JPS63166266A - Semiconductor device and manufacture thereof - Google Patents

Semiconductor device and manufacture thereof

Info

Publication number
JPS63166266A
JPS63166266A JP30905686A JP30905686A JPS63166266A JP S63166266 A JPS63166266 A JP S63166266A JP 30905686 A JP30905686 A JP 30905686A JP 30905686 A JP30905686 A JP 30905686A JP S63166266 A JPS63166266 A JP S63166266A
Authority
JP
Japan
Prior art keywords
film
silicon
conductivity type
region
opening
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP30905686A
Other languages
Japanese (ja)
Inventor
Toshihiko Hamazaki
浜崎 利彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP30905686A priority Critical patent/JPS63166266A/en
Publication of JPS63166266A publication Critical patent/JPS63166266A/en
Pending legal-status Critical Current

Links

Landscapes

  • Bipolar Transistors (AREA)

Abstract

PURPOSE:To improve the high-frequency characteristics by forming single crystal base extraction electrodes on a silicon oxide film using a solid-phase epitaxial method, and simultaneously using the selective oxidation of a solid-phase epitaxial silicon film and the side walls of polycrystalline silicon. CONSTITUTION:A film 12 is formed on the surface of a substrate 11, and a window 13 reaching the substrate 11 is opened. Then, after depositing silicon 14 in the window section 13, a polycrystalline silicon film is deposited on the whole surface and changed to an amorphous silicon film by Si implantation. Subsequently it is changed to a film 14' to increase the film thickness of the film 14'. And the film 14' is removed till the film 12. Then, after forming a film 15 on the surface of the film 14' by thermal oxidation, a film 18 and a resist 19 are formed on the whole surface. Next, leaving the film 18 only on the window region 13, boron is introduced to form a base extraction region 17. And the thickness of the film 15 is increased except for the window region 13, and simultaneously boron is diffused to form a region 16, removing the film 18. Further, a polycrystalline film is deposited to form a side wall region 110. Then, removing only the film 15, a layer 111 is formed, and a region 112 is formed. Moreover, electrodes 113, 114 are formed on a film 15'. With this, the parasitic capacitance and parasitic resistance of a transistor can be made small.

Description

【発明の詳細な説明】 [発明の目的〕 (産業上の利用分野) t、宅明バイポーラ果債回烙を構成する半幅体湊僅3二
びその裂造方、去に関する。
DETAILED DESCRIPTION OF THE INVENTION [Objective of the Invention] (Industrial Field of Application) This invention relates to two half-width body parts constituting a Takumei bipolar bond cycle and how to make and use them.

(従来の技術) 従来ノパイボーラ・トランジスタは、たとえばNPNI
で示せば・罵2図のような構造をしている。
(Prior Art) Conventional nopibora transistors are, for example, NPNI
If shown in Figure 2, the structure is as shown in Figure 2.

図シこ8いて21はコレクタ項・或となるN型シリコン
、春板、22はその一侵面剃に形成したP型のベースT
IJi域、23はベース屓域22内に形成したエミッタ
屓域、24はベース項犬22の外縁部上から外方に延び
る8i0.喚、25i4ベース須1或22上からSin
、嗅24上に延びるP憤不縄物を含む多結晶シリコン場
、26は多結晶シリコン智25、エミッタ1屓戎23の
全面3よびベース屓域22の4出した部分上を覆うよう
に設けたs io、 @、27は多結晶シリコン層25
の外@部上Eこ8i0.[26にあけた窓を通して設け
たベース電極、28TI′s、エミッタ4域23上にS
iQ、嗅26iこあけて窓を+電極 L/て設けたエミ
ッタ4甑、29はコレクタ4愼である。
In Figure 8, 21 is the collector term, a certain N-type silicon, spring plate, and 22 is the P-type base T formed on the first eroded surface.
IJi area, 23 is an emitter area formed within the base area 22, and 24 is an 8i0. Call, Sin from 25i4 base 1 or 22
, a polycrystalline silicon field 26 including a polycrystalline silicon field 26 extending over the base 24 is provided so as to cover the polycrystalline silicon 25, the entire surface 3 of the emitter 1 base 23, and the exposed portion 4 of the base 22. sio, @, 27 is the polycrystalline silicon layer 25
outside @ part of Eko8i0. [Base electrode provided through the window in 26, 28TI's, S on emitter 4 region 23
iQ, 26i is open and the window is set at + electrode L/4 emitters, and 29 is 4 collectors.

(発明が解決しようとする問題点) 第2図(こ示したバイポーラトランジスタの断面図(こ
Sいて斜尿部分は、デバイス動作の本質にとっ℃不必要
な部分である。つtpt子がエミッタ4域がらベース領
域ζこ注入されこの4賊を拡枚で通過してコレクタ屓域
に果められることが動作の本質であジ、この為に必要な
領域が存在すれば良い訳である。その他の部分(斜、線
部)は不必要であるばかりでなくデバイスの性能を低下
させている。$:発明は以上の点を考i1[L、て考某
されたものであり、バイポーラトランジスタの0咋にと
って本質的な部分のみで構成された半導体通量及びその
製造方法を提供するものである。
(Problems to be Solved by the Invention) Figure 2 (Cross-sectional view of the bipolar transistor shown in this figure) The diagonal portion is an unnecessary portion for the essence of device operation. The essence of the operation is that the four regions are injected into the base region ζ, passed through these four regions in an enlarged manner, and are delivered to the collector region, so it is sufficient if the necessary region exists for this purpose. The other parts (diagonal and lined parts) are not only unnecessary but also degrade the performance of the device. The purpose of the present invention is to provide a semiconductor package consisting of only essential parts and a method for manufacturing the same.

〔発明の構成〕[Structure of the invention]

(間恒点を解決するための手段) 第2図で示したバイポーラトランジスタの@!]作にと
って本質的な部分のみでa代された素子を従来の技術で
作製できながりたのは、ベース引き出し1玉がベースの
X横から取り出せなかったことシこ起因する。そこで不
発明では固相エピタキシャル技術を用いてシリコン酸化
模上に琳結晶ベース引き出し8!−を作製することを口
I拒にしている。
(Means for solving the constant point between) The @! of the bipolar transistor shown in Figure 2. ] The reason why it was not possible to manufacture an element in which only the essential part for the production was made using the conventional technology was that one base drawer could not be taken out from the X side of the base. Therefore, in our invention, we used solid-phase epitaxial technology to create a Rin crystal base on a silicon oxide model. - I refuse to create one.

また、エミッタ碩虞幅を帰小する手段として、上記固相
エピタキシャルシリコン喚の選択峨1ヒ枝I盾と多結晶
シリコンのサイドウオールを併用した技術を弔いている
In addition, as a means to reduce the emitter degradation range, a technique is proposed in which a selective aperture shield of the solid-phase epitaxial silicon type is used in combination with a polycrystalline silicon sidewall.

(1用) 上記手段により作製されたバイポーラトランジスタはベ
ース引き出し1咀の1気抵抗が低く、また、エミツタ幅
が挟い事から、トランジスタの高周彼FF注を向上させ
る多に名犬なる威力を発揮することとなる。
(For 1) The bipolar transistor fabricated by the above method has a low single-temperature resistance of the base drawer and a narrow emitter width, so it has the power to improve the high frequency FF of the transistor. It will be demonstrated.

(夷IA例〕 本発明の詳、洲を夷櫂列に基づき1説明する。(IA example) The details of the present invention will be explained based on the Yi Kai series.

不発男D−実施列によるNPNトランジスタの橿i工侃
を茗1図(a1〜(h)に示す。
The manufacturing process of an NPN transistor based on the unexploded D-implementation row is shown in Figure 1 (a1 to (h)).

まず第1図(a)に示すように、N型シリコン苓阪11
の一表面上に4酸化法、CVD去等によりてSin、か
らなる愼比嗅12を形成する。このときのジ比俟12の
厚さは1.0μmi度である。これをプラズマエツチン
グwdを用いてυロエし、シリコン1■1に達する所定
のパターンをもつ:ぢ13を開ける。この乃ロエ用のパ
ターンがトランジスタの、8注屓べを決定す6ものであ
る。・涜いて、窓の底部のN型シリコンンき叔禄「苗を
真空長達内のH6含囲気°ノロ積によV清、9比する。
First, as shown in FIG. 1(a), N-type silicon Reisaka 11
A layer 12 consisting of Sin is formed on one surface of the substrate by a tetraoxidation method, CVD removal, or the like. The thickness of the diagonal 12 at this time is 1.0 μm. This is etched using a plasma etching process to open up a predetermined pattern that reaches silicon 1*1. This Noloe pattern is the 6th pattern that determines the 8th order of the transistor.・After cleaning the N-type silicone at the bottom of the window, remove the seedlings with H6-containing air in a vacuum chamber.

久に第1J(b)に示す二うに、真空妥置内でHeとS
t、H,又HHeとSiH,又はHeとS iH,(1
゜の混合ガス、又はそれらの混合ガスを原料とした低王
気泪信択エピタキシャル成長去により窓部13に単結晶
シリコン14を准7債させる。涜いて試・料−尺面全面
に多結晶シリコン膜を堆積させる。1売いてSiのイオ
ン注入により上記多結晶シリコン模14を非晶質シリコ
ン膜に変質させる。涜いて真空廃マ内の加鴇処浬により
上記非晶質シリコン膜を略結晶シリコン嗅14′ に変
イヒさせる。続いて上記低圧気用選択エピタキシャル成
長法により上記単結晶シリコン嗅14′の膜厚を増卯さ
せる。
As shown in Section 1 J(b), He and S are separated in a vacuum chamber.
t, H, or HHe and SiH, or He and SiH, (1
Single-crystal silicon 14 is formed in the window 13 by selective epitaxial growth using a mixed gas of 20°C or a mixed gas thereof as a raw material. A polycrystalline silicon film is deposited on the entire surface of the specimen. Then, the polycrystalline silicon pattern 14 is transformed into an amorphous silicon film by Si ion implantation. Then, the amorphous silicon film is transformed into a substantially crystalline silicon layer 14' by adding heat in a vacuum waste chamber. Subsequently, the film thickness of the single crystal silicon layer 14' is increased by the low pressure selective epitaxial growth method.

そしてA1図(C)に示子ように単結晶シリコン膜14
′ヲプラズマエッチング去等を用いて卯工し、酸化膜1
2に達するまで思13を宮む所J’7)須域を残して取
り除く。
As shown in Figure A1 (C), the single crystal silicon film 14
'Then, the oxide film 1 is etched using plasma etching, etc.
Place the thought 13 until you reach 2. J'7) Remove it leaving only the su area.

熱准化して、嗅請晶シリコン嗅14′の艮面に1000
AのSiO,嗅15を形成する。・洸いてシリコン値化
膜18、続いてレジスト19を全面(こ形成する。
After thermal standardization, 1000 yen was applied to the face of the silicone crystal 14'.
Form A's SiO, olfactory 15. - Next, a silicon value film 18 and then a resist 19 are formed on the entire surface.

次に第1a(d)に示すように、プラズマを用いたレジ
ストエッチパック去により、窓領域13上にノミシリコ
ン窒化膜18を残す。続いてポロンをイオン注入してベ
ース値域16P+引き出Ltffl領戟17を形成する
Next, as shown in 1a(d), the chisel silicon nitride film 18 is left on the window region 13 by removing the resist etch pack using plasma. Subsequently, poron ions are implanted to form a base value range 16P+extraction Ltffl region 17.

そして第1図(e)に示すように、熱酸化して8i0゜
膜15の厚さを窓領域13を除いて厚くする。このと&
 ポロンの拡散を同時に行ないベース領域16を形成す
る。続いてケミカルドライエツチング去によりシリコン
窒化膜16を敗り除く。
Then, as shown in FIG. 1(e), thermal oxidation is performed to increase the thickness of the 8i0.degree. film 15 except for the window region 13. Koto &
Poron is simultaneously diffused to form the base region 16. Subsequently, the silicon nitride film 16 is removed by chemical dry etching.

さらに2g1図(f) tζ示すように、多結晶シリコ
ン@を堆積させた唖、プラズマ異方性エッチンクヲ用い
て多結晶シリコンの側壁領域110を形成する。
Furthermore, as shown in FIG. 2g1(f) tζ, sidewall regions 110 of polycrystalline silicon are formed using plasma anisotropic etching after depositing polycrystalline silicon.

次に第1図(g)#こ示すように、ウオツシングをし、
エミッタ狽俄を形成する部分の単結晶シリコン膜14′
の表面の酸化膜15のみを除去する。ついでヒ素添カロ
多結晶シリコン1illl19厚す0.5μm程度に形
成し、熱処理を行なってエミッタ領域112を形成する
Next, wash as shown in Figure 1 (g) #.
Single-crystal silicon film 14' in the part where the emitter hole is formed
Only the oxide film 15 on the surface is removed. Next, arsenic-doped polycrystalline silicon 1ill19 is formed to a thickness of about 0.5 μm and heat treated to form an emitter region 112.

さらに’□1図(h)に示すように、P 引き出し1f
fl領域17上の酸化シリコン膜15の所定部分にベー
スKm用コンタクト窓を開け、ここにペース鑞甑113
を、多結91シリコンlii 111上にエミッタ’t
a甑114を形成する。
Furthermore, as shown in Figure 1 (h), P drawer 1f
A contact window for the base Km is opened in a predetermined portion of the silicon oxide film 15 on the fl region 17, and a contact window for the base Km is formed here.
, the emitter on the multi-connected 91 silicon lii 111
A pot 114 is formed.

〔発明の効果〕〔Effect of the invention〕

本発明によればベース引き出しlLm=貢域17が単結
晶となっている為、ベース引き出し4気抵抗が小さくな
る。またベース引き出し電極はベース領域の側面からな
り出される構造となっていることからトランジスタの寄
生容凌、寄生抵抗を颯力小さくすることができている。
According to the present invention, since the base drawer lLm=tributary region 17 is made of single crystal, the base drawer resistance is reduced. Furthermore, since the base lead-out electrode is structured to extend from the side surface of the base region, the parasitic capacity and parasitic resistance of the transistor can be significantly reduced.

さらに自己整合1支術の導入により甑めて狭いエミツタ
幅を形成することがoTii′@どなっている。以上の
点から本発明にトランジスタの高III収得曲向上に絶
大なる威力を発揮することとなる。
Furthermore, with the introduction of self-alignment techniques, it has become possible to form narrow emitter widths. From the above points, the present invention exhibits tremendous power in improving the high-III gain of transistors.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は不発明番こよる製遺方去の一実施例を示す工程
断面図、茗2図は従来のバイポーラ・トランジスタD構
造を示す4面図である。 11.21・・・N戚シリコン基板、12,15゜24
.26・・・酸化シリコン膜、13・・・窓、14・・
・真空@着により堆債させたシリコン嗅、16.22・
・・ベース傾城、17・・・ベース引き出し領域、18
・・・窒化シリコン膜、19・・・レジスト、11o・
・・多、債晶シリコン模、111.28・・N十多結易
シリコンfa%  112t 23 =−・エミクタ領
域、23.24,25゜27・・・金・1A鳴。 代1人 弁理士  則 近 憲 借 間        竹  花  喜久男、f? 、f5 第1図 第1図 第1図
FIG. 1 is a process cross-sectional view showing an example of the manufacturing method according to the invention, and FIG. 2 is a four-sided view showing a conventional bipolar transistor D structure. 11.21...N silicon substrate, 12,15°24
.. 26...Silicon oxide film, 13...Window, 14...
・Silicon scent deposited by vacuum @ deposition, 16.22・
... Base tilting castle, 17 ... Base drawer area, 18
...Silicon nitride film, 19...Resist, 11o.
...Multi, bond crystal silicon model, 111.28...N ten crystal silicon fa% 112t 23 =--emitter region, 23.24, 25°27...Fri, 1A sound. 1 patent attorney Nori Chika Kikuo Takehana, f? , f5 Fig. 1 Fig. 1 Fig. 1

Claims (5)

【特許請求の範囲】[Claims] (1)第1導電型単結晶シリコン基板上に開孔部を有す
る第1の絶縁膜が形成され、次いで第1導電型単結晶シ
リコン膜が形成され、その主面 側から該開孔部及び該開孔部周辺に第2導電型領域が形
成され、第2導電型領域上でかつ該開孔部外縁部上、及
び第2導電型領域外縁部上に、第2の絶縁膜が形成され
、該第2導電型領域内でかつ上記開孔部上に上記主面側
から第1導電型領域を形成され、上記基板、上記第2導
電型領域および上記第1導電型領域をそれぞれコレクタ
領域、ベース領域およびエミッタ領域とするバイポーラ
、トランジスタが構成され、上記エミッタ領域上から延
びる第1導電型不純物を含む多結晶シリコン層が形成さ
れ、該多結晶シリコン層上にエミッタ電極が形成され、
第2導電型領域上でかつ、第2の絶縁膜及び上記多結晶
シリコン層に被覆されていない領域にベース電極が形成
されてなることを特徴とする半導体装置。
(1) A first insulating film having an opening is formed on a first conductivity type single crystal silicon substrate, and then a first conductivity type single crystal silicon film is formed, and the opening and the opening are formed from the main surface side. A second conductivity type region is formed around the opening, and a second insulating film is formed on the second conductivity type region, on the outer edge of the opening, and on the outer edge of the second conductivity type region. , a first conductivity type region is formed within the second conductivity type region and above the opening from the main surface side, and the substrate, the second conductivity type region, and the first conductivity type region are respectively connected to collector regions. , a bipolar transistor having a base region and an emitter region is formed, a polycrystalline silicon layer including a first conductivity type impurity extending from above the emitter region is formed, and an emitter electrode is formed on the polycrystalline silicon layer,
A semiconductor device characterized in that a base electrode is formed on a second conductivity type region and in a region not covered by the second insulating film and the polycrystalline silicon layer.
(2)第1導電型シリコン基板の主面上に第1の二酸化
シリコン膜を形成する工程と、上記第1の二酸化シリコ
ン膜に上記第1導電型シリコン基板表面に達する所定形
状の開孔部を設ける工程と、ついで上記開孔部内の第1
導電型シリコン基板表面を清浄化する工程と、ついで第
1導電型不純物を含むシリコン膜をシリコン基板主面側
に上記開孔部上は凹みをつけて形成する工程と、ついで
上記シリコン膜を単結晶化させ単結晶シリコン膜に変質
させる工程と、さらに上記単結晶シリコン膜上に第2の
二酸化シリコン膜を形成する工程と、その後シリコン窒
化膜を形成した後エッチパツクにより前記凹みを残して
シリコン窒化膜を前記第2の二酸化シリコンに達するま
で取り去る工程と、ついで上記基板の主面側からイオン
打ち込みを行ない、上記第1の二酸化シリコン膜上の上
記単結晶シリコン膜及び上記開孔部上の上記単結晶シリ
コン膜の表面付近の部分に第2導電型不純物を注入しベ
ース領域を形成する工程と、その後ついで熱酸化により
上記凹み領域を除いた上記単結晶シリコン膜上の第2の
二酸化シリコン膜の厚さを厚くする工程と、前記シリコ
ン窒化膜を取り除く工程と、ついで上記凹みに位置する
上記単結晶シリコン膜に達するまで、上記凹みを除く部
分を残して上記第2の二酸化シリコン膜を異方性エッチ
ングにより取り除き第2の開孔部を設ける工程と、上記
第2の開孔部を覆う第1導電型不純物を含む多結晶シリ
コンを形成する工程と、ついで熱処理して上記ベース領
域内にエミッタ領域を形成する工程と、ついで上記第2
の二酸化シリコン膜に上記ベース領域に通じる開孔部を
設け、該開孔部を通じてベース電極を、上記多結晶シリ
コン層上にエミッタ電極を形成する工程とを含むことを
特徴とする半導体装置の製造方法。
(2) forming a first silicon dioxide film on the main surface of the first conductivity type silicon substrate, and forming an opening in the first conductivity type silicon substrate in a predetermined shape reaching the surface of the first conductivity type silicon substrate; a step of providing a first hole in the opening;
A step of cleaning the surface of the conductive type silicon substrate, a step of forming a silicon film containing a first conductive type impurity on the main surface side of the silicon substrate with a recess above the opening, and then a step of simply cleaning the silicon film. A step of crystallizing it to transform it into a single-crystal silicon film, a step of forming a second silicon dioxide film on the single-crystal silicon film, and a step of forming a silicon nitride film and then etching the silicon nitride film with the recesses left behind using an etch pack. removing the film until it reaches the second silicon dioxide, and then implanting ions from the main surface side of the substrate to remove the single crystal silicon film on the first silicon dioxide film and the silicon dioxide film on the opening. A step of implanting a second conductivity type impurity into a portion near the surface of a single crystal silicon film to form a base region, and then forming a second silicon dioxide film on the single crystal silicon film from which the recessed region is removed by thermal oxidation. a step of increasing the thickness of the silicon nitride film, a step of removing the silicon nitride film, and a step of removing the silicon nitride film, and then changing the second silicon dioxide film until it reaches the single crystal silicon film located in the recess, leaving the part excluding the recess. removing the polycrystalline silicon by directional etching to form a second opening, forming polycrystalline silicon containing a first conductivity type impurity to cover the second opening, and then performing heat treatment to form a second opening in the base region. forming an emitter region;
manufacturing a semiconductor device, comprising: providing an opening in the silicon dioxide film leading to the base region; forming a base electrode through the opening; and forming an emitter electrode on the polycrystalline silicon layer. Method.
(3)特許請求の範囲第2項記載の半導体装置の製造方
法において、上記開孔部内の第1導電型シリコン基板表
面の清浄化の工程には、真空装置内における熱処理法を
用いることを特徴とする半導体装置の製造方法。
(3) The method for manufacturing a semiconductor device according to claim 2, characterized in that the step of cleaning the surface of the first conductivity type silicon substrate within the opening uses a heat treatment method in a vacuum apparatus. A method for manufacturing a semiconductor device.
(4)特許請求の範囲第2項記載の半導体装置の製造方
法において、第1導電型不純物を含む非晶質シリコン膜
の形成には、超高真空装置を使用した蒸着法を用いるこ
とを特徴とする半導体装置の製造方法。
(4) In the method for manufacturing a semiconductor device according to claim 2, the amorphous silicon film containing the first conductivity type impurity is formed using a vapor deposition method using an ultra-high vacuum apparatus. A method for manufacturing a semiconductor device.
(5)特許請求の範囲第4項記載の半導体装置の製造方
法において、非晶質シリコン膜の単結晶化には超高真空
装置内における固相エピタキシャル成長法を用いること
を特徴とする半導体装置の製造方法。
(5) The method for manufacturing a semiconductor device according to claim 4, characterized in that a solid phase epitaxial growth method in an ultra-high vacuum apparatus is used for single crystallization of the amorphous silicon film. Production method.
JP30905686A 1986-12-27 1986-12-27 Semiconductor device and manufacture thereof Pending JPS63166266A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30905686A JPS63166266A (en) 1986-12-27 1986-12-27 Semiconductor device and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30905686A JPS63166266A (en) 1986-12-27 1986-12-27 Semiconductor device and manufacture thereof

Publications (1)

Publication Number Publication Date
JPS63166266A true JPS63166266A (en) 1988-07-09

Family

ID=17988345

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30905686A Pending JPS63166266A (en) 1986-12-27 1986-12-27 Semiconductor device and manufacture thereof

Country Status (1)

Country Link
JP (1) JPS63166266A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5100833A (en) * 1987-08-05 1992-03-31 Mitsubishi Denki Kabushiki Kaisha Method of producing a semiconductor light emitting device disposed in an insulating substrate
US5194399A (en) * 1987-08-05 1993-03-16 Mitsubishi Denki Kabushiki Kaisha Method of producing a semiconductor light emitting device disposed in an insulating substrate
US5275968A (en) * 1987-08-05 1994-01-04 Mitsubishi Denki Kabushiki Kaisha Method of producing a semiconductor light emitting device disposed in an insulating substrate

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5100833A (en) * 1987-08-05 1992-03-31 Mitsubishi Denki Kabushiki Kaisha Method of producing a semiconductor light emitting device disposed in an insulating substrate
US5194399A (en) * 1987-08-05 1993-03-16 Mitsubishi Denki Kabushiki Kaisha Method of producing a semiconductor light emitting device disposed in an insulating substrate
US5275968A (en) * 1987-08-05 1994-01-04 Mitsubishi Denki Kabushiki Kaisha Method of producing a semiconductor light emitting device disposed in an insulating substrate

Similar Documents

Publication Publication Date Title
JP2670563B2 (en) Method for manufacturing semiconductor device
JP2551940B2 (en) Method for manufacturing semiconductor device
JP4016595B2 (en) Semiconductor device and manufacturing method thereof
JPS6336147B2 (en)
TW202002016A (en) Semiconductor device and method for manufacturing the same
JP3213549B2 (en) Manufacturing method of super self-aligned bipolar transistor
EP0199497A2 (en) Process for fabricating a self-aligned bipolar transistor
CN108155231A (en) Igbt and its grid making method, IPM modules and air conditioner
JPH01274470A (en) Bipolar-transistor device and manufacture thereof
JP3346348B2 (en) Method for manufacturing semiconductor device
WO2024037276A1 (en) Igbt device having deep buffer layer and high-density trenches, and preparation method for igbt device
JPS62570B2 (en)
JPS63166266A (en) Semiconductor device and manufacture thereof
CN109087942A (en) A kind of groove-shaped triode and preparation method thereof
JPH0923000A (en) Manufacture of semiconductor device
JPS58121642A (en) Manufacture of semiconductor device
KR100268857B1 (en) Manufacture method of vertical bipolar transistor
JPH05121535A (en) Diffusion method for impurity and dielectric isolation method of wafer
JP3152046B2 (en) Bipolar transistor and method of manufacturing the same
JPS6022506B2 (en) Manufacturing method for semiconductor devices
CN115863173A (en) Trench gate MOSFET and preparation process thereof
CN116435345A (en) High-frequency IGBT chip with composite MPT structure and preparation method thereof
JP3041886B2 (en) Method for manufacturing semiconductor device
JPH03227023A (en) Manufacture of bipolar transistor
JPH09162192A (en) Semiconductor device and fabrication thereof