程で用いるガラス容器等の5102が浸されてし
まう。従って、本工程におけるように、残留したフッ素
を錯化することは極めて有効な手段である。
When removing NaF using only hydrochloric acid as in the conventional method, if the generated IF is left as is, this H
F generates a platinum fluoride complex compound, and these ions reduce the recovery rate of platinum and immerse the glass container 5102 used in subsequent steps. Therefore, complexing the remaining fluorine as in this step is an extremely effective means.

上述のように塩酸とホウ酸によって処理した後の処理物
を、固液分離して、濾液中に溶は出した微量の白金を、
亜鉛と塩酸を添加することによって粗白金として回収し
た。またこの固液分離によって得た固形分は約200g
であった。
After the treatment with hydrochloric acid and boric acid as described above, the treated product is separated into solid and liquid, and a trace amount of platinum dissolved in the filtrate is removed.
It was recovered as crude platinum by adding zinc and hydrochloric acid. The solid content obtained through this solid-liquid separation is approximately 200g.
Met.

G:王水溶解工程 前の工程で得た固形分を王水に溶解して白金を抽出し、
この白金を既知の方法で精製した。すなわち、王水1.
21を加えて溶解し、その後乾固させてIIcI を加
えるという脱硝操作を2〜3回繰り返し、その後にHC
I(1:9)で希釈し、冷却した後に濾過した。
G: Dissolve the solid content obtained in the step before the aqua regia dissolution step in aqua regia to extract platinum,
This platinum was purified by known methods. That is, aqua regia 1.
The denitrification operation of adding 21 and dissolving it, then drying it and adding IIcI is repeated 2 to 3 times, and then HC
It was diluted with I (1:9) and filtered after cooling.

なお1.かかる工程を経て残滓となった固形分について
は、再度王水抽出を行い、残留白金を溶し出し、これを
亜鉛を用いて還元して、粗白金として回収した。
Note 1. The solid content that remained after this process was extracted with aqua regia again to elute the residual platinum, which was reduced using zinc and recovered as crude platinum.

H:中和処理工程 前の工程で用いた洗液、および得られた濾過液に、既知
の中和処理を施した。即ちこれらの液に対して、Na叶
溶液と酸化剤とを用いてpHを7〜8に調整し、不純物
を水酸化物として沈殿させた。
H: The washing liquid used in the step before the neutralization treatment step and the obtained filtrate were subjected to a known neutralization treatment. That is, the pH of these solutions was adjusted to 7 to 8 using a Na leaf solution and an oxidizing agent, and impurities were precipitated as hydroxides.

この後、処理液を固液分離して、沈澱物を分離し、濾液
を次工程にまわしだ。
Thereafter, the treated solution was subjected to solid-liquid separation to separate the precipitate, and the filtrate was sent to the next step.

I:白金塩沈澱工程 上記の濾液に、塩酸を加えることによって酸性にして酸
化剤を追い出し、またこの濾液にNLCIの飽和液を加
えて(NH4) 2P tc16 を沈澱させた。この
後、固液分離を行って、沈澱物を除去した濾液に、亜鉛
とIIcI を加えて、この濾液中に含まれている少量
の白金を粗白金として回収した。一方、生成した沈澱物
を、5%の’NH,CI 溶液で良く洗浄した。
I: Platinum salt precipitation step The above filtrate was acidified by adding hydrochloric acid to drive out the oxidizing agent, and a saturated solution of NLCI was added to the filtrate to precipitate (NH4) 2P tc16. Thereafter, solid-liquid separation was performed to remove the precipitate, and zinc and IIcI were added to the filtrate to recover a small amount of platinum contained in the filtrate as crude platinum. Meanwhile, the generated precipitate was thoroughly washed with a 5% 'NH,CI solution.

J:焙焼熔解工程 最後に、上記の沈澱物を乾燥したのちに、炉の中で約7
00℃位まで加熱して、海綿状の白金を得た。この白金
をさらに熔解して、白金ボタンとした。
J: At the end of the roasting and melting process, after drying the above precipitate, heat it in a furnace for about 7 hours.
It was heated to about 00°C to obtain spongy platinum. This platinum was further melted to produce platinum buttons.

上述の工程を経て得られた白金の量は89.1 g(副
燃焼室で形成された焼成物から回収された分3gを含む
。)であった。また、上記の各工程A1F、GおよびI
において得た粗白金の総和は2.2gであった。以下に
、この結果をまとめて示す。
The amount of platinum obtained through the above process was 89.1 g (including 3 g recovered from the fired product formed in the sub-combustion chamber). In addition, each of the above steps A1F, G and I
The total amount of crude platinum obtained was 2.2 g. The results are summarized below.

