JPS6358771A - Electrolyte tank of electrolyte flow type cell - Google Patents

Electrolyte tank of electrolyte flow type cell

Info

Publication number
JPS6358771A
JPS6358771A JP61200123A JP20012386A JPS6358771A JP S6358771 A JPS6358771 A JP S6358771A JP 61200123 A JP61200123 A JP 61200123A JP 20012386 A JP20012386 A JP 20012386A JP S6358771 A JPS6358771 A JP S6358771A
Authority
JP
Japan
Prior art keywords
tank
electrolyte
water
pit
liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61200123A
Other languages
Japanese (ja)
Inventor
Takeshi Nozaki
健 野崎
Yuichi Akai
赤井 勇一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Ebara Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology, Ebara Corp filed Critical Agency of Industrial Science and Technology
Priority to JP61200123A priority Critical patent/JPS6358771A/en
Publication of JPS6358771A publication Critical patent/JPS6358771A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04276Arrangements for managing the electrolyte stream, e.g. heat exchange
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

PURPOSE:To decrease cost, to ensure sufficient strength, to easily ensure installation space, and to eliminate additional safety facility such as liquid preventing bank by filling liquid such as water in a space between an electrolyte tank and a civil engineering and construction structure tank. CONSTITUTION:A tank 17 made of a plate such as resin and steel is put under the pressure of electrolyte 18 from the inside and the pressure of water 19 from the outside. The tank 17 needs only strength enough to resist to the difference of two direction pressure, and the strength is lowered. A water tank installed in the underground for stabilizing a building can be utilized as a concrete pit. Therefore, the installation space of the electrolyte tank is easily ensured. If the electrolyte 18 leaked from the tank 17, the leaked electrolyte is mixed with the water 19, and immediate leakage to the outside from the concrete pit can be prevented. Therefore, damage to the surroundings is avoidable.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は電解液流通型電解槽を有する電池、即ち流通型
電池の電解液タンク装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a battery having a flow-through type electrolytic cell, that is, an electrolyte tank device for a flow-through type battery.

〔従来の技術〕[Conventional technology]

電力は各種のエネルギーへの変換が容易で制御し易く、
消費時の環境汚染がないので、エネルギー消費に占める
割合は年毎に増加している。電力供給の特異な点は、生
産と消費が同時に行われることである。この制約の中で
、電力消費の変動に即応しながら、一定周波数、一定電
圧の質の高い電力を高い信頼性で送ることが、電力技術
の課題である。現状では、出力は変えに(いが効率の高
い原子力発電や新鋭火力発電を、なるべく最高効率の定
格で運転しながら、電力消費の変動に応じて発電を行う
のに適した水力発電などで、昼間の大きな電力需要の増
加をまかなっている。このため経済性の良好な原子力発
電や新鋭火力発電による夜間余剰電力を揚水発電によっ
て貯蔵している。
Electric power is easy to convert into various types of energy and easy to control.
Since there is no environmental pollution during consumption, the proportion of energy consumption is increasing every year. A unique feature of electricity supply is that production and consumption occur simultaneously. Given these constraints, the challenge for power technology is to reliably transmit high-quality power at a constant frequency and voltage while responding quickly to fluctuations in power consumption. Currently, while output is variable (although highly efficient nuclear power generation and new thermal power generation are operated at the highest efficiency rating possible, hydroelectric power generation is suitable for generating power in response to fluctuations in power consumption). This covers the large increase in electricity demand during the day.For this reason, pumped storage power generation is used to store surplus electricity at night from economically efficient nuclear power generation and new thermal power generation.

しかし、揚水発電の立地条件が次第にきびしくなるにつ
れて二次電池による電力貯蔵方式がとり上げられてきた
However, as the location requirements for pumped storage power generation have become increasingly strict, energy storage methods using secondary batteries have been considered.

又、従来の水力発電、火力発電、原子力発電に加えて、
今後は太陽光発電、風力発電等による電力の供給も増大
すると考えられる。しかし、太陽光発電、風力発電等の
場合には日照、風等によってその発電量が左右されるこ
とから、少なくとも地上では、単独で十分な電力供給源
とは成り得す、何らかの蓄電設備と組み合わせて、はじ
めて支足した電力供給源となる。
In addition to conventional hydroelectric power generation, thermal power generation, and nuclear power generation,
It is thought that the supply of electricity from solar power generation, wind power generation, etc. will increase in the future. However, in the case of solar power generation, wind power generation, etc., the amount of power generated is affected by sunlight, wind, etc., so at least on the ground, it is necessary to combine it with some kind of power storage equipment, which can be a sufficient power supply source on its own. It became the first sustainable power supply source.

以上のような蓄電設備として二次電池が使用され、その
有力なものの一つとして、電解液流通型電解槽を有する
電池、即ち流通型電池が注目されている。
Secondary batteries are used as the above-described power storage equipment, and as one of the leading ones, a battery having a flowing electrolyte electrolytic cell, that is, a flowing type battery is attracting attention.

ここで、流通型電池の一例として、レドックス・フロー
電池の原理の概要について、第3図を用いて説明する。
Here, as an example of a flow-through type battery, an overview of the principle of a redox flow battery will be explained using FIG. 3.

第3図はレドックス・フロー電池を用いた電力貯蔵シス
テムの充電時および放電時の状態を示す。
FIG. 3 shows the charging and discharging states of a power storage system using a redox flow battery.

図において、1は発電所、2は変電設備、3は負荷、4
はインバータ、5はレドックス電池で、タンク6.7と
ポンプ8.9および流通型電解槽10から構成される。
In the figure, 1 is the power plant, 2 is the substation equipment, 3 is the load, and 4
5 is an inverter, 5 is a redox battery, and is composed of a tank 6.7, a pump 8.9, and a flow-through electrolytic cell 10.

流通型電解槽10は正極1)と負極12、および両電極
間を分離する隔膜13とを備え、隔膜13で仕切られた
左右の室内には正極液14、負極液15が収容される。
The flow-through electrolytic cell 10 includes a positive electrode 1), a negative electrode 12, and a diaphragm 13 that separates the two electrodes, and a positive electrode liquid 14 and a negative electrode liquid 15 are housed in left and right chambers partitioned by the diaphragm 13.

正極液14はFeイオンを含む塩酸溶液とし、負極液1
5はCrイオンを含む塩酸溶液とする例を示した。
The positive electrode liquid 14 is a hydrochloric acid solution containing Fe ions, and the negative electrode liquid 1
5 shows an example in which a hydrochloric acid solution containing Cr ions is used.

次に作用について説明する。Next, the effect will be explained.

発電所lで発電され変電設備2に送電された電力は適当
な電圧に変圧され、負荷3に供給される。
Electric power generated at the power plant 1 and transmitted to the substation equipment 2 is transformed to an appropriate voltage and supplied to the load 3.

一方、夜間になり余剰電力が出ると、インバータ4によ
り交直変換を行い、レドックス電池5に充電が行われる
。この場合は、第2図に示すようにタンク6とタンク7
からポンプ8,9で正、負極液14.15を徐々に送り
ながら充電が行われる。
On the other hand, when surplus power is generated at night, the inverter 4 performs AC/DC conversion and charges the redox battery 5. In this case, as shown in FIG.
Charging is performed while gradually sending positive and negative electrode liquids 14 and 15 from the pumps 8 and 9.

正極液14にFeイオン、負極液15にCrイオンを使
用する場合、流通型電解槽10内で起る反応は上記第(
1)〜(3)式中の充電側の反応となる。
When Fe ions are used in the positive electrode solution 14 and Cr ions are used in the negative electrode solution 15, the reaction that occurs in the flow-through electrolytic cell 10 is as described above (
This is the reaction on the charging side in equations 1) to (3).

充電 このようにして、電力が正極液14、負極液15の中に
蓄積される。
Charging In this way, power is stored in the catholyte 14 and anode solution 15.

一方、供給電力が需要電力よりも少ない場合は、上記第
(1)〜(3)式中の放電側の反応が行われ、インバー
タ4により直交変換が行れ、変電設備2を介して負r:
I3に電力が供給される。
On the other hand, when the supplied power is less than the demanded power, the reactions on the discharge side in equations (1) to (3) above are performed, the inverter 4 performs orthogonal conversion, and the negative r :
Power is supplied to I3.

此種電解液タンクとしては第4図に示すようなものが考
えられるが、この場合、タンク17の強度は、電解液1
8の深さによる液圧に耐えるものでなければならず、ま
た、タンクからの電解液の漏洩に関しては、大量の漏洩
は液面計等により検知出来るとしても、少量の漏洩の検
知は目視によらざるを得ない、さらに、また、漏洩が生
じた場合の周囲への損害を防ぐために、防液堤23が必
要となるなど設備費がかさむという問題がある。
As this kind of electrolyte tank, the one shown in Fig. 4 can be considered, but in this case, the strength of the tank 17 is
It must be able to withstand the liquid pressure at a depth of 8. In addition, regarding leakage of electrolyte from the tank, even if a large amount of leakage can be detected with a liquid level gauge, it is difficult to detect a small amount of leakage visually. Furthermore, there is a problem in that a liquid barrier 23 is required to prevent damage to the surrounding area in the event of leakage, which increases equipment costs.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

前述のレドックス・フロー電池の例でも正極液、負極液
共に塩酸溶液であるように、レドックス・フロー電池も
含めて流通型電池では、正極液、負極液共に、腐蝕性の
強い液である場合が多く、タンクからこれら電解液が漏
洩した場合に周囲へ損害を与える可能性が高く、従って
電解液タンクも十分な腐蝕性と強度とを要求されるもの
となり、高価なものとなっている。とはいえ従来は、流
通型電池の規模としてそれほど大規模なものが無かった
こと、及び電池の運転が実験レベルで行なわれていたこ
とにより、電解液タンクの価格、大きさ、及び設置スペ
ースはそれほど問題にされていなかったし、タンクから
の電解液の漏洩に対して十分な監視が行なわれていたと
も言える。
In the example of the redox flow battery mentioned above, both the positive and negative electrode fluids are hydrochloric acid solutions, so in flow-through type batteries, including redox flow batteries, both the positive and negative electrode fluids may be highly corrosive. In many cases, if the electrolyte leaks from the tank, there is a high possibility of causing damage to the surrounding area, and therefore the electrolyte tank is also required to have sufficient corrosion resistance and strength, making it expensive. However, in the past, the price, size, and installation space of electrolyte tanks were limited due to the fact that there were no large-scale distributed batteries, and battery operation was carried out at an experimental level. It wasn't much of a problem, and it can be said that sufficient monitoring was being carried out to prevent leakage of electrolyte from the tank.

しかし、流通型電池の実用化及び大容量化に伴い、電解
液タンク価格の低減、十分な強度の確保1、及び設置ス
ペースの確保が要求されるという問題が生した。
However, with the practical use and increase in capacity of flow-through batteries, problems have arisen in that it is required to reduce the price of the electrolyte tank, ensure sufficient strength1, and secure installation space.

本発明は、上述の、流通型電池の実用化及び大容量化に
伴う問題点を解決し比較的低価格で、かつ十分な強度を
有し、設πスペースについても確保の可能性がより高く
、防液堤等の付加的安全設備を必要としない電解液タン
ク装置を提供することを目的としたものである。
The present invention solves the above-mentioned problems associated with the practical use and increase in capacity of flow-through batteries, is relatively low in price, has sufficient strength, and has a higher possibility of securing installation space. The object of the present invention is to provide an electrolyte tank device that does not require additional safety equipment such as a dike.

(問題を解決するための手段〕 本発明は、上記の如き問題点を解決するための手段とし
て、電池活物質溶液をタンクに貯蔵しておき、これをポ
ンプなどにより流通型電解槽へ供給して充放電を行なう
いわゆる電解液流通型電池の電解液タンクとして、樹脂
、鋼板、樹脂コーティング鋼板等の板材で構成された電
解液タンクを、その外側に設けられたコンクリート等の
土木建築構造の槽(ピット)内に設置し、該電解液タン
クと土木建築構造の槽(ピット)との間隙部に水等の液
体を充満したものである。
(Means for Solving the Problems) The present invention, as a means for solving the above-mentioned problems, stores a battery active material solution in a tank and supplies it to a flow-through electrolytic cell using a pump or the like. As an electrolyte tank for a so-called electrolyte flow type battery, which is charged and discharged using an electrolyte tank, an electrolyte tank made of plate materials such as resin, steel plate, and resin-coated steel plate is used as an electrolyte tank made of plate materials such as resin, steel plate, and resin-coated steel plate. (pit), and the gap between the electrolyte tank and the tank (pit) of the civil engineering and construction structure is filled with liquid such as water.

〔実施例〕〔Example〕

以下に、本発明を適用した場合の実施例について、図を
用いて説明をする。
EMBODIMENT OF THE INVENTION Below, the Example when this invention is applied is demonstrated using figures.

第1図は、本発明の一実施例を示す図であり、板材で構
成した電解液タンク17の中に電解液18が容れてあり
、8亥タンク17はコンクリートで構築したピット16
の中に据え置かれである。
FIG. 1 is a diagram showing an embodiment of the present invention, in which an electrolytic solution 18 is contained in an electrolytic solution tank 17 made of plate material, and the 8-tank 17 is in a pit 16 constructed of concrete.
It is placed inside.

タンク17とコンクリートピット16との間隙部には水
19が張ってあり、その水面の高さは、タンク17内の
電解液の液面高さとほぼ同一としである。電解液18は
供給配管21およびポンプ20を介して電解液流通型電
解槽へ供給され、電解槽からは戻り管22を介して再び
電解液タンク17に反送されて循環している。
Water 19 is filled in the gap between the tank 17 and the concrete pit 16, and the water level is approximately the same as the level of the electrolyte in the tank 17. The electrolytic solution 18 is supplied to the electrolytic solution flow type electrolytic cell via a supply pipe 21 and a pump 20, and is returned from the electrolytic cell via a return pipe 22 to the electrolytic solution tank 17 for circulation.

そして、本発明の場合では、タンク17は、内側からの
電解液18による圧力と同時に、外側の水19による圧
力も受けることになり、タンク17の強度としては、こ
れら2つの圧力の差に対して耐えればよいということに
なり、第4図の場合のタンク17が必要とする強度より
も、小さくてよいということになる。そしてコンクリー
トピット16の構築にあたっては地面にピットを掘り、
コンクリートを打ってピット16を構築したものを第1
図に示したが、第2図に示すようにPSコンクリート板
やコンクリート打ちで水槽を構築しこれを地面上に載置
して構成してもよい。
In the case of the present invention, the tank 17 receives pressure from the electrolytic solution 18 from the inside as well as pressure from the water 19 from the outside, and the strength of the tank 17 is to withstand the difference between these two pressures. This means that the strength of the tank 17 in the case of FIG. 4 may be smaller than that required. When constructing the concrete pit 16, a pit is dug in the ground,
The first one is the one in which pit 16 was constructed by pouring concrete.
Although shown in the figure, the water tank may be constructed using PS concrete plates or poured concrete and placed on the ground as shown in FIG. 2.

更に、第1図に示すコンクリートピットとして、大型建
造物の地下に設けられた、建造物安定のための水槽など
を利用することが可能となるので、本発明を適用するこ
とにより、電解液タンクの設置スペースの確保が容易と
なる。
Furthermore, as the concrete pit shown in FIG. 1, it is possible to use a water tank or the like installed underground of a large building to stabilize the structure, so by applying the present invention, the electrolyte tank This makes it easier to secure installation space.

なお、電解液18のタンク17からの漏洩に関して、水
19の成分を分析し、電解液に含まれている物質の水1
9内の有無または濃度を調べることにより、漏洩を検知
することが可能である。さらに、また、もし漏洩が生じ
た場合でも、漏洩した電解液は水19に混ざり、すぐに
コンクリートピットより外に滲み出すことは無く、周囲
に損害を与えることも無い。なお、実施例では、電解液
タンクと外側のピットとの間に充満する液体として水と
したが、場合によっては、環境汚染等の問題が無く、価
格的にも使用可能であれば、比重が電解液により近い液
体として、NaC1の水溶液やエチレングリコール等の
水辺外の液体を用いることも可能である。
Regarding leakage of electrolyte 18 from tank 17, the components of water 19 were analyzed and water 1
By checking the presence or concentration within 9, it is possible to detect a leak. Furthermore, even if a leak occurs, the leaked electrolyte mixes with the water 19 and will not immediately seep out of the concrete pit and will not cause damage to the surrounding area. In the example, water was used as the liquid filling between the electrolyte tank and the outer pit, but in some cases, if there are no problems such as environmental pollution and it can be used economically, water with a specific gravity may be used. As a liquid closer to the electrolyte, it is also possible to use a liquid outside the water, such as an aqueous solution of NaCl or ethylene glycol.

〔発明の効果〕〔Effect of the invention〕

本発明は、電池活物質溶液をタンクに貯蔵しておき、こ
れをポンプなどにより流通型電解槽へ供給して充放電を
行なういわゆる電解液流通型電池の電解液タンクとして
、樹脂、鋼板等の板材で構成した電解液タンクを、コン
クリート等の土木建築構造のピット内に設置し、電解液
タンク内に電解液を貯蔵し、電解液タンクと土木建築構
造のピットとの間隙部には水等の液体を充満したもので
あるから、電解液タンクは内部の電解液と外部の水等の
液体の圧力が略釣合うのでタンク自体には殆んど圧力が
作用しないためタンク自体はかなり大型のものであって
も板材で製作しても十分強度が維持できるものであり比
較的低価格で製作でき、ピットについても、地面にピッ
トを掘りコンクリート打ちして構築すれば強度的に十分
でしかも安価に築造でき、さらに建物の基礎部分にこの
ピットを兼用すれば建物の安定と設置スペースの確保の
点からも有益である。また、万一電解液がタンクから漏
洩した場合電解液はピット内の水等の液体の中に漏れる
だけであるから周囲の環境を汚染することがない、さら
にピット内の水等の液体を常時検知していれば電解液の
漏洩も容易に発見できる。
The present invention is designed to be used as an electrolyte tank for a so-called electrolyte flow type battery in which a battery active material solution is stored in a tank and then supplied to a flow type electrolytic cell using a pump or the like for charging and discharging. An electrolyte tank made of board material is installed in a pit of a civil engineering construction structure such as concrete, and the electrolyte is stored in the electrolyte tank, and water, etc. is stored in the gap between the electrolyte tank and the pit of the civil engineering construction structure. Since the electrolyte tank is filled with liquid, the pressure of the electrolyte inside and the liquid such as water outside is almost balanced, so almost no pressure acts on the tank itself, so the tank itself is quite large. Even if it is made of wood or board, it can maintain sufficient strength and can be manufactured at a relatively low cost.As for pits, if you dig a pit in the ground and pour concrete, it will have sufficient strength and be inexpensive. Furthermore, if this pit is also used as the foundation of the building, it will be beneficial from the standpoint of building stability and securing installation space. In addition, in the event that the electrolyte leaks from the tank, the electrolyte will only leak into the water or other liquid in the pit, so it will not contaminate the surrounding environment. If detected, electrolyte leaks can be easily detected.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例の電解液タンク装置を示し第
2図はピットの変形例を示す、第3図はレドックス・フ
ロー電池を用いた電力貯蔵システムの充電、放電の状態
を説明する図、第4図は普通に考えれる電解液タンク装
置を示す図である。 5・・・レドックス・フロー電池、6,7.1)−・・
タンク、8,9.20・・・ポンプ、IO・・・電解液
流通型電解槽、1)・・・王権、12・・・負極、13
・・・隔膜、14・・・王権液、15・・・負極液、1
6・・・コンクリートピット、18・・・電解液、19
・・・水道水、21・・・電解液供給配管、22・・・
電解液戻り配管、23・・・防液堤。
Fig. 1 shows an electrolyte tank device according to an embodiment of the present invention, Fig. 2 shows a modified example of the pit, and Fig. 3 explains charging and discharging states of a power storage system using a redox flow battery. FIG. 4 is a diagram showing a conventional electrolyte tank device. 5...Redox flow battery, 6,7.1)-...
Tank, 8,9.20...Pump, IO...Electrolyte flow type electrolytic cell, 1)...Kingship, 12...Negative electrode, 13
...Diaphragm, 14... Royal liquid, 15... Negative electrode liquid, 1
6... Concrete pit, 18... Electrolyte, 19
...Tap water, 21...Electrolyte supply piping, 22...
Electrolyte return piping, 23... liquid embankment.

Claims (2)

【特許請求の範囲】[Claims] (1)電解液流通型電池の電解液タンクを、樹脂、鋼板
等の板材から構成し、該電解液タンクをコンクリート等
の土木建築構造のピット内に設置し、該タンクと該ピッ
トとの間隙部に水等の液体を充満させたことを特徴とす
る電解液流通型電池の電解液タンク装置。
(1) The electrolyte tank of the electrolyte flow type battery is constructed from a plate material such as resin or steel plate, and the electrolyte tank is installed in a pit of a civil engineering construction structure such as concrete, and there is a gap between the tank and the pit. An electrolyte tank device for an electrolyte flow type battery, characterized in that a part thereof is filled with a liquid such as water.
(2)前記ピットが、コンクリート等で構成した槽であ
って、地上に設置したものである特許請求の範囲第1項
記載の電解液タンク装置。
(2) The electrolyte tank device according to claim 1, wherein the pit is a tank made of concrete or the like and installed on the ground.
JP61200123A 1986-08-28 1986-08-28 Electrolyte tank of electrolyte flow type cell Pending JPS6358771A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61200123A JPS6358771A (en) 1986-08-28 1986-08-28 Electrolyte tank of electrolyte flow type cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61200123A JPS6358771A (en) 1986-08-28 1986-08-28 Electrolyte tank of electrolyte flow type cell

Publications (1)

Publication Number Publication Date
JPS6358771A true JPS6358771A (en) 1988-03-14

Family

ID=16419204

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61200123A Pending JPS6358771A (en) 1986-08-28 1986-08-28 Electrolyte tank of electrolyte flow type cell

Country Status (1)

Country Link
JP (1) JPS6358771A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011072339A1 (en) * 2009-12-18 2011-06-23 Redflow Pty Ltd Flowing electrolyte reservoir system
JP2012502445A (en) * 2009-10-29 2012-01-26 ペキン プルーデント センチュリー テクノロジー カンパニーリミテッド Redox flow battery and method for operating the battery continuously for a long time
WO2019102544A1 (en) * 2017-11-22 2019-05-31 住友電気工業株式会社 Redox flow battery

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54154390A (en) * 1978-05-25 1979-12-05 Yoshikazu Enomoto Leakage detector for oil tank
JPS5544283B2 (en) * 1977-03-22 1980-11-11

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5544283B2 (en) * 1977-03-22 1980-11-11
JPS54154390A (en) * 1978-05-25 1979-12-05 Yoshikazu Enomoto Leakage detector for oil tank

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012502445A (en) * 2009-10-29 2012-01-26 ペキン プルーデント センチュリー テクノロジー カンパニーリミテッド Redox flow battery and method for operating the battery continuously for a long time
US10608274B2 (en) 2009-10-29 2020-03-31 Beijing Pu Neng Century Sci. & Tech. Co. Ltd. Redox flow battery and method for operating the battery continuously in a long period of time
WO2011072339A1 (en) * 2009-12-18 2011-06-23 Redflow Pty Ltd Flowing electrolyte reservoir system
AU2010333715B2 (en) * 2009-12-18 2014-09-18 Redflow R&D Pty Ltd Flowing electrolyte reservoir system
WO2019102544A1 (en) * 2017-11-22 2019-05-31 住友電気工業株式会社 Redox flow battery
JPWO2019102544A1 (en) * 2017-11-22 2020-10-01 住友電気工業株式会社 Redox flow battery

Similar Documents

Publication Publication Date Title
CN102055000B (en) Redox flow battery and method for enabling battery to operate continuously for long time
JP2020502773A (en) Modular, scalable flow battery system
CN111172551B (en) Offshore floating hydrogen production and storage system
CN204577513U (en) One utilizes underground pipe to carry out the temperature controlled device of all-vanadium redox flow battery electrolyte
CN206022527U (en) A kind of solution valence state bascule of all-vanadium flow battery
CN206282931U (en) A kind of thermal control system in hydrogen energy-storage system
WO2014045337A1 (en) Redox flow battery
CN104882624A (en) Anthraquinone flow battery
EA039624B1 (en) Tanks embodiment for a flow battery
CN104143650A (en) Redox flow cell and its application
CN204011565U (en) All-vanadium flow battery energy-storage system
JPH02195657A (en) Electrolyte circulation type secondary battery
JPS6358771A (en) Electrolyte tank of electrolyte flow type cell
WO2009040521A1 (en) Power storage system wherein the electrolyte comprises acid mine drainage
EP3443613B1 (en) Subsea uninterruptible power supply
KR20170077720A (en) Electrolyte storage tank using container and redox flow battery system having the same
CN104733747B (en) A kind of fast automatic warning device of flow battery system leakage
JP5679520B2 (en) Redox flow battery,
WO2021054411A1 (en) Power storage system using redox flow battery
JPS6358772A (en) Detecting method of electrolyte leaked from electrolyte tank
JP2528100Y2 (en) Electrolyte flow battery
CN110285008A (en) A kind of Wave power generation device
JPS6286667A (en) Electrolyte flowing type cell system and operating method thereof
CN104143649A (en) Integrated electrolyte storage tank for flow cells
CN220821642U (en) Energy storage system of all-vanadium redox flow battery