JPS63165816A - Optical attenuator - Google Patents

Optical attenuator

Info

Publication number
JPS63165816A
JPS63165816A JP30914886A JP30914886A JPS63165816A JP S63165816 A JPS63165816 A JP S63165816A JP 30914886 A JP30914886 A JP 30914886A JP 30914886 A JP30914886 A JP 30914886A JP S63165816 A JPS63165816 A JP S63165816A
Authority
JP
Japan
Prior art keywords
waveguide
base
voltage
optical attenuator
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP30914886A
Other languages
Japanese (ja)
Inventor
Makoto Kadowaki
門脇 真
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP30914886A priority Critical patent/JPS63165816A/en
Publication of JPS63165816A publication Critical patent/JPS63165816A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain an optical attenuator capable of electrically controlling an attenuation factor by forming an area having a different refractive index on a part of a base showing double refraction when a voltage is impressed to form a waveguide and impressing a voltage in the prescribed direction of the base. CONSTITUTION:The waveguide 3 into which impurity is diffused is formed on the base 1. Independent electrode plates 2x, 2y, 2z are formed on six faces of the base 1. The electrode plates 2x, 2y, 2z can impress voltages respectively in the x, y and z directions of the base 1. When a voltage is impressed to the electrode plates, the refractive indexes of the waveguide 3 and the base 1 are changed. When the refractive index of the waveguide 3 is increased, the attenuation is dropped, and on the other hand the attenuation can be increased by reducing the refractive index of the waveguide 3. Thus, the attenuation of the optical attenuator can be controlled by controlling the voltages of respective electrode plates.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は光減衰器に係わり、特に光通信に用いられる光
減衰器に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an optical attenuator, and particularly to an optical attenuator used in optical communications.

〔従来の技術〕[Conventional technology]

近年の光通信技術の発達に伴って、種々の光デバイスが
開発されている。この中で、光減衰器は、光通信システ
ムの評価、調整などを行うためのデバイスとして、ます
ます重要な役割を果たしつつあるデバイスであり、光フ
アイバ伝送路の途中に挿入して光信号を減衰させる機能
を有する。
With the recent development of optical communication technology, various optical devices have been developed. Among these, optical attenuators are devices that are playing an increasingly important role as devices for evaluating and adjusting optical communication systems, and are inserted in the middle of optical fiber transmission lines to transmit optical signals. It has a damping function.

一般に、このような光減衰器は、光信号の一部を反射さ
せたり、吸収させたり、あるいは特定の偏光面の光のみ
を透過させるという方法によって、光信号の減衰を行っ
ている。従って、反射率、吸収率、あるいは偏光面の角
度によって、各デバイスの減衰率が決定される。減衰率
が固定のデバイスもあるが、反射率等を変化させること
により、減衰率を可変にしたデバイスもある。
Generally, such an optical attenuator attenuates an optical signal by reflecting or absorbing a portion of the optical signal, or by transmitting only light with a specific plane of polarization. Therefore, the attenuation rate of each device is determined by the reflectance, absorption rate, or angle of the plane of polarization. Some devices have a fixed attenuation rate, while others have a variable attenuation rate by changing reflectance or the like.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながら、従来の減衰率可変型の光減衰器は、機械
的に光学系の構造を変化させることにより減衰率を変化
させるものであるため、減衰率の制御性が悪いという問
題点がある。例えば、外部の制御回路によって減衰率の
制御を行わせる場合、この制御回路からの電気的な制御
信号を機械的な変位に変換するトランスデユーサが必要
になる。
However, the conventional variable attenuation rate optical attenuator changes the attenuation rate by mechanically changing the structure of the optical system, and therefore has a problem in that the controllability of the attenuation rate is poor. For example, when the attenuation rate is controlled by an external control circuit, a transducer is required to convert an electrical control signal from the control circuit into a mechanical displacement.

そこで本発明は、電気的に減衰率を制御することができ
る光減衰器を提供することを目的とする。
Therefore, an object of the present invention is to provide an optical attenuator whose attenuation rate can be electrically controlled.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は、電圧を印加することにより複屈折性を示す結
晶からなる基板を用意し、この基板の一部分に屈折率の
異なる領域を設けてこの領域を導波路とし、この基板の
所定の方向に電圧を印加するための電極を更に設けて光
減衰器を構成し、この電極に印加する電圧によって減衰
率の制御を行えるようj二したものである。
In the present invention, a substrate made of a crystal that exhibits birefringence by applying a voltage is prepared, a region with a different refractive index is provided in a part of the substrate, this region is used as a waveguide, and the substrate is guided in a predetermined direction. An optical attenuator is further provided with an electrode for applying a voltage, and the attenuation rate can be controlled by the voltage applied to this electrode.

〔実施例〕〔Example〕

以下、本発明を図示する実施例に基づいて説明する。 The present invention will be described below based on illustrated embodiments.

第1図は、本発明の一実施例に係わる光減衰器の基本構
造の外観図である。この光減衰器は、直方体系状の基板
1の6つの表面に、電極板2x12y、2Zを形成した
ものである。説明の便宜上、二の直方体系状の基板1の
外観図を第2図に示す。
FIG. 1 is an external view of the basic structure of an optical attenuator according to an embodiment of the present invention. This optical attenuator has electrode plates 2x12y and 2Z formed on six surfaces of a rectangular parallelepiped-shaped substrate 1. For convenience of explanation, an external view of the two rectangular parallelepiped-shaped substrate 1 is shown in FIG.

基板1は電圧を印加することにより複屈折性を示す結晶
かろなり、図のx、y、zは、それぞれ各結晶軸の方向
を示す。この基板1の一部分に、導波路3が設けられる
7この導波路3は、基板lとは屈折率の異なる領域とな
っており、例えば、基lflを構成する結晶内に不純物
を拡散することによって形成することができる。本実施
例の場合、基板1としては、ニオブ酸リチウムの結晶を
用い、導波路3はこの結晶に不純物としてチタンを拡散
して形成した。
The substrate 1 is made of a crystal that exhibits birefringence when a voltage is applied, and x, y, and z in the figure each indicate the direction of each crystal axis. A waveguide 3 is provided in a part of this substrate 17. This waveguide 3 is a region having a different refractive index from that of the substrate 1. For example, by diffusing impurities into the crystal constituting the base lfl, can be formed. In the case of this example, a lithium niobate crystal was used as the substrate 1, and the waveguide 3 was formed by diffusing titanium as an impurity into this crystal.

光減衰器は、二〇基板1の6つの表面に独立した電極板
2x、2y、2zを形成することによって構成される。
The optical attenuator is constructed by forming independent electrode plates 2x, 2y, and 2z on the six surfaces of the 20-substrate 1.

笑1図に示すように、一対の電極板2xは基板1をX方
向から挟み込むように対向して設けられ、一対の電極板
2yはX方向から挾み込むように、また、一対の電極板
2ZはZ方向から挟み込むように対向して設けられる。
As shown in Figure 1, a pair of electrode plates 2x are provided facing each other so as to sandwich the substrate 1 from the X direction, and a pair of electrode plates 2y are provided so as to sandwich the substrate 1 from the X direction. 2Z are provided facing each other so as to be sandwiched therebetween from the Z direction.

このようにすれば、電極板2xを用いて基板1のX方向
に、電極板2yを用いて基板1のX方向に、電極122
を用いて基板1の2方向に、それぞれ電圧を印加するこ
とができる。
In this way, the electrode 122 can be moved in the X direction of the substrate 1 using the electrode plate 2x, and in the X direction of the substrate 1 using the electrode plate 2y.
It is possible to apply voltages in two directions of the substrate 1 using the two directions.

光フアイバ伝送系にこの光減衰器を挿入したときには、
光信号は導波路3内を図の2方向に進みながら減衰する
ことになる。この導波路3内を進行する光は、2つのモ
ードをとる。すなわち、導波モードと放射モードである
。導波モードは光が導波路3内に閉じ込められて伝播す
るモードであり、導波路3の屈折率が基板1の屈折率よ
りも高いときに、光はこのモードで進む。逆に導波路3
の屈折率が基fFi、lの屈折率よりも低いときには、
光は基板l内に放射されてしまい、放射モードとなる。
When this optical attenuator is inserted into an optical fiber transmission system,
The optical signal is attenuated while traveling in the waveguide 3 in two directions as shown in the figure. The light traveling within this waveguide 3 has two modes. That is, the waveguide mode and the radiation mode. The waveguide mode is a mode in which light propagates while being confined within the waveguide 3, and when the refractive index of the waveguide 3 is higher than the refractive index of the substrate 1, the light travels in this mode. On the contrary, waveguide 3
When the refractive index of is lower than that of the group fFi,l,
The light will be emitted into the substrate l and will be in a radiation mode.

実際には、両モードは縮退しており、この光減衰器によ
る減衰率は、この縮退した両モード間の結合率によって
定まる。導波路モードの割合が多くなれば減衰率は低く
なり、放射モードの割合が多くなれば減衰率は高くなる
In reality, both modes are degenerate, and the attenuation rate by this optical attenuator is determined by the coupling rate between the two degenerate modes. As the proportion of waveguide modes increases, the attenuation rate decreases, and as the proportion of radiation modes increases, the attenuation rate increases.

この両モード間の結合率は、電極板2に電圧を印加する
ことによって変化させることができる。
The coupling rate between both modes can be changed by applying a voltage to the electrode plate 2.

一般に導波路3内の誘電率は、テンソル系で表わされる
。電極板2に電圧を印加する前は、この誘電率テンソル
は対角成分のみしかないが、電圧を印加すると非対角成
分が生じ、各方向によっての両モード間の結合率が変化
するのである。例えば、X方向に偏光した光について考
えると、一対の電極板2yに電圧を印加することにより
、X方向に関する導波モードと放射モードとの結合率を
変化させることができる。X方向についても同様に、一
対の電極板2xに印加する電圧によって結合率の変化が
可能である。結局、各電極板2に印加する電圧値を制御
することによって、光減衰器の減衰率の制御が可能とな
る。
Generally, the dielectric constant within the waveguide 3 is expressed in a tensor system. Before a voltage is applied to the electrode plate 2, this dielectric constant tensor has only a diagonal component, but when a voltage is applied, a non-diagonal component appears, and the coupling ratio between both modes changes in each direction. . For example, considering light polarized in the X direction, the coupling rate between the waveguide mode and the radiation mode in the X direction can be changed by applying a voltage to the pair of electrode plates 2y. Similarly, in the X direction, the coupling rate can be changed by changing the voltage applied to the pair of electrode plates 2x. After all, by controlling the voltage value applied to each electrode plate 2, it becomes possible to control the attenuation rate of the optical attenuator.

なお、上述の実施例では、x、y、zの各方向にそれぞ
れ一対ずつの電極板を設けたが、本発明では、要するに
導波路3に何らかの電界を生じさせて屈折率を変化させ
ることができれば、どのような位置に電極板を設けるよ
うにしても構わない。
In the above embodiment, one pair of electrode plates were provided in each of the x, y, and z directions, but in the present invention, in short, it is possible to generate some kind of electric field in the waveguide 3 to change the refractive index. If possible, the electrode plate may be provided in any position.

〔発明の効果〕〔Effect of the invention〕

以上のとおり本発明によれば、光減衰器において、導波
路を含む基板に電圧を印加させることによって、基板の
屈折率を変化させ、導波路を進む光のモードと放射モー
ドとの間の結合率を変えるようにしたため、電気的に減
衰率を制御することができるようになる。
As described above, according to the present invention, in an optical attenuator, by applying a voltage to a substrate including a waveguide, the refractive index of the substrate is changed, and coupling between the mode of light traveling through the waveguide and the radiation mode is achieved. Since the rate is changed, the attenuation rate can be electrically controlled.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例に係わる光減衰器の基本構造
を示す外観図、第2図は第1図に示す光減衰器の一構成
要素である基板の外観図である。 1・・・・・・基板、 2x、2y、2z・・・・・・電極板、3・・・・・・
導波路。 出  願  人 日本電気株式会社 代  理  人
FIG. 1 is an external view showing the basic structure of an optical attenuator according to an embodiment of the present invention, and FIG. 2 is an external view of a substrate that is one component of the optical attenuator shown in FIG. 1...Substrate, 2x, 2y, 2z...electrode plate, 3...
waveguide. Applicant: NEC Corporation Representative

Claims (1)

【特許請求の範囲】[Claims] 電圧を印加することにより複屈折性を示す結晶からなる
基板と、この基板の一部分に設けられた屈折率の異なる
領域である導波路と、前記基板の所定の方向に電圧を印
加するための電極とを備えることを特徴とする光減衰器
A substrate made of a crystal that exhibits birefringence when a voltage is applied, a waveguide that is a region with a different refractive index provided in a part of this substrate, and an electrode for applying a voltage in a predetermined direction of the substrate. An optical attenuator comprising:
JP30914886A 1986-12-27 1986-12-27 Optical attenuator Pending JPS63165816A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30914886A JPS63165816A (en) 1986-12-27 1986-12-27 Optical attenuator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30914886A JPS63165816A (en) 1986-12-27 1986-12-27 Optical attenuator

Publications (1)

Publication Number Publication Date
JPS63165816A true JPS63165816A (en) 1988-07-09

Family

ID=17989488

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30914886A Pending JPS63165816A (en) 1986-12-27 1986-12-27 Optical attenuator

Country Status (1)

Country Link
JP (1) JPS63165816A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002031555A3 (en) * 2000-10-10 2002-10-03 Lightcross Inc Optical attenuator
US6792180B1 (en) 2001-03-20 2004-09-14 Kotura, Inc. Optical component having flat top output

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002031555A3 (en) * 2000-10-10 2002-10-03 Lightcross Inc Optical attenuator
US6792180B1 (en) 2001-03-20 2004-09-14 Kotura, Inc. Optical component having flat top output

Similar Documents

Publication Publication Date Title
US7010211B2 (en) Fiber optical attenuator
US7035484B2 (en) Tunable optical filter
Jinguji et al. Two-port optical wavelength circuits composed of cascaded Mach-Zehnder interferometers with point-symmetrical configurations
US5923472A (en) 3-port optical circulator/switch with mirror
US4143941A (en) Low loss optical data terminal device for multimode fiber guide optical communication systems
JPS59808B2 (en) Improved liquid crystal matrix
US3877781A (en) Electro-optical thin-film device
CA2346007A1 (en) Method and apparatus for providing transformation of the polarization of light
EP1148373A2 (en) Method and device for controlling the polarization of a Beam of Light
US6904207B2 (en) Waveguide type liquid-crystal optical switch
US5930441A (en) Split-beam Fourier filter
Sumriddetchkajorn et al. Fault-tolerant three-port fiber-optic attenuator using small tilt micromirror device
JPS63165816A (en) Optical attenuator
US6188809B1 (en) Method and device for controlling the polarization of a beam of light
JPH04328720A (en) Waveguide type optical device
US3909113A (en) Optical coupler
EP1410100B1 (en) Fiber optical gain equalizer
WO1996007114A1 (en) Split-beam fourier filter
US6977695B2 (en) Variable optical attenuator based on electrically switchable cholesteric liquid crystal reflective polarizers
JPH05249426A (en) Wavelength selection filter and transmission wavelength control method
GB2230346A (en) Optical instrument
JPS6151775B2 (en)
JPS5930884Y2 (en) optical fiber
KR20030089676A (en) In-line fiber-optic tunnable attenuator
JPS6039849Y2 (en) optical switch