結果 a、白金の含有量       92.5 gb1回収
回収量 主燃焼室の焼成物から  86.1 g副燃焼室の焼成
物から   3.0g (合計)    91.1 g C1回収率          98.5%なお1.上
述した本例においては、残留NaFを除去する工程で発
生するIIFをNa2CO3を用いて錯化しているが、
その他の炭酸アルカリを用いてもよいことは勿論である
。例えばに2C(13(炭酸カリウム)を用いても同様
の効果を得ることができる。
Result a, platinum content 92.5 gb1 recovery amount From the sintered product in the main combustion chamber 86.1 g From the sintered product in the auxiliary combustion chamber 3.0 g (total) 91.1 g C1 recovery rate 98.5% 1. In this example described above, IIF generated in the process of removing residual NaF is complexed with Na2CO3,
Of course, other alkali carbonates may also be used. For example, the same effect can be obtained by using 2C (13 (potassium carbonate)).

比較のため、錯化工程F1すなわち本発明の第二の効果
を用いずに同様に実験を行った結果、白金の回収率は8
6.5%であった。
For comparison, a similar experiment was conducted without using the complexing step F1, that is, without using the second effect of the present invention, and the platinum recovery rate was 8.
It was 6.5%.

手続補正書 昭和  年  月  日 特許庁長官  黒 1)明 雄  殿9心1、事件の表
示   昭和61年特許願第315190号2、発明の
名称   燃料電池の電極廃材等からの貴金属回収方法 3、補正をする者 事件との関係  出願人 名称 株式会社徳力本店 4、代理人 5、補正命令の日付  自  発 6、補正の対象    明細書の発明の詳細な説明の欄
明細書中、下記の個所にある誤記を上欄に示すように訂
正する。
Procedural amendment written by the Commissioner of the Japan Patent Office, Black 1) Yu Akira 1, Indication of case 1986 Patent Application No. 315190 2, Title of invention Method for recovering precious metals from fuel cell electrode waste materials, etc. 3, Amendment Relationship with the case filed by the applicant: Name of applicant: Tokuriki Honten Co., Ltd. 4, Agent: 5 Date of amendment order: Initiator: 6, Subject of amendment Detailed explanation of the invention in the specification The following places in the specification: Correct the errors as shown in the column above.

Claims (2)

【特許請求の範囲】[Claims] (1)燃料電池の電極廃材等から白金等の貴金属を回収
する方法において、前記廃材等を炭酸アルカリとともに
焼成することによって、前記廃材等から発生するフッ素
含有ガスをフッ化アルカリとして固定する工程を有する
ことを特徴とする貴金属回収方法。
(1) A method for recovering precious metals such as platinum from fuel cell electrode waste materials, etc., which includes a step of fixing fluorine-containing gas generated from the waste materials as alkali fluoride by firing the waste materials with an alkali carbonate. A precious metal recovery method characterized by comprising:
(2)燃料電池の電極廃材等から白金等の貴金属を回収
する方法において、前記廃材等を炭酸アルカリとともに
焼成することによって、前記廃材等から発生するフッ素
含有ガスをフッ化アルカリとして固定する工程と、前記
焼成によって得られた焼成物に残留する前記フッ化アル
カリをホウ化物で処理する工程とを有することを特徴と
する貴金属回収方法。
(2) A method for recovering precious metals such as platinum from fuel cell electrode waste materials, etc., including a step of fixing fluorine-containing gas generated from the waste materials as alkali fluoride by firing the waste materials with alkali carbonate. , a step of treating the alkali fluoride remaining in the fired product obtained by the firing with a boride.
JP31519086A 1986-12-26 1986-12-26 Method for recovering precious metals from fuel cell electrode waste materials Expired - Fee Related JPH086152B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31519086A JPH086152B2 (en) 1986-12-26 1986-12-26 Method for recovering precious metals from fuel cell electrode waste materials

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31519086A JPH086152B2 (en) 1986-12-26 1986-12-26 Method for recovering precious metals from fuel cell electrode waste materials

Publications (2)

Publication Number Publication Date
JPS63166937A true JPS63166937A (en) 1988-07-11
JPH086152B2 JPH086152B2 (en) 1996-01-24

Family

ID=18062499

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31519086A Expired - Fee Related JPH086152B2 (en) 1986-12-26 1986-12-26 Method for recovering precious metals from fuel cell electrode waste materials

Country Status (1)

