JPH086152B2 - Method for recovering precious metals from fuel cell electrode waste materials - Google Patents
Method for recovering precious metals from fuel cell electrode waste materialsInfo
- Publication number
- JPH086152B2 JPH086152B2 JP31519086A JP31519086A JPH086152B2 JP H086152 B2 JPH086152 B2 JP H086152B2 JP 31519086 A JP31519086 A JP 31519086A JP 31519086 A JP31519086 A JP 31519086A JP H086152 B2 JPH086152 B2 JP H086152B2
- Authority
- JP
- Japan
- Prior art keywords
- platinum
- firing
- fuel cell
- waste material
- electrode
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/008—Disposal or recycling of fuel cells
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/86—Inert electrodes with catalytic activity, e.g. for fuel cells
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/86—Inert electrodes with catalytic activity, e.g. for fuel cells
- H01M4/90—Selection of catalytic material
- H01M4/92—Metals of platinum group
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02W—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
- Y02W30/00—Technologies for solid waste management
- Y02W30/50—Reuse, recycling or recovery technologies
- Y02W30/84—Recycling of batteries or fuel cells
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Sustainable Development (AREA)
- Materials Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Sustainable Energy (AREA)
- Manufacture And Refinement Of Metals (AREA)
- Inert Electrodes (AREA)
Description
【発明の詳細な説明】 (産業上の利用分野) 本発明は、使用済みの燃料電池の電極廃材等から、そ
こに含まれている白金等の貴金属を回収するための方法
に関するものである。Description: TECHNICAL FIELD The present invention relates to a method for recovering a noble metal such as platinum contained therein from a used electrode waste material of a fuel cell or the like.
(従来の技術およびその問題点) 近年においては、省エネルギー、新エネルギー開発等
の要望から各種の燃料電池の製造、開発が活発に行われ
ている。この種の燃料電池の中でも、特に、リン酸型燃
料電池等においては、通常触媒活性剤として白金等の貴
金属を炭素電極に担持させており、従って、使用済みの
電極からはこのような貴金属を回収することが必要にな
る。この貴金属の回収には、王水溶解法に代表される酸
抽出法を用いることができる。(Prior Art and Problems Thereof) In recent years, various fuel cells have been actively manufactured and developed in order to save energy and develop new energy. Among fuel cells of this type, particularly in phosphoric acid fuel cells, etc., a noble metal such as platinum is usually supported on a carbon electrode as a catalyst activator, and therefore such a noble metal is used from a used electrode. It will be necessary to collect them. An acid extraction method represented by an aqua regia method can be used for the recovery of the noble metal.
ここに、燃料電池の廃材には一般にPTFE(ポリテトラ
フルオロエチレン)が含まれており、このために王水を
直接に作用させてもPTFEの存在によって王水の白金抽出
作用が阻害されて、回収効率が悪い。そこで、このPTFE
を除去するために王水処理の前工程で廃材を焼成する必
要がある。しかしながら、燃料電池の廃材等には叙上の
ようにフッ素が含まれており、焼成工程において有害な
フッ化ガスが発生するという問題点がある。Here, the waste material of the fuel cell generally contains PTFE (polytetrafluoroethylene). Therefore, even if the aqua regia is directly applied, the presence of PTFE inhibits the platinum extraction action of the aqua regia, Collection efficiency is poor. So this PTFE
It is necessary to burn the waste material in the pre-treatment step of the aqua regia treatment in order to remove the waste. However, the waste material of the fuel cell contains fluorine as described above, and there is a problem that harmful fluorinated gas is generated in the firing process.
本発明は、かかる点に鑑みて、有害ガスを外部に排出
させることなく、しかもフッ素を白金回収溶液系に入り
込ませることなく燃料電池の廃材等から効率良く貴金属
を回収することの可能な回収方法を開発することを目的
としている。In view of the above points, the present invention is a recovery method capable of efficiently recovering noble metal from waste materials of a fuel cell or the like without discharging harmful gas to the outside and without allowing fluorine to enter a platinum recovery solution system. Is intended to be developed.
