JPS6316573A - Electrolyte tank of electrolyte flow type battery - Google Patents

Electrolyte tank of electrolyte flow type battery

Info

Publication number
JPS6316573A
JPS6316573A JP61159584A JP15958486A JPS6316573A JP S6316573 A JPS6316573 A JP S6316573A JP 61159584 A JP61159584 A JP 61159584A JP 15958486 A JP15958486 A JP 15958486A JP S6316573 A JPS6316573 A JP S6316573A
Authority
JP
Japan
Prior art keywords
electrolyte
tank
important
negative electrode
flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61159584A
Other languages
Japanese (ja)
Inventor
Takeshi Nozaki
健 野崎
Yuichi Akai
赤井 勇一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Ebara Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology, Ebara Corp filed Critical Agency of Industrial Science and Technology
Priority to JP61159584A priority Critical patent/JPS6316573A/en
Publication of JPS6316573A publication Critical patent/JPS6316573A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04186Arrangements for control of reactant parameters, e.g. pressure or concentration of liquid-charged or electrolyte-charged reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/70Arrangements for stirring or circulating the electrolyte
    • H01M50/77Arrangements for stirring or circulating the electrolyte with external circulating path
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Fuel Cell (AREA)

Abstract

PURPOSE:To enhance the reliability on the leakage of an electrolyte which is important in comparison with a non-important electrolyte by housing a tank for the important electrolyte in a tank for the non-important electrolyte. CONSTITUTION:A tank 21 for a negative solution 17, that is an important electrolyte, is housed in a tank 22 for a positive solution 18, a non-important electrolyte. Even if the inside tank 21 breaks to cause the leakage, thus the important solution or negative solution 17 leaks out only in the outer tank 22. Since the negative solution 17 does not leak outside, the safety and reliability are widely facilitated without causing the leakage danger to the outside world.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、電解被流通型電解槽を有する電解液流通型電
池の電解液タンクに関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to an electrolyte tank for a flow-through electrolyte battery having a flow-through electrolytic cell.

〔従来技術〕[Prior art]

本明細書の中で電解液に対して「重要」とは、危険度が
高いこと、高価なことなどにより、漏洩した場合に重要
な悪影響を及ぼす程度が大であることを指し、「非重要
」とは「重要」な電解液と比べて悪影響の程度が小さい
ことを指すものとする。
In this specification, the term ``important'' with respect to electrolytes refers to the fact that the electrolyte is highly dangerous or expensive, and thus would have a significant adverse effect if leaked, and ``non-important.'' ” indicates that the degree of adverse effect is small compared to “important” electrolytes.

電力需要の変動に対応するため、或いは太陽熱発電など
の如き供給不安定な発1i電力の安定を図るための蓄電
設備用の二次電池として、電解液流通型電池が注目され
ている。
BACKGROUND OF THE INVENTION Electrolyte flow type batteries are attracting attention as secondary batteries for power storage equipment in order to respond to fluctuations in power demand or to stabilize unstable power generation such as solar thermal power generation.

ここで、流通型電池の一例として、レドックス・フロー
電池の原理の概要について、第2図を用いて説明する。
Here, an overview of the principle of a redox flow battery as an example of a flow-through battery will be explained using FIG. 2.

第2図はレドックス・フロー電池を用いた電力貯蔵シス
テムの充電時及び放電時の状態を示す。
FIG. 2 shows the charging and discharging states of a power storage system using a redox flow battery.

図において、1は発電所、2は変電設備、3は負荷、4
はインバータ、5はレドックス電池で、一槽弐のタンク
6.7とポンプ8,9および流通型電解槽10から構成
される。vM、通視電解槽10は正極11と負極12、
および両電極間を分離する隔膜13とを備え、隔膜13
で仕切られた左右の室内には正極?1I14、負極液1
5が収容される。
In the figure, 1 is the power plant, 2 is the substation equipment, 3 is the load, and 4
5 is an inverter, 5 is a redox battery, and is composed of two tanks 6, 7, pumps 8 and 9, and a flow-through electrolytic cell 10. vM, the visible electrolytic cell 10 has a positive electrode 11 and a negative electrode 12,
and a diaphragm 13 separating both electrodes, the diaphragm 13
Is there a positive electrode in the left and right rooms separated by ? 1I14, negative electrode liquid 1
5 is accommodated.

正極液I4はFeイオンを含む塩酸溶液とし、負極液1
5はCrイオンを含む塩M溶液とする例を示した。
The positive electrode liquid I4 is a hydrochloric acid solution containing Fe ions, and the negative electrode liquid 1 is a hydrochloric acid solution containing Fe ions.
5 shows an example in which a salt M solution containing Cr ions is used.

次に作用について説明する。Next, the effect will be explained.

発電所1で発電され変電設備2に送電された電力は適当
な電圧に変圧され、負荷3に供給される。
Electric power generated at the power plant 1 and transmitted to the substation equipment 2 is transformed to an appropriate voltage and supplied to the load 3.

一方、夜間になり余剰電力が出ると、インバータ4によ
り交直変換を行い、レドックス電池5に充電が行われる
。この場合は、第2図に示すようにポンプ8.9で正、
負極液14.15を徐々に循環せしめながら充電が行わ
れる。正極液14にFeイオン、負極液15にC「イオ
ンを使用する場合、流通型電解槽10内で起る反応は上
記第+11〜(3)式中の充電側の反応となる。
On the other hand, when surplus power is generated at night, the inverter 4 performs AC/DC conversion and charges the redox battery 5. In this case, as shown in Fig. 2, the pump 8.9 is
Charging is performed while gradually circulating the negative electrode liquid 14,15. When Fe ions are used in the positive electrode solution 14 and C ions are used in the negative electrode solution 15, the reactions that occur in the flow-through electrolytic cell 10 are reactions on the charging side in equations +11 to (3) above.

このようにして、電力が正極液14、負極液I5の中に
蓄積される。
In this way, electric power is accumulated in the positive electrode liquid 14 and the negative electrode liquid I5.

一方、供給電力が需要電力よりも少ない場合は、上記第
(11〜(3)式中の放電側の反応が行われ、インパー
ク4により直交変換が行なわれ、変電設(Iii2を介
して負荷3に電力が供給される。
On the other hand, when the supplied power is less than the demanded power, the reaction on the discharge side in equations (11 to (3) above) is performed, the impark 4 performs orthogonal conversion, and the load is Power is supplied to 3.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

以上に述べたレドックス・フロー電池を含む流通型電池
の電解液タンクについて、正極、負極の両方が電解液流
通型電極であって正極、負極の各々の電解液について電
解液タンクを要する場合に、従来は、正極液、負極液に
対して各々別個に分離したタンクを設けていた。
Regarding the electrolyte tank of the flow-through type battery including the redox flow battery described above, when both the positive electrode and the negative electrode are electrolyte flow-type electrodes and an electrolyte tank is required for each electrolyte of the positive electrode and the negative electrode, Conventionally, separate tanks were provided for the positive electrode liquid and the negative electrode liquid.

これらのタンクからの電解液の漏洩が生じた場合、タン
クが据え置いである室内又は敷地内に、電解液が直接流
出するおそれがある。
If electrolytic solution leaks from these tanks, there is a risk that the electrolytic solution will directly leak into the room or premises where the tank is stationary.

上記の流通型電池の喪くの場合に、その正極液と負極液
とは異なるものであり、その含まれる電池活物質により
、液の価格、及び漏洩した液の危険性や処理の難易度等
々が異なり、漏洩防止の重要度も異なる。しかし、従来
の流通型電池では、正極液と負極液とが異なる電解液で
あっても、殆どの場合に同一仕様のタンクが使用され、
電解液の漏洩防止に対する配慮も同一の程度でしかなさ
れていない。
In the case of the above-mentioned flow-through type battery, the positive and negative electrode liquids are different, and the price of the liquid, the danger of the leaked liquid, the difficulty of disposal, etc. depend on the battery active materials they contain. The importance of preventing leakage also differs. However, in conventional flow-through batteries, tanks with the same specifications are used in most cases, even if the positive and negative electrolytes are different electrolytes.
The same level of consideration is given to preventing electrolyte leakage.

例えば、第3図に示す如く、電解液タンク21゜22は
各々、正極液18として塩化鉄の塩酸溶液、負極液17
として塩化クロムの塩酸溶液を用いたレドックス・フロ
ー電池の、正極液タンク及び負極液タンクである。又、
タンク21.22は同一仕様のものである。19.20
はポンプである。
For example, as shown in FIG. 3, the electrolyte tanks 21 and 22 each contain a hydrochloric acid solution of iron chloride as the positive electrode liquid 18 and a negative electrode liquid 17.
These are the positive and negative electrolyte tanks of a redox flow battery using a hydrochloric acid solution of chromium chloride. or,
Tanks 21, 22 are of the same specification. 19.20
is a pump.

この第4図に示されるレドックス・フロー電池の正極液
18と負極液17について、それらに含まれる電池活物
質である鉄とクロムとを比べると、現状では鉄に比べて
クロムの価格の方が非常に高く、又、クロムは6価クロ
ム公害等の背景から、漏洩した場合に世間に与える影響
が大きい、このように漏洩防止の重要度はクロムイオン
を含む負極液17の方が大きいにもかかわらず、第4図
の場合では、重要電解液である負極液17と非重要電解
液である正極液18に対する漏洩しない信頼度は同等で
あり、どちらの液についても、タンクからの漏洩が生じ
た場合には電解液が室内或は敷地内に流出してしまうこ
とになる。
When comparing the positive electrode solution 18 and negative electrode solution 17 of the redox flow battery shown in Fig. 4 with iron and chromium, which are the battery active materials contained in them, the price of chromium is currently higher than that of iron. Furthermore, due to the background of hexavalent chromium pollution, chromium would have a large impact on the public if it were to leak.Thus, the importance of preventing leakage is greater for the anode liquid 17 containing chromium ions. Regardless, in the case of Figure 4, the reliability of leakage for the negative electrode solution 17, which is an important electrolyte, and the positive electrode solution 18, which is a non-important electrolyte, is the same, and leakage from the tank does not occur for either solution. If this happens, the electrolyte will leak into the room or onto the premises.

従って、重要電解液である負極液17が漏洩した場合は
周囲に与える不安などの影響が大きく、また経済的な損
失も大となる、という問題点を有する。
Therefore, if the negative electrode liquid 17, which is an important electrolyte, leaks, there is a problem in that it will have a large effect on the surroundings, such as anxiety, and will also cause a large economic loss.

本発明は従来のものにおける上記の問題点を解決し、非
重要電解液に比べて重要電解液の漏洩に対する(i M
性を高め、しかも暦車な構造により実現できる電解液流
通型電池の電解液タンクを提供することを目的とするも
のである。
The present invention solves the above-mentioned problems in the conventional ones, and reduces leakage of important electrolytes (i M
It is an object of the present invention to provide an electrolyte tank for an electrolyte flow type battery that has improved performance and can be realized by a calendar-like structure.

c問題点を解決するための手段〕 本発明は、従来のものの上記の問題点を解決するための
手段として、それぞれタンクに貯蔵した正極電解液及び
負極電解液を流通型電解槽へ供給して充放電を行なう電
解液流通型電池の電解液タンクにおいて、重要度の詩い
方の重要電解液のタンクを、他の重要度の低い方の非重
要電解液のタンクの中に収容したことを特徴とする電解
液流通型電池の電解液タンクを提供せんとするものであ
る。
c. Means for Solving Problems] The present invention, as a means for solving the above-mentioned problems of the conventional ones, supplies a positive electrode electrolyte and a negative electrode electrolyte respectively stored in tanks to a flow-through type electrolytic cell. In the electrolyte tank of an electrolyte flow type battery that performs charging and discharging, a tank containing an important electrolyte of higher importance is housed in a tank of another less important electrolyte. It is an object of the present invention to provide an electrolyte tank for an electrolyte flow type battery having the following characteristics.

〔作 用〕[For production]

本発明は、上記の如く構成されているので、内側に収容
されている重要度の高い重要電解液が漏洩しても外側の
重要度の低い非重要電解液の中に漏出するのみであるの
で、外界には漏洩せず危険を防ぐことができる。また非
重要電解液の中に漏洩した重要電解液は分離回収できる
ので高価な重要電解液を再利用することができる。
Since the present invention is constructed as described above, even if the important electrolytic solution of high importance stored inside leaks, it will only leak into the non-important electrolytic solution of low importance outside. , it is possible to prevent danger without leaking to the outside world. Furthermore, the important electrolyte that has leaked into the non-important electrolyte can be separated and recovered, so the expensive important electrolyte can be reused.

また、正、負極電解液のタンクがそれぞれ一槽であり、
電解液を循環させる一槽弐の場合は、両タンクの液位は
変動しないので、内外の液位をほぼ同一となるようにし
ておけば、内側の重要電解液のタンクの壁には、内外の
液圧がほぼ等しくなり、平衡を保つので、圧力差による
大きな応力が生ずるのを防ぎ、比較的簡単な軽量の構造
で耐力の大なるタンクとすることができ、破損や漏洩に
対して信頼性を大とすることができる。
In addition, there is one tank each for the positive and negative electrode electrolytes,
In the case of one tank 2, where the electrolyte is circulated, the liquid level in both tanks does not change, so if you keep the liquid levels inside and outside almost the same, there will be a wall between the inner and outer tanks containing the important electrolyte. Since the liquid pressures of the two are almost equal and balanced, it prevents large stress from occurring due to pressure differences, making it possible to create a tank with a relatively simple, lightweight structure and high strength, making it reliable against damage and leakage. You can increase your sexuality.

正、負電解液のタンクがそれぞれ2槽ある二槽式の場合
には、外側の非重要電解液のタンクを、内側の重要電解
液の液位の増減と同様に増減する側の非重要電解液タン
クを選んでこれと組み合わせれば同様な効果が得られる
In the case of a two-tank system with two tanks each for positive and negative electrolytes, the outer tank for non-critical electrolyte is changed to the non-critical electrolyte on the side where the level increases or decreases in the same way as the level of the inner important electrolyte increases or decreases. If you select a liquid tank and combine it with this, you can get the same effect.

〔実施例〕〔Example〕

本発明の実施例を図面を用いて説明すれば、第1図にお
いて、重要電解液である負極液17用のタンク21は非
重要電解液である正極液18用のタンク22の中に収容
されている。タンク21は第2図におけるタンク6a又
は6b、タンク22は第2図におけるタンク7a又は7
bに相当する。
To explain an embodiment of the present invention using the drawings, in FIG. 1, a tank 21 for the negative electrode solution 17, which is an important electrolyte, is accommodated in a tank 22 for the positive electrode solution 18, which is a non-important electrolyte. ing. The tank 21 is the tank 6a or 6b in FIG. 2, and the tank 22 is the tank 7a or 7 in FIG.
Corresponds to b.

内外の組み合わせは何れでもよいが、内外の液位が同様
に増減するような組み合わせで、タンク6aの中にタン
ク7bを、タンク6bの中にタンク7aを収容すればタ
ンク7a又は7bの壁の内外の液面は常にほぼ同じとな
り、圧力がバランスしてタンク73又は7bは簡単軽量
な構造で、耐力が大で信頼性を大とすることができる。
Any combination of the inside and outside may be used, but if the tank 7b is housed in the tank 6a and the tank 7a is housed in the tank 6b in such a combination that the liquid level inside and outside increases and decreases in the same way, the wall of the tank 7a or 7b will be removed. The liquid level inside and outside is always almost the same, the pressure is balanced, and the tank 73 or 7b has a simple and lightweight structure, has a high proof strength, and is highly reliable.

このような構造においては、内側のタンク21が破損し
て漏洩を生じても、重要電解液である負極液17は外側
のタンク22の中に漏出するのみであり、外界に漏洩し
ないため外界に危険を及ぼすことはなく安全度が高(信
頼性が大である。
In such a structure, even if the inner tank 21 is damaged and leaks, the negative electrode liquid 17, which is an important electrolyte, will only leak into the outer tank 22 and will not leak to the outside world. It poses no danger and is highly safe (highly reliable).

なお、上述の実施例において、流通型電池としてはレド
ックス・フロー電池としたが、正極、負極の各々の電解
液について電解液タンクを要する総ての流通型電池に対
して本発明を適用することが可能である。
In the above embodiments, a redox flow battery was used as the flow-through type battery, but the present invention can be applied to all flow-through type batteries that require an electrolyte tank for each of the positive and negative electrode electrolytes. is possible.

また、正極液と負J!i?fi、とが同一の電解液の場
合にも、システム全体の電解液流出の可能性を小さくす
るために、本発明を適用することが可能であス 〔発明の効果〕 本発明により、電解液の室内又は敷地内への流出の可能
性を、従来の別個にタンクを設けた場合に比べて明らか
に小さくするものであり、また、さらに、正極液と負極
液とで漏洩防止の重要度が異なる場合に、漏洩防止の重
要度の高い方の電解液を二重タンクの内側の方のタンク
に入れることにより、漏洩防止の重要度の高い電解液の
室内又は敷地内への流出の可能性を相対的に小さくする
ものであり、実用上極めて大なる効果を奏する。
In addition, positive electrode liquid and negative J! i? Even when the electrolytes fi and are the same, the present invention can be applied to reduce the possibility of electrolyte leakage throughout the system. This clearly reduces the possibility of leakage into the room or premises compared to the conventional case where separate tanks are provided, and furthermore, the importance of leakage prevention between the positive and negative electrode fluids is significantly reduced. If the electrolyte with a higher degree of leakage prevention is placed in the inner tank of a double tank, there is a possibility that the electrolyte with a higher degree of leakage prevention will leak into the room or onto the premises. This makes it relatively small, and has an extremely large practical effect.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の詳細な説明図、第2図はレドックス・
フロー電池を用いた電力貯蔵システムの充電及び放電の
状態を説明する説明図、第3図は従来例の説明図である
。 ■・・・充1!電源、2・・・変電設備、3・・・負荷
、4・・・インバータ、5・・・レドックス・フロー電
池、6.7・・・タンク、8,9・・・ポンプ、  1
0・・・流通型電解槽、11・・・正極、12・・・負
極、13・・・隔1り、14・・・正極液、1訃・・負
極液、17・・・負極液、l8・・・正極液、19.2
0・・・ポンプ、21.22・・・タンク。
Figure 1 is a detailed explanatory diagram of the present invention, Figure 2 is a redox
FIG. 3 is an explanatory diagram illustrating charging and discharging states of a power storage system using a flow battery, and FIG. 3 is an explanatory diagram of a conventional example. ■...Jun 1! Power supply, 2... Substation equipment, 3... Load, 4... Inverter, 5... Redox flow battery, 6.7... Tank, 8, 9... Pump, 1
0... Flow type electrolytic cell, 11... Positive electrode, 12... Negative electrode, 13... Separation 1, 14... Positive electrode liquid, 1... Negative electrode liquid, 17... Negative electrode liquid, l8... Positive electrode liquid, 19.2
0...pump, 21.22...tank.

Claims (1)

【特許請求の範囲】 1、それぞれタンクに貯蔵した正極電解液及び負極電解
液を流通型電解槽へ供給して充放電を行なう電解液流通
型電池の電解液タンクにおいて、重要度の高い方の重要
電解液のタンクを、他の重要度の低い方の非重要電解液
のタンクの中に収容したことを特徴とする電解液流通型
電池の電解液タンク。 2、前記正極電解液のタンク及び前記負極電解液のタン
クがそれぞれ2槽づつ備えられ、前記重要電解液のタン
クを、液位が同時に同様に増減する側の前記非重要電解
液のタンクの中に収容した特許請求の範囲第1項記載の
タンク。
[Scope of Claims] 1. In an electrolyte tank of a flow-through electrolyte battery in which charging and discharging are performed by supplying a positive electrode electrolyte and a negative electrode electrolyte stored in the respective tanks to a flow-through electrolyte tank, the one with higher importance An electrolyte tank for an electrolyte flow type battery, characterized in that a tank for an important electrolyte is accommodated in a tank for a less important electrolyte. 2. There are two tanks each for the positive electrode electrolyte and two tanks for the negative electrode electrolyte, and the tank for the important electrolyte is placed in the tank for the non-important electrolyte whose liquid level increases and decreases at the same time. A tank according to claim 1 housed in a tank.
JP61159584A 1986-07-09 1986-07-09 Electrolyte tank of electrolyte flow type battery Pending JPS6316573A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61159584A JPS6316573A (en) 1986-07-09 1986-07-09 Electrolyte tank of electrolyte flow type battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61159584A JPS6316573A (en) 1986-07-09 1986-07-09 Electrolyte tank of electrolyte flow type battery

Publications (1)

Publication Number Publication Date
JPS6316573A true JPS6316573A (en) 1988-01-23

Family

ID=15696906

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61159584A Pending JPS6316573A (en) 1986-07-09 1986-07-09 Electrolyte tank of electrolyte flow type battery

Country Status (1)

Country Link
JP (1) JPS6316573A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011072339A1 (en) * 2009-12-18 2011-06-23 Redflow Pty Ltd Flowing electrolyte reservoir system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011072339A1 (en) * 2009-12-18 2011-06-23 Redflow Pty Ltd Flowing electrolyte reservoir system
JP2013514604A (en) * 2009-12-18 2013-04-25 レッドフロー・プロプライエタリー・リミテッド Circulating electrolyte storage system
AU2010333715B2 (en) * 2009-12-18 2014-09-18 Redflow R&D Pty Ltd Flowing electrolyte reservoir system

Similar Documents

Publication Publication Date Title
US4797566A (en) Energy storing apparatus
JPS62216176A (en) Electrolyte for redox battery
WO2014045337A9 (en) Redox flow battery
KR20130132488A (en) Systems and methods for redox flow battery scalable modular reactant storage
AU2017271220B2 (en) Subsea uninterruptible power supply
EA039624B1 (en) Tanks embodiment for a flow battery
EP3719906A1 (en) Redox flow battery
CN108598529B (en) Pressure balancing device for positive and negative electrode systems of all-vanadium redox flow battery
JP3143613B2 (en) Cell for redox flow type secondary battery
JPH02195657A (en) Electrolyte circulation type secondary battery
US20200266465A1 (en) Advanced electrolyte mixing method for all vanadium flow batteries
JP7145883B2 (en) Redox flow battery and its operation method
JP2017010791A (en) Cell frame, cell stack and redox flow cell
JPS6316573A (en) Electrolyte tank of electrolyte flow type battery
JPH0534784B2 (en)
TWI754101B (en) Redox flow battery
JP2021007066A (en) Redox flow battery system
JP2528100Y2 (en) Electrolyte flow battery
JPH1131522A (en) Redox flow battery and its operation method
WO2017182617A1 (en) A reduction-oxidation flow battery
JPS6358771A (en) Electrolyte tank of electrolyte flow type cell
JPH044566A (en) Structure of battery terminal
JP7518879B2 (en) Power Supply System
CN209418649U (en) A kind of valve-regulated lead-acid battery
JPH044568A (en) Redox flow battery