JPS63166198A - Method of forming ferrodielectric thin film - Google Patents

Method of forming ferrodielectric thin film

Info

Publication number
JPS63166198A
JPS63166198A JP61315038A JP31503886A JPS63166198A JP S63166198 A JPS63166198 A JP S63166198A JP 61315038 A JP61315038 A JP 61315038A JP 31503886 A JP31503886 A JP 31503886A JP S63166198 A JPS63166198 A JP S63166198A
Authority
JP
Japan
Prior art keywords
target
thin film
substrate
sputtering
ferroelectric thin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61315038A
Other languages
Japanese (ja)
Other versions
JPH0670920B2 (en
Inventor
雅行 脇谷
正 長谷川
佐藤 精威
三浦 照信
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP61315038A priority Critical patent/JPH0670920B2/en
Publication of JPS63166198A publication Critical patent/JPS63166198A/en
Publication of JPH0670920B2 publication Critical patent/JPH0670920B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Electroluminescent Light Sources (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔概要〕 ABOs(AおよびBは単一の元素、或いは複数の元素
を示す記号)で表示されるペロブスカイト型構造の強誘
電薄膜を形成する方法であって、スパッタ装置の容器内
に該強誘電薄膜の各構成元素、或いは該各構成元素の酸
化物よりなるターゲットを酸素元素を除いて薄膜の構成
元素に該当する数量だけ配置し、各ターゲット上に基板
を順次移動させながらスパッタ用ガスを用いてターゲッ
トの成分を、組成比が0.5 <A/B <2.0とな
るように、かつ基板が各ターゲット上を(格子定数/膜
の成長速度≧基板がターゲットを通過する周期)となる
条件で通過するようにしてスパッタすることで、低温で
成膜できるようにし、基板が軟化しない状態で’t48
M電膜が得られるようにする。
[Detailed Description of the Invention] [Summary] A method for forming a ferroelectric thin film with a perovskite structure represented by ABOs (A and B are symbols indicating a single element or a plurality of elements), the method comprising: a sputtering device; In a container, targets made of each constituent element of the ferroelectric thin film or an oxide of each constituent element are placed in the number corresponding to the constituent elements of the thin film, excluding oxygen element, and the substrates are sequentially moved onto each target. The components of the target are mixed using a sputtering gas while the substrate is on each target so that the composition ratio is 0.5 < A/B < 2.0, and the substrate is Sputtering is performed under conditions such that the target passes through the target at a period of
Make sure that an M electric film is obtained.

〔産業上の利用分野〕[Industrial application field]

本発明はペロブスカイト型構造の強誘電薄膜の形成方法
に係り、特にスパッタ法を用いて低基板温度で、かつ組
成制御が容易な強誘電薄膜の形成方法に関する。
The present invention relates to a method for forming a ferroelectric thin film having a perovskite structure, and more particularly to a method for forming a ferroelectric thin film using a sputtering method at a low substrate temperature and whose composition can be easily controlled.

最近のオプトエレクトロニクスの分野では、透明な強誘
電薄膜の出現が要望されている。
Recently, in the field of optoelectronics, there has been a demand for transparent ferroelectric thin films.

例えばエレクトロルミネッセンス(EL)を利用した薄
膜構造の表示デバイスでは、駆動電圧の低減のために高
誘電率透明絶縁膜の開発が待たれているし、光通信用光
導波路や圧電素子の設計に於いてもそのような薄膜が要
望されている。
For example, in display devices with a thin film structure using electroluminescence (EL), the development of high dielectric constant transparent insulating films is awaited to reduce the driving voltage, and the design of optical waveguides for optical communication and piezoelectric elements is required. However, there is a demand for such thin films.

〔従来の技術〕[Conventional technology]

従来、このような強誘電薄膜の形成方法としては本出願
人が既に特開昭56−45827号公報、および特開昭
56−138813号公報に於いて提案している。
Conventionally, the present applicant has already proposed a method for forming such a ferroelectric thin film in Japanese Patent Application Laid-Open No. 56-45827 and Japanese Patent Application Laid-Open No. 56-138813.

この方法は第6図に示すように、加熱源1を備えた基板
ホルダ2に設置されたガラス基板3と、これに対向する
ように、形成すべきチタン酸鉛(PbTi(h)の原料
である酸化鉛(PbO)の粉末と酸化チタン(TiO□
)の粉末を化学M論的組成比となるように秤量した粉末
4を充填した容器5を設置し、この容器5を石英板6を
介して水冷されたカソード7上に設置している。そして
これらを図示しないスパッタ容器内に設置している。
As shown in FIG. 6, this method involves a glass substrate 3 placed on a substrate holder 2 equipped with a heating source 1, and a raw material for lead titanate (PbTi(h)) to be formed facing the glass substrate 3. A certain lead oxide (PbO) powder and titanium oxide (TiO□
) A container 5 filled with powder 4 weighed so as to have a chemical composition ratio is installed, and this container 5 is placed on a water-cooled cathode 7 via a quartz plate 6. These are placed in a sputtering container (not shown).

しかしてそのプロセスは、スパッタ容器内を排気した後
、アルゴン(Ar)ガスと酸素(0□)ガスの混合ガス
より成るスパッタガスを該容器内に専大し、基板ホルダ
2をアノードとし、前記したカソード7との間に高周波
電圧を印加して基板3上にPbTi0:+のスパッタ膜
を形成していた。
In this process, after the inside of the sputtering container is evacuated, a sputtering gas consisting of a mixed gas of argon (Ar) gas and oxygen (0□) gas is exclusively poured into the container, and the substrate holder 2 is used as an anode. A high frequency voltage was applied between the cathode 7 and the substrate 3 to form a sputtered film of PbTi0:+.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

ところが、このような従来の方法では、第7図に示すよ
うに、基板温度が500℃以上の高温でないと強誘電性
を示すペロブスカイト型の結晶構造が現れず、基板温度
が500℃以下の低温であると、常誘電性を示すパイロ
クロア型の結晶構造しか現れず、強誘電薄膜が形成でき
ない問題がある。
However, in such conventional methods, as shown in Figure 7, a perovskite crystal structure exhibiting ferroelectricity does not appear unless the substrate temperature is at a high temperature of 500°C or higher; In this case, only a pyrochlore type crystal structure exhibiting paraelectricity appears, and there is a problem that a ferroelectric thin film cannot be formed.

然し、EL素子の基板として通常用いられているガラス
基板の温度を、500℃以上に保とうとすると、そのガ
ラス基板が軟化し、そのためこの500℃の高温まで耐
えられる特殊なガラス基板を必要とし、EL素子の製造
に困難をきたしていた。
However, if you try to keep the temperature of the glass substrate normally used as a substrate for EL elements above 500°C, the glass substrate will soften, so a special glass substrate that can withstand this high temperature of 500°C is required. This has caused difficulties in manufacturing EL elements.

そこで、基板温度を低下させて強誘電薄膜の形成を試み
、以下のような結論を得た。即ち本発明者等は低基板温
度で従来の方法を用いてスパッタ法で形成した強誘電薄
膜を調査した処、形成されたPbTiO3膜に於けるP
b/Tiの原子比は1である化学量論的な組成比より大
きく逸脱していることを確かめた。
Therefore, we attempted to form a ferroelectric thin film by lowering the substrate temperature, and came to the following conclusions. That is, the present inventors investigated ferroelectric thin films formed by sputtering using conventional methods at low substrate temperatures, and found that P in the formed PbTiO3 film
It was confirmed that the atomic ratio b/Ti greatly deviated from the stoichiometric composition ratio of 1.

従って低基板温度でスパッタ法により強誘電薄膜を形成
する際、その強誘電薄膜がペロブスカイト型構造を呈す
るようにするためには、Pb/Tiの原子比が、化学量
論的組成比1となるように、制御できるような方法が必
要となる。
Therefore, when forming a ferroelectric thin film by sputtering at a low substrate temperature, in order for the ferroelectric thin film to exhibit a perovskite structure, the atomic ratio of Pb/Ti must be set to a stoichiometric composition ratio of 1. Therefore, a method that can be controlled is needed.

〔問題点を解決するための手段〕[Means for solving problems]

本発明の強誘電薄膜の形成方法は、第1図の原理図に示
すように、AおよびBを単一元素、或いは複数の元素を
示す記号とし、組成がABO3で表されるペロブスカイ
ト型強誘電薄膜を基板上にスパッタ法で形成する場合に
於いて、 スパッタ用ガスが満たされた容器内に前記AおよびBを
構成する元素、或いはAおよびBを構成する元素と酸素
を含んだ化合物で構成された二つのターゲラ) (11
A、11B)を別個に配置し、これ等ターゲット上に前
記基板(12)を所定の繰り返し周期で交互に移動させ
、成膜組成が、0.5 <A/B <2.0の範囲の原
子比となるようにスパッタリングを行う。
As shown in the principle diagram of FIG. 1, the method for forming a ferroelectric thin film of the present invention is a perovskite-type ferroelectric film whose composition is represented by ABO3, where A and B are symbols representing a single element or a plurality of elements. When forming a thin film on a substrate by sputtering, a container containing a sputtering gas containing the elements constituting A and B, or a compound containing the elements constituting A and B and oxygen is placed in a container filled with sputtering gas. (11)
A and 11B) were placed separately, and the substrate (12) was moved alternately over these targets at a predetermined repetition period, so that the film composition was in the range of 0.5 < A/B < 2.0. Sputtering is performed to achieve the same atomic ratio.

〔作用〕[Effect]

本発明の方法は、形成すべき強誘電薄膜の構成元素、或
いは該構成元素のターゲットをそれぞれ別個に容器内に
設け、この各ターゲット上を基板を順次移動させ、この
各々のターゲットに印加する電力を、構成元素比が1対
Iの化学量論比を満足するように印加し、かつこの基板
の移動速度を(格子定数/膜成長速度上基板がターゲッ
トを通過する周期)とすることで、基板を400℃以下
の低温に保った場合においても、ペロブスカイト型の結
晶構造の強誘電薄膜が容易に得られるようにする。
In the method of the present invention, constituent elements of a ferroelectric thin film to be formed or targets for the constituent elements are separately provided in a container, a substrate is sequentially moved over each target, and electric power is applied to each target. By applying so that the constituent element ratio satisfies the stoichiometric ratio of 1 to I, and the moving speed of the substrate is (lattice constant/period of the substrate passing the target on the film growth rate), To easily obtain a ferroelectric thin film having a perovskite crystal structure even when a substrate is kept at a low temperature of 400° C. or lower.

〔実施例〕〔Example〕

以下、図面を用いながら本発明の一実施例につき詳細に
説明する。
Hereinafter, one embodiment of the present invention will be described in detail with reference to the drawings.

第2図に示すように、スパッタ容器13内に円板状のp
bo ターゲット11八と、TiO□ターゲットIIB
とを、それぞれカソードとなるターゲット設置台14A
および14B上に設置する。
As shown in FIG. 2, a disk-shaped p
bo Target 118 and TiO□Target IIB
and the target installation stand 14A, each serving as a cathode.
and installed on 14B.

一方、このターゲットIIA、IIBに対向するように
、ガラス基板12を、加熱ヒータ15を有する基板設置
台16に設置する。
On the other hand, the glass substrate 12 is placed on a substrate installation stand 16 having a heater 15 so as to face the targets IIA and IIB.

これ等のターゲットIIA、 IIBを載置したターゲ
ット設置台14Aと14Bは同一円周上に別個に設置さ
れ、これらの上を基板12を!!置した基板設置台16
がモータ等の移動装置(図示せず)を用いて回転移動す
るようにしても良いし、また直線上にこれらのターゲッ
ト設置台14八と14Bを別個に設置し、その上を基板
12がモータ等を用いて往復移動するようにしても良い
The target installation tables 14A and 14B on which these targets IIA and IIB are placed are separately installed on the same circumference, and the substrate 12 is placed on top of these tables 14A and 14B. ! Board installation stand 16
may be rotated using a moving device (not shown) such as a motor, or the target installation stands 148 and 14B may be installed separately on a straight line, and the board 12 may be moved by the motor. It may also be possible to move back and forth using, for example.

このような装置構成に於いて、排気バルブ17を開放に
して排気管18に連なる真空ポンプ(図示せず)を用い
て、スパッタ容器13内を10− ’ torrの真空
度に成るまで迄排気した後、バルブ17を閉じてガス導
入管I9より、酸素ガスを20容量%含んだArガスを
、スパッタガスとして容器13内の圧力が1O−2to
rrの圧力となるように導入する。
In such an apparatus configuration, the exhaust valve 17 was opened and a vacuum pump (not shown) connected to the exhaust pipe 18 was used to evacuate the inside of the sputtering container 13 to a degree of vacuum of 10-' torr. After that, the valve 17 is closed and Ar gas containing 20% by volume of oxygen gas is introduced from the gas inlet pipe I9 as a sputtering gas until the pressure inside the container 13 reaches 1O-2 to
Introduce the water to a pressure of rr.

この状態で周波数を13.56MHzとし、pboター
ゲットIIAに印加される電力を30Wとし、Ti0z
ターゲツト11Bに印加される電力を300 Wとし、
基板設置台16とターゲット設置台14Δ、14B間に
高周波電圧を印加する。
In this state, the frequency is set to 13.56 MHz, the power applied to the pbo target IIA is set to 30 W, and the Ti0z
The power applied to the target 11B is 300 W,
A high frequency voltage is applied between the substrate installation stand 16 and the target installation stands 14Δ, 14B.

そしてヒータ15を用いてガラス基板12を200°C
の温度に加熱する。
Then, using the heater 15, the glass substrate 12 is heated to 200°C.
Heat to temperature.

この条件で、形成されるPbTiO3のスパッタ膜の成
膜速度は0,16人/sec、この被膜の格子定数は4
人程度であるので、410.16=25sec以下の周
期で基板12が、各ターゲ7 )11A、IIBを通過
するようにすると、V厚が格子定数の厚さに到達する以
前に、基板12が各ターゲツト11A、11B上を通過
することになるので、pbとTiの原子比Pb/Tiが
1の強誘電性を示すペロブスカイト型結晶構造のPbT
i0+のスパッタ膜が得られる。
Under these conditions, the deposition rate of the sputtered PbTiO3 film is 0.16 persons/sec, and the lattice constant of this film is 4.
If the substrate 12 is made to pass through each target 7) 11A and IIB at a period of 410.16 = 25 seconds or less, the substrate 12 will Since it passes over each target 11A and 11B, PbT with a perovskite crystal structure exhibiting ferroelectricity with an atomic ratio of Pb and Ti of 1, Pb/Ti,
A sputtered film of i0+ is obtained.

ここで第3図にPbOターゲッl−11Aに印加される
電ツノと、TiO□ターゲットIIBに印加される電力
と、スパッタによって形成されるPbTiO3の強誘電
薄膜膜のpbとTiの原子比Pb/T i との関係を
示す。
Here, FIG. 3 shows the electric power applied to the PbO target I-11A, the electric power applied to the TiO□ target IIB, and the atomic ratio of pb and Ti of the ferroelectric thin film of PbTiO3 formed by sputtering, Pb/ The relationship with T i is shown.

図の横軸はPbOターゲット11八に印加される電力を
示し、図の縦軸はTie2ターゲッ)IIBに印加され
る電力を示し、図の曲線21は形成されるPbTi0+
の強誘電薄膜のpbとTtの原子比、即ちPb/Ti 
=1となる曲線を示す。
The horizontal axis of the figure shows the power applied to the PbO target 118, the vertical axis of the figure shows the power applied to the Tie2 target (IIB), and the curve 21 of the figure shows the PbTi0+ formed
The atomic ratio of pb and Tt of the ferroelectric thin film, that is, Pb/Ti
A curve with =1 is shown.

図示するように曲線21の上側の領域はpbとTiの原
子比がPb/Ti < 1となり、曲線21の下側の領
域はpbとTiの原子比がPb/Ti < l となる
As shown, in the region above the curve 21, the atomic ratio of pb and Ti is Pb/Ti<1, and in the region below the curve 21, the atomic ratio of pb and Ti is Pb/Ti<l.

従ってPbOターゲッ目IAに印加される電力と、Ti
0zターゲツ)11Bに印加される電力を適宜選んで、
pbとTiの原子比Pb/Ti =1となるようにする
と良い。
Therefore, the power applied to the PbO target IA and the Ti
0z target) Select the power applied to 11B appropriately,
It is preferable that the atomic ratio of pb and Ti is Pb/Ti=1.

ここで第4図にPbOターゲットIIAに印加される電
力と、TiO□ターゲットIIBに印加される電力を適
宜’>’A ン”i!?、Pb、l!:Tiミノ子比(
7)Pb/Tiを変化させた時に形成されるスパッタ膜
の膜質を調べた結果を示す。
Here, the power applied to the PbO target IIA and the power applied to the TiO□ target IIB are shown in FIG. 4 as appropriate.
7) The results of examining the film quality of sputtered films formed when Pb/Ti was varied are shown.

図の横軸はpbとTiの原子比Pb/Tiを示し、図の
縦軸は形成されたスパッタ膜をX線回折装置で検査して
、ペロブスカイト型構造を示すピーク波形の面積とパイ
クロア型構造を示すピーク波形の面積との比をとった値
を示し、この値が大きい程、そのスパッタ膜にペロブス
カイト型構造の結晶が多く含有されて、強誘電特性が大
の被膜が得られたことになる。
The horizontal axis of the figure shows the atomic ratio Pb/Ti of pb and Ti, and the vertical axis of the figure shows the area of the peak waveform showing the perovskite structure when the formed sputtered film was inspected with an X-ray diffraction device, and the pyrochlore structure. The value is the ratio of the area of the peak waveform showing Become.

図の曲線31に示すようにpbとTiの原子比Pb/T
i力0.5〜2.0の範囲で、ペロブスカイト型構造の
強誘電膜が得られやすいことが判明した。
As shown in curve 31 in the figure, the atomic ratio of pb and Ti is Pb/T
It has been found that a ferroelectric film having a perovskite structure can be easily obtained when the i-force is in the range of 0.5 to 2.0.

また第5図に基板を加熱しない状態で、上記したような
条件でスパッタした場合に形成されたスパッタ膜のX線
回折の状態を示す。
Further, FIG. 5 shows the state of X-ray diffraction of a sputtered film formed when sputtering was performed under the above-mentioned conditions without heating the substrate.

図の横軸はX線の回折角度を示し、縦軸はスパッタ膜に
X線が照射されて回折されたX線の強度をX線検知器で
検知した値を示す。
The horizontal axis of the figure shows the diffraction angle of X-rays, and the vertical axis shows the intensity of the diffracted X-rays detected by the X-ray detector when the sputtered film is irradiated with the X-rays.

図の曲線41に示すように、41A、41B、41C,
410の各々の箇所に於いて、ペロブスカイト構造のP
bTi01の(100)面、(101)面、(110)
面、(111)面に対応するX線の回折ピークが現れて
おり、ペロブスカイト型の結晶構造を有するPbTi0
:+の強誘電膜が形成されていることが実験的に確かめ
られた。
As shown in the curve 41 in the figure, 41A, 41B, 41C,
At each location of 410, P of the perovskite structure
(100) plane, (101) plane, (110) of bTi01
X-ray diffraction peaks corresponding to the (111) plane appear, and PbTi0 has a perovskite crystal structure.
: It was experimentally confirmed that a positive ferroelectric film was formed.

尚、本実施例ではPbTiOxのスパッタ膜の形成方法
に例を用いて説明したが、本発明はAおよびBを単一の
元素、或いは複数の元素を組み合わせた記号としABO
3の形で表されるチタン酸バリウム(BaTiOz)、
チタン酸ストロンチウム(SrTi(h)、ジルコニウ
ムチタン酸ストロンチウム(Sr(Zro、 zTio
、 s)0+、PLZT ((Pb  ・しa )(Z
r  −Ti)(h )等のペロブスカイト構造の強誘
電薄膜の形成にも適用できる。
In this example, the method for forming a sputtered film of PbTiOx was explained using an example, but in the present invention, A and B are symbols for a single element or a combination of multiple elements, and ABO
Barium titanate (BaTiOz) expressed in the form 3,
Strontium titanate (SrTi(h), zirconium strontium titanate (Sr(Zro, zTio)
, s) 0+, PLZT ((Pb ・shia ) (Z
It can also be applied to the formation of ferroelectric thin films with a perovskite structure such as r -Ti) (h).

また本実施例のように各ターゲットに印加する電力を制
御する代わりに、各ターゲット上にスリットを設けた遮
蔽板を設置し、このスリットの開口部の面積を調整する
ことで、各ターゲットより基板上にスパッタされるター
ゲットの成分を調整し、これによって形成されるスパッ
タ膜の構成原子比を制御する方法を採っても良い。
Furthermore, instead of controlling the power applied to each target as in this embodiment, by installing a shielding plate with slits on each target and adjusting the area of the opening of the slit, it is possible to A method may also be adopted in which the components of the target sputtered thereon are adjusted, thereby controlling the constituent atomic ratio of the sputtered film formed.

〔発明の効果〕〔Effect of the invention〕

以上述べたように、本発明の方法によれば、形成される
スパッタ膜の組成の制御が容易となり、基板が低温の状
態でスパッタ膜を形成しても、ペロブスカイト型構造の
強誘電薄膜が容易に形成でき、本発明の方法で形成した
強誘電薄膜を用いてEL素子を形成すれば、低駆動電圧
の高性能のEL素子が得られる効果がある。
As described above, according to the method of the present invention, it is easy to control the composition of the sputtered film to be formed, and even when the sputtered film is formed when the substrate is at a low temperature, it is easy to form a ferroelectric thin film with a perovskite structure. If an EL element is formed using a ferroelectric thin film formed by the method of the present invention, a high-performance EL element with a low driving voltage can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の方法を示す原理図、 第2図は本発明の一実施例を示す模式図、第3図は本発
明に於ける各ターゲットの印加電力と形成されるスパッ
タ膜の構成原子の原子比との関係図、 第4図は本発明に於けるスパッタ膜の構成原子の原子比
と膜質との関係図、 第5図は本発明の方法で形成したスパッタ膜のX線回折
図、 第6図は従来の方法を示す模式図、 第7図は従来の方法で形成したスパッタ膜の結晶構造と
基板温度の関係図である。 図に於いて、 11A はpbo ターゲット、IIB はTi0iタ
ーゲツト、12は基板、13は容器、14A、 14B
はターゲット設置台、15はヒータ、16は基板設置台
、17は排気バルブ、18は排気管、19はガス導入管
、21はターゲットの印加電力と形成される強誘電薄膜
の原子比との関係曲線、31は強誘電薄膜の原子比と膜
質との関係曲線、41.41A、41B、41C,41
Dは強誘電薄膜のX線回折ピークを示す。 ′s 1 図 、taiとり−・′#メイ七イケリめ番り蓼式ワ凸第2
図 第3図 や →方i犯尤
Fig. 1 is a principle diagram showing the method of the present invention, Fig. 2 is a schematic diagram showing an embodiment of the present invention, and Fig. 3 is a diagram showing the applied power to each target and the structure of the sputtered film formed in the present invention. Figure 4 is a diagram showing the relationship between the atomic ratio of atoms and film quality in the sputtered film according to the present invention. Figure 5 is an X-ray diffraction diagram of the sputtered film formed by the method of the present invention. 6 is a schematic diagram showing the conventional method, and FIG. 7 is a diagram showing the relationship between the crystal structure of a sputtered film formed by the conventional method and the substrate temperature. In the figure, 11A is a pbo target, IIB is a Ti0i target, 12 is a substrate, 13 is a container, 14A, 14B
15 is a target installation stand, 15 is a heater, 16 is a substrate installation stand, 17 is an exhaust valve, 18 is an exhaust pipe, 19 is a gas introduction pipe, and 21 is the relationship between the applied power to the target and the atomic ratio of the ferroelectric thin film to be formed. Curve 31 is a relationship curve between atomic ratio and film quality of ferroelectric thin film, 41.41A, 41B, 41C, 41
D shows the X-ray diffraction peak of the ferroelectric thin film. 's 1 Figure, tai-・'# Mei 7 Ikeri Mebanori Tateshiki Wa Convex 2nd
Figure 3 and → direction i criminal law

Claims (3)

【特許請求の範囲】[Claims] (1)AおよびBを単一元素、或いは複数の元素を示す
記号とし、組成がABO_3で表されるペロブスカイト
型強誘電薄膜を基板(12)上にスパツタ法で形成する
場合に於いて、 スパツタ用ガスが満たされた容器内に前記AおよびBを
構成する元素、或いはAおよびBを構成する元素と酸素
を含んだ化合物で構成された二つのターゲツト(11A
,11B)を別個に配置し、これ等ターゲツト上に前記
基板(12)を所定の繰り返し周期で交互に移動させ、
成膜組成が、0.5<A/B<2.0の範囲の原子比と
なるようにスパツタリングを行うことを特徴とする強誘
電薄膜の形成方法。
(1) When forming a perovskite-type ferroelectric thin film with the composition ABO_3 on the substrate (12) by sputtering, where A and B are symbols indicating a single element or multiple elements, sputtering Two targets (11A
, 11B) are placed separately, and the substrates (12) are alternately moved over these targets at a predetermined repetition period,
A method for forming a ferroelectric thin film, comprising performing sputtering so that the film composition has an atomic ratio in the range of 0.5<A/B<2.0.
(2)前記基板(12)が、各ターゲツト(11A,1
1B)を(格子定数/膜の成長速度≧基板がターゲツト
を通過する周期)となる条件で移動させることを特徴と
する特許請求の範囲第1項に記載の強誘電薄膜の形成方
法。
(2) The substrate (12) is connected to each target (11A, 1
1B) is moved under the condition that (lattice constant/film growth rate≧period in which the substrate passes the target).
(3)前記スパツタ容器内の雰囲気が酸化性雰囲気であ
ることを特徴とする特許請求の範囲第1項および第2項
のいずれかに記載の強誘電薄膜の形成方法。
(3) The method for forming a ferroelectric thin film according to any one of claims 1 and 2, wherein the atmosphere in the sputtering container is an oxidizing atmosphere.
JP61315038A 1986-12-26 1986-12-26 Method for forming ferroelectric thin film Expired - Lifetime JPH0670920B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61315038A JPH0670920B2 (en) 1986-12-26 1986-12-26 Method for forming ferroelectric thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61315038A JPH0670920B2 (en) 1986-12-26 1986-12-26 Method for forming ferroelectric thin film

Publications (2)

Publication Number Publication Date
JPS63166198A true JPS63166198A (en) 1988-07-09
JPH0670920B2 JPH0670920B2 (en) 1994-09-07

Family

ID=18060674

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61315038A Expired - Lifetime JPH0670920B2 (en) 1986-12-26 1986-12-26 Method for forming ferroelectric thin film

Country Status (1)

Country Link
JP (1) JPH0670920B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0294507A (en) * 1988-09-30 1990-04-05 Toshiba Corp Ferroelectric thin-film and manufacture thereof
JPH04147964A (en) * 1990-10-11 1992-05-21 Sharp Corp Production of thin film of ferroelectric substance

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62272402A (en) * 1986-05-20 1987-11-26 松下電器産業株式会社 Manufacture of thin film

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62272402A (en) * 1986-05-20 1987-11-26 松下電器産業株式会社 Manufacture of thin film

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0294507A (en) * 1988-09-30 1990-04-05 Toshiba Corp Ferroelectric thin-film and manufacture thereof
JPH04147964A (en) * 1990-10-11 1992-05-21 Sharp Corp Production of thin film of ferroelectric substance

Also Published As

Publication number Publication date
JPH0670920B2 (en) 1994-09-07

Similar Documents

Publication Publication Date Title
Sayer et al. Ceramic thin films: fabrication and applications
US5532504A (en) Process for the production of dielectric thin films
US5674366A (en) Method and apparatus for fabrication of dielectric thin film
Whatmore Ferroelectric materials
JP4067563B2 (en) UV irradiation process for manufacturing electronic devices with low leakage current and low polarization fatigue
US6162293A (en) Method for manufacturing ferroelectric thin film, substrate covered with ferroelectric thin film, and capacitor
US5717157A (en) Ferroelectric thin film and method of manufacturing the same
Edmondson et al. Composition and annealing effects on the linear electro‐optic response of solution‐deposited barium strontium titanate
JP5697085B2 (en) Method for producing metal oxide thin film
CN100348541C (en) Method of preparing leadless calcium titanium ore structure ferroelectric film possessing high orientation
JPS63166198A (en) Method of forming ferrodielectric thin film
JPH08264525A (en) Deposition of laminar compound thin film of bismuth
JP3224293B2 (en) Manufacturing method of dielectric thin film
JPH05251351A (en) Formation method of ferroelectric thin film
JPH0585704A (en) Production of ferroelectric thin film
WO2018216226A1 (en) Film-forming device and film-forming method
JP2718414B2 (en) Method for producing lead titanate thin film
JP3589354B2 (en) Manufacturing method of dielectric thin film
CN1779926A (en) Control of lead zirconate-titanate preferred orientation
JP3124849B2 (en) Method and apparatus for manufacturing dielectric thin film
JPH06299330A (en) Method and device for depositing thin dielectric film
JPS63170897A (en) Method of forming ferrodielectric film
Pignolet et al. Pyroelectricity in (Pb0· 98Mn0· 02)(Zr0· 6Ti0· 4) O3 sputtered thin films
Jin Pulsed laser deposition and optical properties of SBN and SBT thin films
JPH0543242A (en) Production of lead titanate zirconate-based thin film