Country Link
JP (1) JPH086152B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5718984A (en) * 1994-12-15 1998-02-17 Toyota Jidosha Kabushiki Kaisha Method of recovering electrolyte membrane from fuel cell and apparatus for the same
JP2003027154A (en) * 2001-07-18 2003-01-29 Nikko Materials Co Ltd Method of recovering high-purity platinum and palladium
WO2004102711A3 (en) * 2003-05-16 2005-06-09 Umicore Ag & Co Kg Process for the concentration of noble metals from fluorine-containing fuel cell components
CN111900425A (en) * 2020-07-03 2020-11-06 广东邦普循环科技有限公司 Method for recycling hydrogen fuel cell of new energy automobile
CN113512646A (en) * 2021-05-25 2021-10-19 广东佳纳能源科技有限公司 Recovery processing method of waste power battery

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4963604A (en) * 1972-06-20 1974-06-20
JPS61223138A (en) * 1985-03-28 1986-10-03 Tanaka Kikinzoku Kogyo Kk Method for recovering platinum from fuel cell
JPS6213540A (en) * 1985-07-10 1987-01-22 Daido Steel Co Ltd Recovering method for noble metal

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4963604A (en) * 1972-06-20 1974-06-20
JPS61223138A (en) * 1985-03-28 1986-10-03 Tanaka Kikinzoku Kogyo Kk Method for recovering platinum from fuel cell
JPS6213540A (en) * 1985-07-10 1987-01-22 Daido Steel Co Ltd Recovering method for noble metal

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5718984A (en) * 1994-12-15 1998-02-17 Toyota Jidosha Kabushiki Kaisha Method of recovering electrolyte membrane from fuel cell and apparatus for the same
JP2003027154A (en) * 2001-07-18 2003-01-29 Nikko Materials Co Ltd Method of recovering high-purity platinum and palladium
WO2004102711A3 (en) * 2003-05-16 2005-06-09 Umicore Ag & Co Kg Process for the concentration of noble metals from fluorine-containing fuel cell components
KR100818929B1 (en) 2003-05-16 2008-04-03 우미코레 아게 운트 코 카게 Process for the concentration of noble metals from fluorine-containing fuel cell components
US8101304B2 (en) 2003-05-16 2012-01-24 Umicore Ag & Co. Kg Process for the concentration of noble metals from fluorine-containing fuel cell components
CN111900425A (en) * 2020-07-03 2020-11-06 广东邦普循环科技有限公司 Method for recycling hydrogen fuel cell of new energy automobile
US11699796B1 (en) 2020-07-03 2023-07-11 Guangdong Brunp Recycling Technology Co., Ltd. Method for recycling hydrogen fuel cell of new energy vehicle
CN113512646A (en) * 2021-05-25 2021-10-19 广东佳纳能源科技有限公司 Recovery processing method of waste power battery

Also Published As

Publication number Publication date
JPH086152B2 (en) 1996-01-24

Similar Documents

Publication Publication Date Title
US5723097A (en) Method of treating spent potliner material from aluminum reduction cells
CN106916952B (en) A kind of round-robin method of sulfur acid scrap lead sulfur removal technology and its desulphurization mother solution
JP2019160429A (en) Lithium recovery method
US5997718A (en) Recycling of CdTe photovoltaic waste
JP2985647B2 (en) Dissolution method of spent catalyst
JPS63166937A (en) Recovering method for noble metal from fuel cell electrode waste material
US3929466A (en) Recovery of silver from silver salts
CN105861838A (en) Method for enriching platinum from fluorine-containing failure platinum catalyst
JP2684171B2 (en) Method for recovering precious metals from fuel cell electrode waste materials, etc.
CN109530387B (en) Harmless treatment process for electrolytic aluminum dross
EP0042509B1 (en) Mercury recovery process and apparatus
JP2539858B2 (en) Method for separating and collecting iodine
CN110860314A (en) Carbon catalytic oxidant and method for treating carbon-containing waste residue of electrolytic aluminum
JPS6161687A (en) Method for removing mercury from waste containing mercury
WO2022230861A1 (en) Method for processing waste lithium ion battery
AU749436B2 (en) Method of treating spent potliner material from aluminum reduction cells
JP2003508631A (en) Regeneration of metals such as uranium from contaminated solids such as incinerator ash by fluorination and leaching
CA2202416A1 (en) Process for the selective recovery of the salt constituents from used hardening shop salts which contain nitrite-nitrate
CN108526490B (en) Method for producing copper metal powder by using copper chloride or cuprous chloride
JPH0633158A (en) Treatment of zinc-and tin-containing scrap
KR100942109B1 (en) Method for manufacturing melting materials of stainless steel
TWI621714B (en) Valuable metal recycling method
JPS5644727A (en) Removing method for mercury in smelting gas
JPS63161129A (en) Method for recovering platinum from fuel cell electrode
JPH05202436A (en) Method for recovering high-grade metal zinc from steel making dust

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees