JPS6316567A - Electrolyte matrix for fused carbonate fuel cell - Google Patents

Electrolyte matrix for fused carbonate fuel cell

Info

Publication number
JPS6316567A
JPS6316567A JP61159137A JP15913786A JPS6316567A JP S6316567 A JPS6316567 A JP S6316567A JP 61159137 A JP61159137 A JP 61159137A JP 15913786 A JP15913786 A JP 15913786A JP S6316567 A JPS6316567 A JP S6316567A
Authority
JP
Japan
Prior art keywords
powder
electrolyte
zro2
fuel cell
mixed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61159137A
Other languages
Japanese (ja)
Other versions
JP2585226B2 (en
Inventor
Hideyuki Ozu
秀行 大図
Kazuo Shinozaki
和夫 篠崎
Yoshihiro Akasaka
芳浩 赤坂
Akihiko Tsuge
柘植 章彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP61159137A priority Critical patent/JP2585226B2/en
Publication of JPS6316567A publication Critical patent/JPS6316567A/en
Application granted granted Critical
Publication of JP2585226B2 publication Critical patent/JP2585226B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0289Means for holding the electrolyte
    • H01M8/0295Matrices for immobilising electrolyte melts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

PURPOSE:To preferably ensure a power generation performance for a long time by mixing powder of partial stabilized zirconia which is reacted with lighium, as a holding member, to powder of alkaline carbonate and forming the mixed powder. CONSTITUTION:Powder of partial stabilized zirconia which is reacted with lithium is mixed, as a holding member, to powder of alkaline carbonate which is electrolyte and the mixed powder is formed. As a reinforcing member, fiber of partial stabilized ZrO2 which is reacted with lithium may be mixed. In order to satisfy the demand that the powder and fiber of the partial stabilized ZrO2 reacted with lithium is chemically stabilized, it is necessary to suitably selected the addition quantity of oxide for partially stabilizing ZrO2. For example, it is desired that the addition quantity of Y2O3 is 0.5 to 5mol%. Therefore, the electrolyte holding performance is maintained for a long time so as to obtain the electrolyte matrix for a fused carbonate fuel cell in which the deterioration of the power generation performance is suppressed.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明は溶融炭酸塩燃料電池用電解質マトリックスの改
良に関する。
DETAILED DESCRIPTION OF THE INVENTION OBJECTS OF THE INVENTION Field of Industrial Application This invention relates to improvements in electrolyte matrices for molten carbonate fuel cells.

(従来の技術) 近年開発が進められている溶融炭酸塩燃料電池は、アル
カリ炭酸塩からなる電解質を高温下で溶融状態にし、電
極反応を起こさせるもので、リン酸型、固体電解質型等
の他の燃料電池に比べ、電極反応が起こりやすく、発電
熱効率が高いという利点を有する。
(Prior art) Molten carbonate fuel cells, which have been under development in recent years, melt an electrolyte made of alkali carbonate at high temperatures to cause an electrode reaction. Compared to other fuel cells, it has the advantage that electrode reactions occur more easily and the heat generation efficiency is higher.

こうした溶融炭酸塩燃料電池の主要部は、通常、電解質
となるアルカリ炭酸塩とセラミックス系保持材とを混合
し平板状に成形した電解質マトリックスの両面にニッケ
ル合金等のガス拡散種を密接有している。
The main part of such a molten carbonate fuel cell is usually an electrolyte matrix formed into a flat plate by mixing an alkali carbonate as an electrolyte with a ceramic holding material, and having gas diffusion species such as nickel alloy closely attached to both sides of the electrolyte matrix. There is.

・従来、保持材としては、例えば粒径0,1〜0.5譚
、比表面積10〜25m/Qのγ相を主な構成相とする
LiAβ02が用いられている。このγ−LiAnO2
は溶融炭酸塩中では比較的安定な化合物であるが、Li
AffiO2はγ相以外にもα相、α相の多形を有し、
長時間溶融炭酸塩と反応すると、構成相の変化が生じる
場合がある。特に、α相への転移が生じると、比表面積
が著しく低下するため、電解質保持特性が劣化する。
- Conventionally, as a holding material, LiAβ02 whose main constituent phase is a γ phase with a particle size of 0.1 to 0.5 m/Q and a specific surface area of 10 to 25 m/Q has been used. This γ-LiAnO2
is a relatively stable compound in molten carbonate, but Li
In addition to the γ phase, AffiO2 has α phase and α phase polymorphisms,
Reactions with molten carbonates over long periods of time may result in changes in the constituent phases. In particular, when the transition to the α phase occurs, the specific surface area decreases significantly, resulting in deterioration of electrolyte retention properties.

保持材の電解質保持特性が劣化すると、電解質の漏洩、
揮散が生じ、内部抵抗を増加させるだけでなく、電解質
の局部的な散逸に伴うクロスオーバーの原因ともなり、
発電特性を著しく低下させるという問題がある。
If the electrolyte retention properties of the retaining material deteriorate, electrolyte leakage,
Volatilization occurs, which not only increases internal resistance but also causes crossover due to local dissipation of electrolyte.
There is a problem in that the power generation characteristics are significantly deteriorated.

一方、溶融炭酸塩に対して比較的安定な物質としてZr
O2が知られており、特にYZ 03、CaO等の添加
により安定化又は部分安定化されたものは溶融炭酸塩に
対する長期にわたる安定性が立証されている。しかし、
ZrO2や部分安定化Zro2は溶融炭1!t 11A
に対するぬれ性に乏しいため、やはり電解質1呆持特性
が悪く、保持材として用いることはできない。
On the other hand, Zr is a relatively stable substance against molten carbonate.
O2 is known, and long-term stability against molten carbonates has been demonstrated, especially those stabilized or partially stabilized by the addition of YZ03, CaO, etc. but,
ZrO2 and partially stabilized Zro2 are molten coal 1! t 11A
Since it has poor wettability with respect to electrolytes, it also has poor electrolyte retention properties and cannot be used as a retaining material.

(発明が解決しようとする問題点) 本発明は上記問題点を解決するためになされたものであ
り、電解質保持特性が劣化しない保持di用い、長時間
にわたって良好な発電特性を得ることができる溶融炭酸
増燃Fl電池用電解質7トリツクスを提供することを目
的とする。
(Problems to be Solved by the Invention) The present invention has been made in order to solve the above problems, and uses a retention di that does not deteriorate electrolyte retention characteristics, and a molten metal that can obtain good power generation characteristics over a long period of time. The purpose of the present invention is to provide an electrolyte 7 trix for carbon dioxide enriched Fl batteries.

[発明の構成] (問題点を解決するための手段と作用)本発明の溶融炭
酸塩燃料電池用電解質7トリツクスは、電解質となるア
ルカリ炭酸塩粉末に、保持材として部分安定化ジルコニ
アをリチウム化した粉末を混合し、これらを成形したこ
とを特徴とするものである。
[Structure of the Invention] (Means and Effects for Solving the Problems) The molten carbonate fuel cell electrolyte 7trix of the present invention includes lithiated partially stabilized zirconia as a holding material in an alkali carbonate powder serving as an electrolyte. It is characterized by mixing powders and molding them.

保持材としてのLiAffiO2やZrO2の問題点か
ら明らかなように、保持材に要求される特性としては、
■溶融炭M塩に対して長時間化学的に安定であること、
■溶融炭酸塩に対するぬれ性に優れていること、という
2点が挙げられる。本発明者らは、上記2つの特性を満
足する材料について種々検討した。
As is clear from the problems with LiAffiO2 and ZrO2 as retaining materials, the characteristics required of retaining materials are:
■ Be chemically stable for a long time against molten carbon M salt,
(2) It has excellent wettability to molten carbonate. The present inventors have conducted various studies on materials that satisfy the above two characteristics.

その結果、まずZrO2や部分安定化Zro2をLiO
HやLi2CO3と反応させることによりリチウム化し
たものは、溶融炭酸塩に対するめれ性が改善されること
が確認された。
As a result, we first converted ZrO2 or partially stabilized Zro2 to LiO2.
It was confirmed that lithium-formed materials by reacting with H or Li2CO3 have improved penetrability to molten carbonate.

ところが、ZrC2(単斜晶)を出発原料としてこれを
リチウム化することにより生成されるL!22roqは
、溶融炭酸塩との反応により部分的に原料であるZrO
2(単斜晶)に相転移することが判明した。ZrO2(
単斜晶)は、上述したように溶融炭酸塩に対するぬれ性
が悪いので、l i22rOaは保持材として適当な材
料ではない。
However, L! produced by lithiation of ZrC2 (monoclinic) as a starting material! 22 roq is partially converted from raw material ZrO by reaction with molten carbonate.
2 (monoclinic). ZrO2(
monoclinic crystal) has poor wettability to molten carbonate as described above, so l i22rOa is not a suitable material as a holding material.

一方、部分安定化ZrO2、例えばYZ 03部分安定
化7rO2は、ZrO2(単斜晶)とYo、+s  Z
 ro、gs  0to3(以下YZと記す)とを構成
相とし、ZrO2添加量の増加に伴ってYZの比率が増
加する。この部分安定化ZrO2をリチウム化すること
により得られる化合物は、Li2(Yx Z r 1−
x ) 03  (以下、LZ(Y)と記す)で示され
る。そして、このLZ (Y)は、溶融炭酸塩との反応
により若干のYZを生成することはあるが、ZrO2(
単斜晶)の生成は著しく低減化され、全体的には低温相
(ZrO2(単斜晶)及びYZ)の生成は抑制される。
On the other hand, partially stabilized ZrO2, for example YZ 03 partially stabilized 7rO2, is composed of ZrO2 (monoclinic) and Yo, +s Z
The constituent phases are ro, gs 0to3 (hereinafter referred to as YZ), and the ratio of YZ increases as the amount of ZrO2 added increases. The compound obtained by lithiation of this partially stabilized ZrO2 is Li2(Yx Z r 1-
x ) 03 (hereinafter referred to as LZ(Y)). Although this LZ (Y) may generate some YZ by reaction with molten carbonate, ZrO2 (
The production of monoclinic crystals is significantly reduced, and the production of low-temperature phases (ZrO2 (monoclinic crystals) and YZ) is suppressed overall.

また、低温相は、はとんど溶融炭酸塩との反応の初期段
階で生じ、その後は構成比がほとんど変化せずLZ (
Y)が安定に存在する。このことは、YZ 03以外の
CaO等で部分安定化したZrO2を用いた場合でも同
様である。
In addition, the low-temperature phase mostly occurs at the initial stage of the reaction with molten carbonate, and after that the composition ratio hardly changes and LZ (
Y) exists stably. This is the same even when ZrO2 partially stabilized with CaO or the like other than YZ 03 is used.

以上のような部分安定化ZrO2をリチウム化した粉末
を保持材として用いれば、長期間にわたって電解質保持
特性が維持され、発電特性の劣化の少ない溶融炭酸塩燃
料電池用電解質マトリックスを提供することができる。
If the above-mentioned partially stabilized ZrO2 lithiated powder is used as a holding material, it is possible to provide an electrolyte matrix for a molten carbonate fuel cell that maintains electrolyte holding properties over a long period of time and exhibits little deterioration in power generation properties. .

なお、本発明に係る電解質マトリックスは、アルカリ炭
酸塩粉末、部分安定化ZrO2をリチウム化した粉末の
ほかに、補強材として部分安定化ZrO2をリチウム化
したlBNを混合してもよい。
In addition to the alkali carbonate powder and the lithiated powder of partially stabilized ZrO2, the electrolyte matrix according to the present invention may contain IBN, which is partially stabilized ZrO2 lithiated, as a reinforcing material.