(問題点を解決するための手段) 上記の目的を達成するために、本発明では、先ず燃料
電池の電極廃材から白金等の貴金属を回収する際に、前
記電極廃材を粉砕し炭酸アルカリ粉末と混合し、混合物
を前記炭酸アルカリの融解温度未満の焼成温度で焼成す
ることによって、前記電極廃材から発生するフッ素含有
ガスをフッ化アルカリとして固定し、これによって焼成
工程において有害ガスが発生しないようにしている。(Means for Solving Problems) In order to achieve the above object, in the present invention, first, when recovering a precious metal such as platinum from an electrode waste material of a fuel cell, the electrode waste material is crushed to obtain an alkali carbonate powder. By mixing and firing the mixture at a firing temperature lower than the melting temperature of the alkali carbonate, the fluorine-containing gas generated from the electrode waste material is fixed as alkali fluoride, thereby preventing generation of harmful gas in the firing process. ing.
さらに、上記の焼成工程において炭酸アルカリととも
に焼成することにより生成されたフッ化アルカリは、焼
成物をよく水洗いしても残留するので、それをホウ化物
によりホウフッ化物として錯化して、白金を塩化白金酸
錯化合物とする工程で、白金フッ化錯化合物が生成する
ことを防止するようにしている。Further, the alkali fluoride generated by firing with the alkali carbonate in the above firing step remains even if the fired product is washed well with water, so it is complexed as a borofluoride with a boride to convert platinum into platinum chloride. In the step of forming the acid complex compound, the platinum fluoride complex compound is prevented from being generated.
すなわち、従来法では、上記のフッ化アルカリとして
固定されたフッ素が塩酸によって可逆変化して再び有害
なフッ化水素ガスとなり、それ自体がガラス等の反応容
器を犯すばかりか、王水によって溶けた白金イオンと反
応し、ヘキサクロロ白金酸アンモニウムより溶解度の大
きな白金フッ化錯化合物を生成し、白金溶液からの白金
の回収率を低下させる。そこで、本発明においては、生
成したフッ化アルカリを焼成品から除去する工程に引き
続いて、この焼成品をホウ酸で処理することによって、
塩酸の作用によって発生するフッ化水素ガスを錯化体に
し、より安定でかつ溶解度の高いホウフツ化物とし、で
きるだけ白金溶液系にフッ化物が混入することを防ぐよ
うにしている。That is, in the conventional method, the fluorine fixed as the above alkali fluoride is reversibly changed by hydrochloric acid to become a harmful hydrogen fluoride gas again, which itself not only violates the reaction container such as glass but is also dissolved by aqua regia. It reacts with platinum ions to form a platinum fluorinated complex compound having a higher solubility than ammonium hexachloroplatinate, and reduces the recovery rate of platinum from the platinum solution. Therefore, in the present invention, by treating the calcined product with boric acid following the step of removing the generated alkali fluoride from the calcined product,
Hydrogen fluoride gas generated by the action of hydrochloric acid is made into a complex to form a more stable and highly soluble borofluoride, which prevents fluoride from being mixed into the platinum solution system as much as possible.
(発明の効果) このように、本発明の方法によれば、白金の抽出処理
に先行して行われる焼成工程において、過剰の炭酸アル
カリ粉末とともに粉砕した電極廃材等を、前記炭酸アル
カリの溶融温度未満の焼成温度で焼成するようにしてい
るので、廃材等から発生するフッ素含有ガスがフッ化ア
ルカリとして固定され、外部に放出されてしまうことを
防止できる。(Effects of the Invention) As described above, according to the method of the present invention, in the firing step performed prior to the extraction treatment of platinum, the electrode waste material and the like crushed together with excess alkali carbonate powder are melted at the melting temperature of the alkali carbonate Since the calcination is performed at a calcination temperature of less than, it is possible to prevent the fluorine-containing gas generated from the waste material or the like from being fixed as alkali fluoride and being released to the outside.
第二の大きな効果として、本発明では、焼成品中の残
存フッ化アルカリを除去する工程においてホウ化物を加
えるようにしているので、この工程で使用される塩酸に
よって一旦フッ化アルカリとして固定されたフッ素が再
び有害なフッ化水素に戻ってしまわないように、フッ素
が錯化される。従って、発生したフッ化水素によって、
白金フッ化錯化合物を生成し、白金の回収率が低下して
しまう弊害を解消できるとともに、後の工程で使用され
るガラス容器等が発生したフッ素ガスによって浸される
弊害も解消することができる。この第二の効果がない場
合には、たとえフッ素の無公害化処理がソーダ灰の混焼
によって行われたとしても、それにより副生成するフッ
素化合物が白金回収溶液系に混入し、白金回収率を下げ
るのでは、本来の目的を失うことになるので、この第二
の効果がいかに重要であるかが分かる。As a second large effect, in the present invention, since the boride is added in the step of removing the residual alkali fluoride in the baked product, it is once fixed as alkali fluoride by the hydrochloric acid used in this step. The fluorine is complexed so that it does not return to the harmful hydrogen fluoride again. Therefore, due to the generated hydrogen fluoride,
It is possible to eliminate the adverse effect that the platinum fluorinated complex compound is generated and the recovery rate of platinum is lowered, and the adverse effect that the glass container used in the subsequent step is soaked by the generated fluorine gas can also be eliminated. . If this second effect does not occur, even if the pollution-free treatment of fluorine is carried out by co-firing soda ash, the fluorine compound by-produced by it is mixed in the platinum recovery solution system to improve the platinum recovery rate. If you lower it, you will lose the original purpose, so you can see how important this second effect is.
(実施例) 以下に、本発明の一実施例を詳細に説明する。(Example) Below, one Example of this invention is described in detail.
以下に述べる実施例は、燃料電池の電極廃触媒1000g
から白金を回収した例である。この回収品1000gは、定
量分析の結果、PTFE30.1%、Pt9.25%、および炭素分等
60.6%から成っていた。The examples described below are 1000 g of spent catalyst for electrode of fuel cell.
It is an example of recovering platinum from the. As a result of quantitative analysis, 1000 g of this recovered product was PTFE 30.1%, Pt 9.25%, carbon content, etc.
It consisted of 60.6%.
本実施例における処理工程は大略、次の10の工程から
なっている。The processing steps in this embodiment are roughly composed of the following 10 steps.
A:脱リン、乾燥工程 B:粉砕工程 C:炭酸アルカリ混合工程 D:焼成工程 E:加水分解工程 F:残留NaFの錯化工程 G:王水溶解工程 H:中和処理工程 I:白金塩沈澱工程 J:焙焼熔解工程 次に、各工程を詳細に説明する。A: Dephosphorization and drying process B: Grinding process C: Alkali carbonate mixing process D: Firing process E: Hydrolysis process F: Residual NaF complexing process G: Aqua regia dissolving process H: Neutralization process I: Platinum salt Precipitation Step J: Roasting and Melting Step Next, each step will be described in detail.
A:脱リン、乾燥工程 まず、上記の回収品1000gを水で良く洗浄して、燐酸
を除去した。この後、洗浄後の回収品を電気乾燥器に入
れて90℃で一晩乾燥した。乾燥後の重量は、984gであっ
た。なお、上記の洗浄水に含まれている白金は、一旦イ
オン化後、亜鉛で還元して、粗白金とした。A: Dephosphorization and Drying Step First, 1000 g of the above recovered product was thoroughly washed with water to remove phosphoric acid. Then, the recovered product after washing was put in an electric dryer and dried at 90 ° C. overnight. The weight after drying was 984 g. The platinum contained in the washing water was once ionized and then reduced with zinc to obtain crude platinum.
B:粉砕工程 次に、乾燥した回収品を、粉砕機で粉砕した後、混合
器で混合した。この工程を経た後に、回収品の一部を採
取して定量分析した結果が、上述した値である。B: Grinding Step Next, the dried collected product was crushed by a crusher and then mixed by a mixer. After passing through this step, a part of the recovered product is collected and quantitatively analyzed, and the result is the above-mentioned value.
C:炭酸アルカリ混合工程 上記の粉砕された回収品に、7〜8倍のソーダ灰(Na
2CO3)を投入して、これら両材を混合した。このように
してソーダ灰を混合した回収品を、混合器か取り出した
後、焼成炉の主燃焼室に仕込み、その上から回収品表面
を覆うようにソーダ灰粉末を振りかけた。C: Alkali carbonate mixing step Add 7 to 8 times more soda ash (Na
2 CO 3 ) was added to mix both materials. The recovered product thus mixed with soda ash was taken out of the mixer, charged into the main combustion chamber of the firing furnace, and soda ash powder was sprinkled on the main combustion chamber so as to cover the surface of the recovered product.
D:焼成工程 ここに、本例で用いた焼成炉は、主燃焼室、副燃焼室
および燃焼排ガス処理塔を備えた構造を有している。焼
成はまず主燃焼室において行われ、この主燃焼室での焼
成時に主燃焼室から飛散する灰分や未焼成分が、上記の
副燃焼室に集合されるようになっている。副燃焼室に集
められた未焼成分は、ここにおいて再焼成される。この
副燃焼室によって廃材の焼成が確実に行われる。一方、
上記の排ガス処理塔にはNa2CO3からなる吸収液が供給さ
れており、焼成によって主および副燃焼室から発生する
排ガスはこの吸収液と接触した後外部に排出される構造
になっている。D: Firing Step Here, the firing furnace used in this example has a structure including a main combustion chamber, a sub combustion chamber, and a combustion exhaust gas treatment tower. Firing is first performed in the main combustion chamber, and ash and unburned components scattered from the main combustion chamber during firing in the main combustion chamber are collected in the sub combustion chamber. The unburned components collected in the auxiliary combustion chamber are re-fired here. The auxiliary combustion chamber ensures the firing of the waste material. on the other hand,
The above exhaust gas treatment tower is supplied with an absorption liquid composed of Na 2 CO 3, and the exhaust gas generated from the main and auxiliary combustion chambers by firing is in contact with this absorption liquid and then discharged to the outside. .
上記構成の焼成炉を用いた回収品の焼成工程を説明す
る。まず、上述したように、主燃焼室内に仕込まれソー
ダ灰をふりかけた被焼成物は、この主燃焼室内におい
て、酸素供給下で電熱加熱によって焼成される。この焼
成時の温度を500〜700℃に保持した。この理由は、800
℃以上にすると、Na2CO3が融解してカーボンの燃焼が妨
げられてしまうからであり、また、500℃以下では反応
速度が遅くカーボンの燃焼に時間がかかりすぎるからで
ある。The firing process of the recovered product using the firing furnace having the above configuration will be described. First, as described above, the material to be fired, which has been charged into the main combustion chamber and sprinkled with soda ash, is fired in the main combustion chamber by electric heating while supplying oxygen. The temperature during this firing was maintained at 500 to 700 ° C. The reason for this is 800
This is because if the temperature is higher than ℃, Na 2 CO 3 will be melted and the combustion of carbon will be hindered, and if the temperature is lower than 500 ℃, the reaction rate will be slow and the combustion of carbon will take too long.
主燃焼室内での焼成時にこの燃焼室から飛散した未焼
成分は副燃焼室に集められて再焼成される。この再焼成
によって、白金の回収率の向上が達成された。すなわ
ち、後述するように、本例では白金の回収量の3%をこ
の再焼成によって得ることができた。The unburned components scattered from the combustion chamber during firing in the main combustion chamber are collected in the auxiliary combustion chamber and re-fired. By this re-baking, improvement in recovery rate of platinum was achieved. That is, as described later, in this example, 3% of the recovery amount of platinum could be obtained by this re-baking.
焼成時の主な反応機構は次の式に示す通りである。 The main reaction mechanism during firing is as shown in the following formula.
PTFE+Na2CO3→NaF+CO2 (1) C+O2→CO2 (2) ここに、上述のPTEFの熱分解過程で発生するHFまたは
F2等の有害ガスは、主燃焼室内でのNa2CO3との固気相反
応式(1)によって大部分がNaFとして固定される。し
かしながら、固定されずにそのまま排ガス中に残るもの
は、排ガス処理塔に導入されてNa2CO3と接触することに
よって固定される。このときの反応は次式で表せる。PTFE + Na 2 CO 3 → NaF + CO 2 (1) C + O 2 → CO 2 (2) Here, HF or
Most of harmful gases such as F 2 are fixed as NaF by the solid-gas phase reaction equation (1) with Na 2 CO 3 in the main combustion chamber. However, what is not fixed but remains in the exhaust gas as it is is fixed by being introduced into the exhaust gas treatment tower and contacting with Na 2 CO 3 . The reaction at this time can be expressed by the following equation.
HF+Na2CO3→NaF+H2O+CO2 (3) F2+Na2CO3→NaF+CO2 (4) E:加水分解工程 次に、上記の工程によって得た焼成品、すなわち、主
および副燃焼室のそれぞれにおいて得られた焼成品を、
加水分解して、残留Na2CO3および生成NaFを除去した。
この後、固液分離し、白金、灰分等とともに残留NaFを
僅かに含む固形分を得た。HF + Na 2 CO 3 → NaF + H 2 O + CO 2 (3) F 2 + Na 2 CO 3 → NaF + CO 2 (4) E: Hydrolysis step Next, the calcined products obtained by the above steps, that is, the main and auxiliary combustion chambers, respectively. The fired product obtained in
Hydrolysis removed residual Na 2 CO 3 and produced NaF.
After that, solid-liquid separation was performed to obtain a solid content containing platinum, ash, etc., and a slight amount of residual NaF.
F:残留NaFの錯化工程 上記の工程によって得た固形分にホウ酸(H3BO3)を
作用させると、固形分中に残存するNaFは可溶性のホウ
フッ化物となり除去が容易になる。さらに完全にNaFを
分解するにはホウ酸を塩酸とともに作用させ一旦生じる
HFは以下の反応式に示すようにより安定で溶解度の大き
なHBF4(ホウフッ酸)等の形態に錯化されるので、白金
溶液系にフッ素が混入しなくなる。F: Complexation step of residual NaF When boric acid (H 3 BO 3 ) is allowed to act on the solid content obtained by the above-mentioned step, NaF remaining in the solid content becomes soluble borofluoride and is easily removed. In order to completely decompose NaF, boric acid is allowed to act together with hydrochloric acid to generate NaF.
As shown in the following reaction formula, HF is complexed into a stable and highly soluble form such as HBF 4 (borofluoric acid), so that fluorine is not mixed in the platinum solution system.
3HF+H3BO3→HBF3(OH)+2H2O (5) HBF3(OH)+HF→HBF4+H2O (6) なお、H3BO3の代わりに、NaBO2等を用いてもよい。 3HF + H 3 BO 3 → HBF 3 (OH) + 2H 2 O (5) HBF 3 (OH) + HF → HBF 4 + H 2 O (6) In place of H 3 BO 3, may be used NaBO 2, and the like.
ここで、従来法のように塩酸のみを用いてNaFを除去
する場合、発生したHFをそままにしておくと、後述の中
和処理工程および白金塩沈澱工程において、このHFによ
って、白金フッ化錯化合物が生成され、このイオンによ
って白金の回収率が低下してしまうとともに、以降の工
程で用いるガラス容器等のSiO2が浸されてしまう。従っ
て、本工程におけるように、残留したフッ素を錯化する
ことは極めて有効な手段である。Here, in the case of removing NaF using only hydrochloric acid as in the conventional method, if the generated HF is left as it is, platinum fluorination is caused by this HF in the neutralization treatment step and platinum salt precipitation step described later. A complex compound is generated, and the recovery rate of platinum is reduced by the ions, and SiO 2 in the glass container used in the subsequent steps is immersed. Therefore, complexing the residual fluorine as in this step is a very effective means.
上述のように塩酸とホウ酸によって処理した後の処理
物を、固液分離して濾液中に溶け出した微量の白金を、
亜鉛と塩酸を添加することによって粗白金として回収し
た。またこの固液分離によって得た固形分は約200gであ
った。As described above, the treated product after being treated with hydrochloric acid and boric acid is subjected to solid-liquid separation and a trace amount of platinum dissolved in the filtrate,
Recovered as crude platinum by adding zinc and hydrochloric acid. The solid content obtained by this solid-liquid separation was about 200 g.
G:王水溶解工程 前の工程で得た固形分を王水に溶解して白金を抽出
し、この白金を既知の方法で精製した。すなわち、王水
1.2を加えて溶解し、その後乾固させてHClを加えると
いう脱硝操作を2〜3回繰り返し、その後にHCl(1:9)
で希釈し、冷却した後に濾過した。G: Aqua regia dissolving step The solid content obtained in the previous step was dissolved in aqua regia to extract platinum, and this platinum was purified by a known method. That is, aqua regia
The denitration operation of adding 1.2 to dissolve and then drying to dryness and adding HCl was repeated 2 to 3 times, and then HCl (1: 9)
It was diluted with, cooled and filtered.
なお、かかる工程を経て残滓となった固形分について
は、再度王水抽出を行い、残留白金を溶し出し、これを
亜鉛を用いて還元して、粗白金として回収した。Note that the solid content that became the residue after this step was subjected to aqua regia extraction again to dissolve the residual platinum, which was reduced with zinc and recovered as crude platinum.
H:中和処理工程 前の工程で用いた洗液、および得られた濾過液に、既
知の中和処理を施した。即ちこれらの液に対して、NaOH
溶液と酸化剤とを用いてpHを7〜8に調整し、不純物を
水酸化物として沈澱させた。この後、処理液を固液分離
して、沈澱物を分離し、濾液を次工程にまわした。H: Neutralization Treatment Step The washing liquid used in the previous step and the obtained filtrate were subjected to a known neutralization treatment. That is, for these liquids, NaOH
The pH was adjusted to 7-8 with the solution and the oxidant and the impurities were precipitated as hydroxides. Then, the treated liquid was subjected to solid-liquid separation to separate a precipitate, and the filtrate was sent to the next step.
I:白金塩沈澱工程 上記の濾液に、塩酸を加えることによって酸性にして
酸化剤を追い出し、またこの濾液にNH4Clの飽和液を加
えて(NH4)2PtCl6を沈澱させた。この後、固液分離を
行って、沈澱物を除去した濾液に、亜鉛とHClを加え
て、この濾液中に含まれている少量の白金を粗白金とし
て回収した。一方、生成した沈澱物を、5%のNH4Cl溶
液で良く洗浄した。I: Platinum salt precipitation step The above filtrate was acidified by adding hydrochloric acid to drive off the oxidizing agent, and a saturated solution of NH 4 Cl was added to the filtrate to precipitate (NH 4 ) 2 PtCl 6 . Then, solid-liquid separation was performed, zinc and HCl were added to the filtrate from which the precipitate was removed, and a small amount of platinum contained in this filtrate was recovered as crude platinum. On the other hand, the formed precipitate was thoroughly washed with a 5% NH 4 Cl solution.
J:焙焼熔解工程 最後に、上記の沈澱物を乾燥したのちに、炉の中で約
700℃位まで加熱して、海綿状の白金を得た。この白金
をさらに溶解して、白金ボタンとした。J: Roasting and melting step Finally, after drying the above-mentioned precipitate,
It was heated to about 700 ° C to obtain spongy platinum. This platinum was further dissolved to form a platinum button.
上述の工程を経て得られた白金の量は89.1g(副燃焼
室で形成された焼成物から回収された分3gを含む。)で
あった。また、上記の各工程A、F、GおよびIにおい
て得た粗白金の総和は2.2gであった。以下に、この結果
をまとめて示す。The amount of platinum obtained through the above steps was 89.1 g (including 3 g recovered from the fired product formed in the auxiliary combustion chamber). The total amount of crude platinum obtained in each of the above steps A, F, G and I was 2.2 g. The results are summarized below.
結 果 a.白金の含有量 92.5g b.回収白金量 主燃焼室の焼成物から 86.1g 副燃焼室の焼成物から 3.0g回収粗白金2.2gから 2.0g (合計) 91.1g c.回収率 98.5% なお、上述した本例においては、残留NaFを除去する
工程で発生するHFをNa2CO3を用いて錯化しているが、そ
の他の炭酸アルカリを用いてもよいことは勿論である。
例えばK2CO3(炭酸カリウム)を用いても同様の効果を
得ることができる。Results a. Platinum content 92.5g b. Recovered platinum amount 86.1g from the burned material in the main combustion chamber 3.0g from the burned material in the auxiliary combustion chamber 2.2g to 2.0g crude platinum (total) 91.1g c. Recovery rate 98.5% In this example described above, HF generated in the step of removing residual NaF is complexed with Na 2 CO 3 , but it goes without saying that another alkali carbonate may be used.
For example, the same effect can be obtained by using K 2 CO 3 (potassium carbonate).
比較のため、錯化工程F、すなわち本発明の第二の効
果を用いずに同様の実験を行った結果、白金の回収率は
86.5%であった。For comparison, as a result of conducting a similar experiment without using the complexing step F, that is, the second effect of the present invention, the platinum recovery rate was
It was 86.5%.
───────────────────────────────────────────────────── フロントページの続き (72)発明者 吉田 肇 東京都千代田区鍛冶町2丁目9番12号 株 式会社徳力本店内 (56)参考文献 特開 昭49−63604(JP,A) 特開 昭61−223138(JP,A) 特開 昭62−13540(JP,A) ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Hajime Yoshida 2-9-12 Kajimachi, Chiyoda-ku, Tokyo Inside the Tokoriki main store (56) Reference JP-A-49-63604 (JP, A) JP 61-223138 (JP, A) JP-A-62-13540 (JP, A)
Claims (2)
電極廃材から貴金属を回収する方法において、前記電極
廃材を粉砕し炭酸アルカリ粉末と混合し、混合物を前記
炭酸アルカリの融解温度未満の焼成温度で焼成すること
によって、前記電極廃材から発生するフッ素含有ガスを
フッ化アルカリとして固定する工程を有することを特徴
とする貴金属回収方法。1. A method for recovering noble metal from a waste electrode material of a fuel cell containing a fluorohydrocarbon and a noble metal, wherein the waste material of the electrode is crushed and mixed with an alkali carbonate powder, and the mixture is fired at a temperature below the melting temperature of the alkali carbonate. A method of recovering a noble metal, comprising a step of fixing a fluorine-containing gas generated from the electrode waste material as an alkali fluoride by firing at a temperature.
電極廃材から貴金属を回収する方法において、前記電極
廃材を粉砕し炭酸アルカリ粉末と混合し、混合物を前記
炭酸アルカリの融解温度未満の焼成温度で焼成すること
によって、前記電極廃材から発生するフッ素含有ガスを
フッ化アルカリとして固定する工程と、前記焼成によっ
て得られた焼成物に残留する前記フッ化アルカリをホウ
化物で処理する工程とを有することを特徴とする貴金属
回収方法。2. A method for recovering noble metal from electrode waste material of a fuel cell containing a fluorohydrocarbon and a noble metal, wherein the electrode waste material is crushed and mixed with alkali carbonate powder, and the mixture is calcined below the melting temperature of the alkali carbonate. A step of fixing the fluorine-containing gas generated from the electrode waste material as alkali fluoride by firing at a temperature, and a step of treating the alkali fluoride remaining in the fired product obtained by the firing with boride. A method for recovering a precious metal, which comprises:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP31519086A JPH086152B2 (en) | 1986-12-26 | 1986-12-26 | Method for recovering precious metals from fuel cell electrode waste materials |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP31519086A JPH086152B2 (en) | 1986-12-26 | 1986-12-26 | Method for recovering precious metals from fuel cell electrode waste materials |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS63166937A JPS63166937A (en) | 1988-07-11 |
JPH086152B2 true JPH086152B2 (en) | 1996-01-24 |
Family
ID=18062499
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP31519086A Expired - Fee Related JPH086152B2 (en) | 1986-12-26 | 1986-12-26 | Method for recovering precious metals from fuel cell electrode waste materials |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH086152B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100818929B1 (en) * | 2003-05-16 | 2008-04-03 | 우미코레 아게 운트 코 카게 | Process for the concentration of noble metals from fluorine-containing fuel cell components |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3433549B2 (en) * | 1994-12-15 | 2003-08-04 | トヨタ自動車株式会社 | Method and apparatus for recovering electrolyte membrane for fuel cell |
JP4865156B2 (en) * | 2001-07-18 | 2012-02-01 | Jx日鉱日石金属株式会社 | Method for recovering high-purity platinum and palladium |
CN111900425B (en) * | 2020-07-03 | 2021-12-17 | 广东邦普循环科技有限公司 | Method for recycling hydrogen fuel cell of new energy automobile |
CN113512646A (en) * | 2021-05-25 | 2021-10-19 | 广东佳纳能源科技有限公司 | Recovery processing method of waste power battery |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3899322A (en) * | 1972-06-20 | 1975-08-12 | Rockwell International Corp | Noble-type metal recovery process by use of molten salt bath |
JPS61223138A (en) * | 1985-03-28 | 1986-10-03 | Tanaka Kikinzoku Kogyo Kk | Method for recovering platinum from fuel cell |
JPH0639630B2 (en) * | 1985-07-10 | 1994-05-25 | 大同特殊鋼株式会社 | Precious metal recovery method |
-
1986
- 1986-12-26 JP JP31519086A patent/JPH086152B2/en not_active Expired - Fee Related
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100818929B1 (en) * | 2003-05-16 | 2008-04-03 | 우미코레 아게 운트 코 카게 | Process for the concentration of noble metals from fluorine-containing fuel cell components |
Also Published As
Publication number | Publication date |
---|---|
JPS63166937A (en) | 1988-07-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101226946B1 (en) | Method for recycling platinum from platinum based catalysts | |
US5723097A (en) | Method of treating spent potliner material from aluminum reduction cells | |
NO822958L (en) | PROCEDURE FOR THE RECOVERY OF METAL COMPONENTS FROM LEAD CUMULATORS. | |
JP2985647B2 (en) | Dissolution method of spent catalyst | |
US6827837B2 (en) | Method for recovering trace elements from coal | |
JP5999478B2 (en) | Method and apparatus for recovering precious metal via composite oxide | |
JPH086152B2 (en) | Method for recovering precious metals from fuel cell electrode waste materials | |
JP2684171B2 (en) | Method for recovering precious metals from fuel cell electrode waste materials, etc. | |
JPS6219494B2 (en) | ||
JPH06108281A (en) | Method of producing metallic lead | |
JP4777564B2 (en) | Method for treating incinerator ash containing uranium | |
JP2002316822A (en) | Method for recovering tantalum/niobium from carbide- base raw material containing tantalum/niobium | |
EP0728698B1 (en) | Process for removing SO2 from gases which contain it, with direct production of elemental sulfur | |
JP3968577B2 (en) | Method and apparatus for recovering precious metals from waste | |
US3754072A (en) | Process for recovering vanadium oxide | |
TWI621714B (en) | Valuable metal recycling method | |
JP3319657B2 (en) | How to convert transuranium oxalate into chloride | |
KR102284348B1 (en) | Method for recycling phosphoric acid type fuel cell waste electrode including wet process phosphoric acid recovery method | |
JPH0250775B2 (en) | ||
JPH0639630B2 (en) | Precious metal recovery method | |
RU2140877C1 (en) | Method production of palladium nitrate | |
PL189680B1 (en) | Method of recovering palladium and platinum in the form of high-purity compounds of these metals from pasty production waste materials containing active carbon | |
JP2009120440A (en) | Method for producing uranyl fluoride | |
JPS5931578B2 (en) | How to recover lead from battery sludge | |
Gnyra | Acid Attack as a Means of Treating Spent Potlining |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |