JPS63165815A - Optical scanner - Google Patents
Optical scannerInfo
- Publication number
- JPS63165815A JPS63165815A JP31268286A JP31268286A JPS63165815A JP S63165815 A JPS63165815 A JP S63165815A JP 31268286 A JP31268286 A JP 31268286A JP 31268286 A JP31268286 A JP 31268286A JP S63165815 A JPS63165815 A JP S63165815A
- Authority
- JP
- Japan
- Prior art keywords
- light
- slit
- scanning
- mirror
- lens
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 230000003287 optical effect Effects 0.000 title claims abstract description 21
- 238000003384 imaging method Methods 0.000 claims description 12
- 238000006073 displacement reaction Methods 0.000 claims 1
- 230000015572 biosynthetic process Effects 0.000 abstract 1
- 239000002184 metal Substances 0.000 description 3
- 238000010586 diagram Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 101700004678 SLIT3 Proteins 0.000 description 1
- 102100027339 Slit homolog 3 protein Human genes 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
Landscapes
- Mechanical Optical Scanning Systems (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は光走査装置例えばレーザービームで光記録する
ための光走査装置に関する。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an optical scanning device, for example, an optical scanning device for optical recording with a laser beam.
従来この種の光走査装置は倒れ補正光学系を採り入れる
ことにより主走査方向に交差する副走査方向のむらを軽
減していた。Conventionally, this type of optical scanning device has reduced unevenness in the sub-scanning direction intersecting the main scanning direction by incorporating a tilt correction optical system.
しかし走査鏡として金属面を鏡面とする走査鏡ビームの
強度分布に変化を生じさせる。すなわち走査鏡の後方に
ある結像レンズ(Fθレンズ)は有限の開口角しか持た
ないため例えば0次光と1次光のみが通過すると副走査
方向の結像スポット強度分布かがウス状強度分布から変
化して結像スポット形状の変化により副走査方向のむら
が生ずる。この問題点を解消すべく本件出願人は特願昭
61−246043号として新たな装置を提案している
。However, it causes a change in the intensity distribution of the scanning mirror beam, which uses a metal surface as a mirror surface. In other words, since the imaging lens (Fθ lens) behind the scanning mirror has only a finite aperture angle, for example, if only the 0th-order light and the 1st-order light pass through, the imaging spot intensity distribution in the sub-scanning direction will be a sinusoidal intensity distribution. Due to the change in the shape of the imaged spot, unevenness occurs in the sub-scanning direction. In order to solve this problem, the applicant has proposed a new device in Japanese Patent Application No. 61-246043.
本発明の目的は、更なる改良を行い画面(例えば表示又
は記録面)上を走査するスポットの形状へ及ぼす走査鏡
面の切削の跡(引き目)の影唇を極力減少させることに
ある。An object of the present invention is to make further improvements and to reduce as much as possible the effects of cutting marks (scratches) on the scanning mirror surface on the shape of a spot scanned on a screen (for example, a display or recording surface).
上記問題点を解決する一手段として例えば本実施例では
、ポリゴンミラー9とFθレンズ10の間に第1のスリ
ット開口A1又ドラム11の近傍に第2のスリット開口
Bを備える。As a means of solving the above problems, for example, in this embodiment, a first slit opening A1 is provided between the polygon mirror 9 and the Fθ lens 10, and a second slit opening B is provided near the drum 11.
ここでスリット開口Bを0次光のみが通過するようにす
れば0次光かがウス状強度分布を持っているためがウス
状強度分布をもったスポットが得られる。Here, if only the 0th-order light is allowed to pass through the slit opening B, a spot with a 0th-order intensity distribution can be obtained since the 0th-order light has a 0th-order intensity distribution.
〔実施例〕
第1図は本発明の実施例でレーザー光源lからのレーザ
ービーム2が走査光学系を経て、回転ドラム12」二の
記録フィルムIIに感光することにより画像を記録する
ものである。なおドラムは電子写真記録式の感光ドラム
であってもよい。[Embodiment] Fig. 1 shows an embodiment of the present invention in which a laser beam 2 from a laser light source 1 passes through a scanning optical system and is exposed to a recording film II on a rotating drum 12'' to record an image. . Note that the drum may be an electrophotographic photosensitive drum.
第1図でレーザービーム2は先ずビームコンプレッサー
3により適当なビーム径にされてレーザービーム強度を
変調するA10変調器4に入射する。In FIG. 1, a laser beam 2 is first made into an appropriate beam diameter by a beam compressor 3, and then enters an A10 modulator 4 that modulates the laser beam intensity.
これは、A10変調器に入射するビーム径によりビーム
の変調の効率や応答速度を適正なものにするためである
。なおA10変調器4とビームエキスパンダー5の間に
は0次光をカットし、1次光のみを通す如き不図示のア
パーチャーが配置される。This is to ensure that the beam modulation efficiency and response speed are appropriate depending on the beam diameter incident on the A10 modulator. Note that an aperture (not shown) is arranged between the A10 modulator 4 and the beam expander 5, which cuts off the zero-order light and allows only the first-order light to pass through.
さてレーザービームの出射径はビームエキスパンダー5
で変化させる事ができる。記録フィルム11上のビーム
スポットサイズはd= (4/π)Fno・λで求めら
れる。ここでdは中心強度に対して1702強度でのビ
ーム径、Fnoは結像レンズの焦点距離を入射ビーム径
(1/e2強度)で割ったものである。Now, the output diameter of the laser beam is beam expander 5.
You can change it with . The beam spot size on the recording film 11 is determined by d=(4/π)Fno·λ. Here, d is the beam diameter at 1702 intensity with respect to the center intensity, and Fno is the focal length of the imaging lens divided by the incident beam diameter (1/e2 intensity).
λはレーザー光の波長である。λ is the wavelength of the laser light.
これにより、Fθレンズの焦点距離が決まっている場合
、結像スポットのサイズを変化させるのにビームエキス
パンダーが使用されることが理解される。次に光ビーム
は反射鏡6、紙面内では屈折力をもたず紙面に垂直方向
に屈折力をもつシリンドリカルレンズ7を経てポリゴン
ミラー9に至り、回転するポリゴンミラー9からのビー
ムCは結像レンズであるFθレンズ10へ入射すること
により回転ドラム12上の記録フィルム11上を走査す
ることになる。ドラムは回転することにより副走査方向
に画像の記録をする。It is thereby understood that if the focal length of the Fθ lens is fixed, a beam expander is used to change the size of the imaging spot. Next, the light beam passes through a reflecting mirror 6 and a cylindrical lens 7 which has no refractive power in the plane of the paper but has a refractive power in the direction perpendicular to the plane of the paper, and reaches the polygon mirror 9. The beam C from the rotating polygon mirror 9 forms an image. By entering the Fθ lens 10, which is a lens, the recording film 11 on the rotating drum 12 is scanned. The drum records images in the sub-scanning direction by rotating.
ここで、シリンドリカルレンズ7はほぼポリゴンミラー
9上にビームエキスパンダー5から出た光束を直線状、
正確には長楕円状のビー、ムで結像している。又ポリゴ
ンミラー面と記録フィルム面11は、FθレンズlOの
紙面と垂直な方向の結像性でもって共役関係にある。こ
れは、ポリゴンミラー面各々の倒れの影響で副走査方向
のむらを除くための工夫として良く知られている。Fθ
レンズ10は従って紙面内方向と紙面に垂直方向では屈
折力が異なっている。なおFθレンズ10はシリンドリ
カル面或いはトーリック面が使われている。Here, the cylindrical lens 7 directs the light beam emitted from the beam expander 5 onto the polygon mirror 9 in a straight line.
To be more precise, the image is formed by a long elliptical beam. Furthermore, the polygon mirror surface and the recording film surface 11 are in a conjugate relationship with respect to the imaging ability of the F.theta. lens 10 in the direction perpendicular to the plane of the drawing. This is a well-known technique for eliminating unevenness in the sub-scanning direction due to the tilting of each polygon mirror surface. Fθ
Therefore, the lens 10 has different refractive powers in the direction in the plane of the paper and in the direction perpendicular to the plane of the paper. Note that the Fθ lens 10 uses a cylindrical surface or a toric surface.
次に本発明に係わる回折に関する説明をする。第じる。Next, the diffraction related to the present invention will be explained. The first.
なおこの回折のパターンは、ポリゴンミラー面の引き目
のピッチ、引き目の幅、切削バイトの半径などの影舌を
受ける。そしてFθレンズ10は有限の開口角しか持た
ないため0次回折光と他の部分的な回折光のみがFθレ
ンズIOに入射する。これによってポリゴンミラーで走
査される走査線の、記録フィルムll上での主走査方向
位置により、一般に結像スポットの強度分布が変化する
。しかもポリゴンミラーの各面によっても異なるので、
とりわけ面数に応じた周期的な副走査方向のムラとなる
。この状況を第2図に示す。なお第2図に示されるポリ
ゴンミラー9の反射面に残存する加工時の切削の引き目
の方向は走査方向である場合に限らず、走査方向に対し
傾いた方向であっても良く、又引き目は直線引き目であ
る場合に限らず、曲線引き目であっても良いことは明ら
かである。第1図に戻ってポリゴンミラー9と記録フィ
ルム11の間におかれたスリット状のアパーチャーAは
0次光を通し、高次光を制限する様にスリット幅を設定
し走査中心に振分けに配置されている。このスリットA
はレーザー光2がポリゴンミラーの中央部と交錯する点
をほぼ中心にした円弧形状にすれば、より各画角に対応
する開口の幅を一定にできる。ここでスリットAを設け
ることにより本来であれば0次回折光が池の回折光と分
離して抽出されるが、引き目のピッチが大きい場合には
、O次回折光と1次回折光の裾の部分がオーバーラツプ
し、スリットAだけでは完全に0次回折光を分離抽出で
きない。Note that this diffraction pattern is affected by the pitch of the scratches on the polygon mirror surface, the width of the scratches, the radius of the cutting tool, etc. Since the Fθ lens 10 has only a finite aperture angle, only the 0th order diffracted light and other partial diffracted lights enter the Fθ lens IO. As a result, the intensity distribution of the imaged spot generally changes depending on the position of the scanning line scanned by the polygon mirror on the recording film 11 in the main scanning direction. Moreover, it differs depending on each face of the polygon mirror, so
In particular, there is periodic unevenness in the sub-scanning direction depending on the number of surfaces. This situation is shown in Figure 2. Note that the direction of the cutting lines remaining on the reflective surface of the polygon mirror 9 shown in FIG. It is clear that the stitches are not limited to straight stitches, but may also be curved stitches. Returning to FIG. 1, the slit-shaped aperture A placed between the polygon mirror 9 and the recording film 11 has a slit width set so as to pass the zero-order light and limit the higher-order light, and is arranged in a distributed manner at the center of scanning. There is. This slit A
If it is formed into an arc shape approximately centered on the point where the laser beam 2 intersects with the central portion of the polygon mirror, the width of the aperture corresponding to each angle of view can be made more constant. By providing the slit A, the 0th order diffracted light is normally extracted separately from the pond diffracted light, but if the pitch of the slits is large, the bottom part of the 0th order diffracted light and the 1st order diffracted light may be extracted. overlap, and the 0th order diffracted light cannot be completely separated and extracted using slit A alone.
0次回折光を部分的に蹴るようにしてとりだすと、0次
光のカラス強度分布を結像面で再現できなくなるためス
リットAの開口幅としては少な(とも0次回折光を通過
させることが必要となる。If the 0th order diffracted light is taken out by partially kicking it, the glass intensity distribution of the 0th order light cannot be reproduced on the imaging plane, so the aperture width of the slit A should be small (both necessary to allow the 0th order diffracted light to pass through). Become.
このようなスリットAに1次光が混入した場合、1次光
を除去するために結像面近傍にスリットBが設けられて
いる。スリットBは0次回折光のみを通過させる開1コ
をfiiiiえる。なおスリット3は結像面近傍に設け
られることが望ましいが光路中スリット八と結像面の間
に設けられても良い。If the primary light enters the slit A, a slit B is provided near the imaging plane to remove the primary light. The slit B can be opened to allow only the 0th order diffracted light to pass through. Although it is desirable that the slit 3 be provided near the image plane, it may be provided in the optical path between the slit 8 and the image plane.
ところで上記実施例においては、金属走査鏡に関して述
べたが本発明はこれに限定されることなく金属鏡以外で
も表面の状況が同様のものを劇むことは明らかである。Incidentally, although the above embodiments have been described with respect to a metal scanning mirror, the present invention is not limited thereto, and it is clear that the same surface situation can be applied to mirrors other than metal mirrors.
又走査鏡はポリゴンミラーの如き回転鏡に限らず、ガル
バノミラ−の如き振動鏡でも良い。Further, the scanning mirror is not limited to a rotating mirror such as a polygon mirror, but may also be a vibrating mirror such as a galvano mirror.
なお上記実施例においてスパーチャー、へ、Bは0次光
を通し高次光を制御するとしたが、具体的には高次光を
完全に遮光或いは強度的に弱くするものである。In the above embodiments, the sputterer B passes the zero-order light and controls the higher-order light, but specifically, it completely blocks the higher-order light or weakens the intensity thereof.
以上説明したように、本発明によれば0次光量4の光を
制限する主走査方向に長いスリツ)・状の第1、第2の
絞りを設けることにより、スポット形状の歪による副走
査方向のむらを軽減する効果が大である。As explained above, according to the present invention, by providing the first and second apertures in the shape of long slits in the main scanning direction that limit the zero-order light amount 4, distortion in the spot shape can be prevented in the sub-scanning direction. It is highly effective in reducing unevenness.
第1図は本発明の実施例の図、第2図はポリゴンミラー
面の引き目による回折パターンを示す図。
図中、lはレーザー光源、3はビームコンプレッサー、
4はA10変調器、5はビームエキスパンダー、7はシ
リンドリカルレンズ、9はポリゴンミラー、10はFθ
レンズ、11は記録フィルム、12はドラム、13は入
射レーザービーム、14はポリゴンミラー上でのスポッ
ト、15は回折パターン観測面、150はO次回折光、
151は1次回折光、A、 Bはスリット開口、Sは
ポリゴン面の引き目である。FIG. 1 is a diagram showing an embodiment of the present invention, and FIG. 2 is a diagram showing a diffraction pattern due to a scratch on a polygon mirror surface. In the figure, l is a laser light source, 3 is a beam compressor,
4 is an A10 modulator, 5 is a beam expander, 7 is a cylindrical lens, 9 is a polygon mirror, 10 is Fθ
lens, 11 is a recording film, 12 is a drum, 13 is an incident laser beam, 14 is a spot on a polygon mirror, 15 is a diffraction pattern observation surface, 150 is O-order diffracted light,
151 is the first-order diffracted light, A and B are slit openings, and S is a line on the polygon surface.
Claims (4)
光ビームを走査方向に偏向させ結像光学系で結像面上に
結像させる光走査装置において、走査鏡で反射される光
路内にあって走査鏡面で反射される光ビームの内、走査
方向に交差する方向に回折される成分を制限する光制限
手段であって走査方向に長く走査方向に交差する方向に
短く、0次回折光を通過させるスリット状開口を備える
第1、第2の光制限手段を有し、第1の光制限手段を前
記結像光学系を含んで前記結像光学系と前記走査鏡の間
に、又第2の光制限手段を前記第1の光制限手段と前記
結像面の間に設けたことを特徴とする光走査装置。(1) In an optical scanning device in which a light beam is incident on a scanning mirror, the light beam is deflected in the scanning direction by the displacement of the scanning mirror, and an image is formed on the imaging plane by an imaging optical system, inside the optical path reflected by the scanning mirror. A light limiting means for limiting the component of the light beam reflected by the scanning mirror surface that is diffracted in the direction intersecting the scanning direction. first and second light restricting means each having a slit-like aperture through which the first light restricting means includes the imaging optical system and between the imaging optical system and the scanning mirror; An optical scanning device characterized in that a second light restricting means is provided between the first light restricting means and the image forming surface.
れる特許請求の範囲第1項記載の光走査装置。(2) The optical scanning device according to claim 1, wherein the second light restricting means is provided near the image forming plane.
折光のみを通過させる幅を備える特許請求の範囲第1項
若しくは第2項記載の光走査装置。(3) The optical scanning device according to claim 1 or 2, wherein the slit-shaped opening of the second light restricting means has a width that allows only the 0th-order diffracted light to pass through.
範囲第1項記載の光走査装置。(4) The optical scanning device according to claim 1, wherein the imaging optical system is an Fθ lens system.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP31268286A JPS63165815A (en) | 1986-12-27 | 1986-12-27 | Optical scanner |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP31268286A JPS63165815A (en) | 1986-12-27 | 1986-12-27 | Optical scanner |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS63165815A true JPS63165815A (en) | 1988-07-09 |
Family
ID=18032153
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP31268286A Pending JPS63165815A (en) | 1986-12-27 | 1986-12-27 | Optical scanner |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS63165815A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5200730A (en) * | 1991-10-18 | 1993-04-06 | Ferrishield, Inc. | Premolded suppressor sleeve |
US5355109A (en) * | 1992-02-03 | 1994-10-11 | Kitagawa Industries Co., Ltd. | Electric noise absorber |
-
1986
- 1986-12-27 JP JP31268286A patent/JPS63165815A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5200730A (en) * | 1991-10-18 | 1993-04-06 | Ferrishield, Inc. | Premolded suppressor sleeve |
US5355109A (en) * | 1992-02-03 | 1994-10-11 | Kitagawa Industries Co., Ltd. | Electric noise absorber |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0477348A1 (en) | Hologon scanner with beam shaping stationary diffraction grating | |
EP0547205B1 (en) | Single-beam, multicolor hologon scanner | |
AU7234287A (en) | Scanning apparatus | |
US5039183A (en) | Holographic laser scanner | |
JPH0625828B2 (en) | Scanning optics | |
US4993837A (en) | Method and apparatus for pattern detection | |
JP4106478B2 (en) | Multi-beam scanning exposure system | |
JPS63165815A (en) | Optical scanner | |
EP0218636A1 (en) | Multi-format laser printer embodying a method for changing output image sizes. | |
JP3454056B2 (en) | Light source device | |
JPS6212893B2 (en) | ||
JPS63217318A (en) | Optical scanner | |
JPS6398626A (en) | Optical scanner | |
JP3571736B2 (en) | Hologram scanning optical system | |
JPS6021021A (en) | Double beam scanning device | |
JP3283098B2 (en) | Light beam scanning device | |
JPS6361824B2 (en) | ||
JPS63300214A (en) | Optical scanning device | |
JP2007093947A (en) | Inner drum exposure device and exposure method | |
JPS62194215A (en) | Light beam scanning device | |
JPH11264952A (en) | Optical scanning device | |
JP2791449B2 (en) | Hologram scanner | |
JP3092155B2 (en) | Optical scanning optical system | |
JPH0441807B2 (en) | ||
JPS63265216A (en) | Curved mirror for optical scanning |