また、部分安定化ZrO2をリチウム化した粉末や繊維
が化学的に安定であるという要求を満たすためには、Z
rC)+を部分安定化するための酸化物の添加量が適当
であることが必要であり、例えばY2O3の添加量は0
.5〜5モル%であることが望ましい。
In addition, in order to satisfy the requirement that partially stabilized ZrO2 lithiated powders and fibers be chemically stable, ZrO2
It is necessary to add an appropriate amount of oxide to partially stabilize rC)+, for example, the amount of Y2O3 added is 0.
.. The content is preferably 5 to 5 mol%.

(実施例) 以下、本発明の詳細な説明する。(Example) The present invention will be explained in detail below.

まず、下記表に示すようにY2O3添加量が異なり、構
成相の比率が異なる5梗類の部分安定化Zr○2 (以
下、PSZと記す)粉末を出発原料とし、これらとLi
oH−H2Oとをモル比でそれぞれ1:2の割合で混合
した。次に、これらの混合粉をそれぞれ高純度アルミナ
容器に充填し、大気中、1100℃において10時間熱
処理してリチウム化を行ない、保持材を合成した。合成
された保持材の構成相の比率を下記表に示す。
First, as shown in the table below, partially stabilized Zr○2 (hereinafter referred to as PSZ) powders of pentaphylloids with different addition amounts of Y2O3 and different ratios of constituent phases are used as starting materials, and these and Li
oH-H2O were mixed at a molar ratio of 1:2. Next, each of these mixed powders was filled into a high-purity alumina container and heat-treated in the atmosphere at 1100° C. for 10 hours to perform lithiation, thereby synthesizing a holding material. The ratio of the constituent phases of the synthesized holding material is shown in the table below.

つづいて、各保持材をボールミルを用いて粉砕し、粒径
0.5s以下の微粉末とした。更に、各保持材粉末とア
ルカリ炭酸塩粉末とを、保持材:Li2CO3:に2 
CO3=40:28:32の重畠比で混合した。これら
混合粉40Qをそれぞれ10n角の金型に充填し、46
0℃において300 kill/α2の圧力を加え、1
時間保持してホットプレス成形した。これによって、厚
み約1.5願、見掛は密度2.60/α3の電解質マト
リックスが得られた。
Subsequently, each holding material was ground using a ball mill to obtain fine powder with a particle size of 0.5 s or less. Furthermore, each retaining material powder and alkali carbonate powder were added to the retaining material: Li2CO3.
They were mixed at a Shigehata ratio of CO3=40:28:32. Fill 40Q of these mixed powders into 10n square molds,
Apply a pressure of 300 kill/α2 at 0°C,
It was held for a period of time and hot press molded. As a result, an electrolyte matrix having a thickness of about 1.5 mm and an apparent density of 2.60/α3 was obtained.

次いで、得られた各電解質マトリックスを4I:lR角
に切断し、その両面を多孔質N1電極で挟んで溶融炭酸
塩燃料電池の単位電池を構成した。各単位電池について
、アノード側にH2ガス及びC。
Next, each of the obtained electrolyte matrices was cut into a 4I:lR square, and both sides thereof were sandwiched between porous N1 electrodes to construct a unit cell of a molten carbonate fuel cell. For each unit cell, H2 gas and C are placed on the anode side.

ガスを、カソード側に空気及びCO2ガスをそれぞれ供
給して300時間の発電試験を行なった。
A power generation test was conducted for 300 hours by supplying air and CO2 gas to the cathode side, respectively.

試験後、それぞれの単位電池からNwI質マトリックス
を取出し、保持材の構成相及び電解質の保持率を調べた
。その結果を下記表に示す。
After the test, the NwI matrix was taken out from each unit cell, and the constituent phases of the holding material and the retention rate of the electrolyte were examined. The results are shown in the table below.

なお、下記表には比較例として、保持材にLiAl2O
2を用い、上記と全く同様な試験を行なった場合の結果
も併記する。  ゛ 上記表から明らかなように、部分安定化ZrO2(PS
Z) はNcl 〜Nn5(7)XFik:、Y2O3
添加員が増加するにしたがって、その構成相はYZの比
率が増加している。これらPSZをリチウム化して合成
された保持材では、NQ 1〜恥5の順にLZ(Y)の
比率が減少している。そして、発電試験後の保持材のL
Z(Y)の比率と電解質の保持率とはほぼ対応しており
、LZ (Y)の比率が^いはと電解質の保持率が高く
なっている。ただし、PSZ中のY203の添加量が少
ない場合(ml)には、発電試験後にZrO2(単斜晶
)が多(生成し、ぬれ性が悪くなるため電解質の保持率
が低下している。
In addition, the table below shows LiAl2O as a holding material as a comparative example.
The results of a test completely similar to the above using 2 are also listed.゛As is clear from the above table, partially stabilized ZrO2 (PS
Z) is Ncl ~Nn5(7)XFik:,Y2O3
As the number of additives increases, the proportion of YZ in its constituent phase increases. In these holding materials synthesized by lithiumizing PSZ, the ratio of LZ(Y) decreases in the order of NQ 1 to Shame 5. Then, L of the holding material after the power generation test
The ratio of Z(Y) and the electrolyte retention rate almost correspond, and the higher the ratio of LZ(Y), the higher the electrolyte retention rate. However, when the amount (ml) of Y203 added in PSZ is small, a large amount of ZrO2 (monoclinic) is formed after the power generation test, resulting in poor wettability and a decrease in electrolyte retention.

また、上記表から、従来のLiAl2O2よりも優れた
電解質保持特性を得るためには、PSZ中のY203添
加量は0,5〜5モル%が適当であることがわかる。
Moreover, from the above table, it can be seen that in order to obtain electrolyte retention characteristics superior to conventional LiAl2O2, the appropriate amount of Y203 added in PSZ is 0.5 to 5 mol%.

なお、上記実施例ではアルカリ炭酸塩粉末と部分安定化
ZrO2をリチウム化した粉末とで電解質マトリックス
を構成したが、これらのほかに補強材として部分安定化
Zr○2をリチウム化した繊維を混合してもよい。
In the above example, the electrolyte matrix was composed of an alkali carbonate powder and a lithiated powder of partially stabilized ZrO2, but in addition to these, fibers made of lithiated partially stabilized ZrO2 were mixed as a reinforcing material. You can.

[発明の効果] 以上詳述したように本発明によれば、電解質保持特性が
劣化しない保持材を用い、長時間にわたって良好な発電
特性を得ることができる溶融炭酸塩燃料電池用電解質マ
トリックスを提供できるものである。
[Effects of the Invention] As detailed above, the present invention provides an electrolyte matrix for a molten carbonate fuel cell that uses a retaining material whose electrolyte retention properties do not deteriorate and can provide good power generation properties over a long period of time. It is possible.

Claims (3)

【特許請求の範囲】[Claims] (1)電解質となるアルカリ炭酸塩粉末に、保持材とし
て部分安定化ジルコニアをリチウム化した粉末を混合し
、これらを成形したことを特徴とする溶融炭酸塩燃料電
池用電解質マトリックス。
(1) An electrolyte matrix for a molten carbonate fuel cell, characterized in that an alkali carbonate powder serving as an electrolyte is mixed with a lithiated powder of partially stabilized zirconia as a holding material, and the mixture is molded.
(2)補強材として部分安定化ジルコニアをリチウム化
した繊維を混合したことを特徴とする特許請求の範囲第
1項記載の溶融炭酸塩燃料電池用電解質マトリックス。
(2) The electrolyte matrix for a molten carbonate fuel cell according to claim 1, wherein fibers made of lithiated partially stabilized zirconia are mixed as a reinforcing material.
(3)0.5〜5モル%のイットリアを添加した部分安
定化ジルコニアを用いたことを特徴とする特許請求の範
囲第1項又は第2項記載の溶融炭酸塩燃料電池用電解質
マトリックス。
(3) The electrolyte matrix for a molten carbonate fuel cell according to claim 1 or 2, characterized in that partially stabilized zirconia to which 0.5 to 5 mol % of yttria is added is used.
JP61159137A 1986-07-07 1986-07-07 Electrolyte matrix for molten carbonate fuel cells Expired - Fee Related JP2585226B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61159137A JP2585226B2 (en) 1986-07-07 1986-07-07 Electrolyte matrix for molten carbonate fuel cells

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61159137A JP2585226B2 (en) 1986-07-07 1986-07-07 Electrolyte matrix for molten carbonate fuel cells

Publications (2)

Publication Number Publication Date
JPS6316567A true JPS6316567A (en) 1988-01-23
JP2585226B2 JP2585226B2 (en) 1997-02-26

Family

ID=15687057

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61159137A Expired - Fee Related JP2585226B2 (en) 1986-07-07 1986-07-07 Electrolyte matrix for molten carbonate fuel cells

Country Status (1)

Country Link
JP (1) JP2585226B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5682583A (en) * 1979-12-10 1981-07-06 Hitachi Ltd Fuel cell
JPS6035468A (en) * 1983-08-03 1985-02-23 Agency Of Ind Science & Technol Electrolyte matrix for fuel cell
JPS60151976A (en) * 1984-01-20 1985-08-10 Fuji Electric Corp Res & Dev Ltd Manufacturing of electrolyte holding plate

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5682583A (en) * 1979-12-10 1981-07-06 Hitachi Ltd Fuel cell
JPS6035468A (en) * 1983-08-03 1985-02-23 Agency Of Ind Science & Technol Electrolyte matrix for fuel cell
JPS60151976A (en) * 1984-01-20 1985-08-10 Fuji Electric Corp Res & Dev Ltd Manufacturing of electrolyte holding plate

Also Published As

Publication number Publication date
JP2585226B2 (en) 1997-02-26

Similar Documents

Publication Publication Date Title
JP5306726B2 (en) Fuel cell electrode-electrolyte composite powder and preparation method thereof
CN111900449B (en) Solid oxide fuel cell, method for producing same and use thereof
US5413880A (en) Oxygen ion conductor and solid fuel cell
JP5311913B2 (en) Method for producing high ion conductive solid electrolyte material
CN101599546A (en) A kind of cathode material for solid-oxide fuel cell and application
JPH0258744B2 (en)
CN110474098A (en) A kind of Garnet-type solid electrolyte material, composite material of its cladding and preparation method and application
CN115044928A (en) Proton conductor type solid oxide electrochemical cell oxygen electrode material and preparation method thereof
CN110336074A (en) A kind of oxynitride solid electrolyte and its preparation method and application
US4009321A (en) High temperature fuel cell electrolyte
CN112331865B (en) Composite cathode electrode of solid oxide battery, preparation method of composite cathode electrode and solid oxide battery
CN107698164B (en) Sealing glass, preparation method and application thereof
JPH08119732A (en) Production of solid electrolyte
CN108539234A (en) A kind of low-temperature phase-change material composite fuel cell solid electrolyte and preparation method
JPH076622A (en) Crystal phase stabilized solid electrolyte material
JPS6316567A (en) Electrolyte matrix for fused carbonate fuel cell
Cho et al. Fabrication and Characterization of γ‐LiAlO2 Matrices Using an Aqueous Tape‐Casting Process
JP3966806B2 (en) Membrane electrode composite and fuel cell
JP2002053374A (en) Multiple oxide for air pole of solid electrolytic fuel cell and for electric collector raw material, its manufacturing method and solid electrolytic fuel cell
CN114765260A (en) Bismuth ion doped layered double perovskite cathode material and preparation method thereof
KR101184839B1 (en) Solid oxide fuel cell using high strength and high ionic conductive solid electrolyte
KR20050052351A (en) Solid oxide electrolyte material and method for preparing solid oxide electrolyte
CN116914173B (en) Compact isolation layer, preparation method thereof and solid oxide fuel cell
CN114464874B (en) Preparation method of composite electrolyte membrane based on alumina fiber framework
JPH0412591B2 (en)

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees