JPS63163297A - Core flow measuring device - Google Patents

Core flow measuring device

Info

Publication number
JPS63163297A
JPS63163297A JP61308495A JP30849586A JPS63163297A JP S63163297 A JPS63163297 A JP S63163297A JP 61308495 A JP61308495 A JP 61308495A JP 30849586 A JP30849586 A JP 30849586A JP S63163297 A JPS63163297 A JP S63163297A
Authority
JP
Japan
Prior art keywords
flow rate
pump
loop
core flow
rotation speed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61308495A
Other languages
Japanese (ja)
Inventor
毅 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Engineering Co Ltd
Hitachi Ltd
Original Assignee
Hitachi Engineering Co Ltd
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Engineering Co Ltd, Hitachi Ltd filed Critical Hitachi Engineering Co Ltd
Priority to JP61308495A priority Critical patent/JPS63163297A/en
Publication of JPS63163297A publication Critical patent/JPS63163297A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、原子力発電プラントの炉心流量計測に係り、
特に、二つの再循環ループの内、−ループが故障した場
合にも正確な炉心流量を計測可能な炉心流量計?111
1装置に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to core flow measurement in a nuclear power plant,
In particular, is there a core flowmeter that can accurately measure the core flow rate even if one of the two recirculation loops fails? 111
Regarding one device.

〔従来の技術〕[Conventional technology]

従来の装置では二つの再循環ループの内−ループが故障
すると、他方のループ流量により逆流が発生するため、
故障ループ流量はマイナス値として加算していた。
In conventional equipment, if the inner loop of the two recirculation loops fails, a backflow occurs due to the flow rate of the other loop.
The failure loop flow rate was added as a negative value.

しかし、健全側のループ流量を小さくすると、原子炉圧
力容器内の自然対流により、故障ループ流量は再び正流
となる。すなわち、従来の装置では、−ループの故障時
に自然対流量を考慮していない。
However, when the loop flow rate on the healthy side is reduced, the failure loop flow rate becomes a positive flow again due to natural convection within the reactor pressure vessel. That is, the conventional device does not take into account the natural convection flow rate when the -loop fails.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

従来技術では、二つの冷却材再循環ループをAループ、
Bループとすると9両ループが健全な場合の炉心流量信
号はAループ流量信号S1と8ル一プ流量信号S2を加
算した値となる。
In the prior art, the two coolant recirculation loops are A-loop,
In the case of the B loop, the core flow rate signal when the 9 loops are healthy is the sum of the A loop flow rate signal S1 and the 8 loop flow rate signal S2.

ここで仮にBループのポンプがトリップした場合の炉心
流量信号はAループ流量信号S1とBループ流量信号の
マイナス値−82を加算した値となる。
Here, if the B-loop pump trips, the core flow rate signal will be the sum of the A-loop flow rate signal S1 and the negative value -82 of the B-loop flow rate signal.

これはBループのポンプがトリップした事によりAルー
プのポンプ吐出圧力がBループの自然対流圧力より大き
いため、Bループ内で逆流が発生したためである。
This is because the pump discharge pressure of the A loop is higher than the natural convection pressure of the B loop due to the trip of the pump of the B loop, and a backflow occurs in the B loop.

第3図にポンプ一台トリップ時の他ポンプ低出力運転に
よるトリップ側ループの流れ方向を示す。
Figure 3 shows the flow direction in the trip side loop when one pump trips and the other pumps operate at low output.

本図より、健全側ポンプ吐出圧力が自然対流圧力よりも
大きい場合は、前述の様に、トリップ側ループ内には逆
流が発生するが、健全側ポンプの出力を下げていくと、
ポンプ吐出圧力は自然対流圧力よりも小さくなる。
From this figure, when the healthy side pump discharge pressure is higher than the natural convection pressure, backflow occurs in the trip side loop as described above, but as the output of the healthy side pump is lowered,
The pump discharge pressure will be less than the natural convection pressure.

よって1本図中a点以降は正流領域となるため、実際の
炉心流量はAループ流量信号S1とBループ流域イd%
S2を加算した値となる。
Therefore, since the area after point a in this figure is a positive flow region, the actual core flow rate is determined by the A-loop flow rate signal S1 and the B-loop flow area id%.
This is the value obtained by adding S2.

すなわち、二つの冷却材再循環ループの内、−ループの
ポンプがトリップし、かつ、他ループのポンプの吐出圧
力を自然対流圧力よりも下げた場合、従来の技術では真
値に対してS2の誤差が生じることとなる。
In other words, if the pump in the − loop of the two coolant recirculation loops trips and the discharge pressure of the pump in the other loop is lower than the natural convection pressure, the conventional technology This will result in an error.

本発明は、この事象が発生しても正確な炉心流量を測定
可能とすることを目的とする。
An object of the present invention is to enable accurate measurement of core flow rate even if this event occurs.

〔問題点を解決するための手段〕[Means for solving problems]

前記目的は、自然対流の圧力に相当するポンプ回転数を
検出し、その回転数により炉心流量演算方式を変えるこ
とにより達成される。
The above object is achieved by detecting the pump rotation speed corresponding to the pressure of natural convection and changing the core flow rate calculation method depending on the rotation speed.

〔作用〕[Effect]

本発明では、二つの冷却材再循環ループの内、一つのル
ープのポンプがトリップし、かつ、他ループのポンプ回
転数を自然対流圧力よりも下げた場合にも、実際の炉心
流量に添った演算式に変更する。それによって、従来の
炉心流量計測装置のように大きな誤差を生じることがな
い。
In the present invention, even if the pump in one of the two coolant recirculation loops trips and the pump rotation speed in the other loop is lowered below the natural convection pressure, the flow rate remains in line with the actual core flow rate. Change to an arithmetic expression. This prevents large errors from occurring as in conventional core flow rate measuring devices.

〔実施例〕〔Example〕

以下に本発明の一実施例を説明する。 An embodiment of the present invention will be described below.

第1図は冷却材再循環ループの概略図である。FIG. 1 is a schematic diagram of a coolant recirculation loop.

図中1は原子炉圧力容器で、その内部のシュラウド2内
に炉心を収納する。
In the figure, 1 is a reactor pressure vessel, and the reactor core is housed in a shroud 2 inside the vessel.

炉心を冷却した冷却材は、シュラウド外側から再循環ポ
ンプ3により、ジェットポンプ4を介し、再び、原子炉
圧力容器1のシュラウド内に戻されるクローズトループ
となっている。
The coolant that has cooled the core is returned to the inside of the shroud of the reactor pressure vessel 1 from the outside of the shroud by the recirculation pump 3 via the jet pump 4 in a closed loop.

ここで、炉心流量計測はジェットポンプ4に設置した流
量検出器5a、bの信号を炉心流量計測装置6で演算し
、ジェットポンプ4の全流量を指示・記録計7に出力す
る。
Here, core flow rate measurement is performed by calculating signals from flow rate detectors 5a and 5b installed in jet pump 4 using core flow rate measuring device 6, and outputting the total flow rate of jet pump 4 to indicator/recorder 7.

第2図に流量計測装置の構成図を示す。FIG. 2 shows a configuration diagram of the flow rate measuring device.

ジェットポンプの流量を検出するA系流量検出器5a、
B系流量検出器5bより出力された流量信号Sa、Sb
は各々A系ポンプトリップ判定回路9a、B系ポンプト
リップ判定回路9bに出力される。
A system flow rate detector 5a that detects the flow rate of the jet pump;
Flow rate signals Sa and Sb output from the B-system flow rate detector 5b
are output to the A-system pump trip determination circuit 9a and the B-system pump trip determination circuit 9b, respectively.

ポンプトリップ判定回路では、A系ポンプトリップ信号
Ta、B系ポンプトリップ信号Tbを基に各ポンプの運
転状態を判定する。
The pump trip determination circuit determines the operating state of each pump based on the A-system pump trip signal Ta and the B-system pump trip signal Tb.

A系、B系共にポンプトリップ信号が無い場合、流量信
号Sa、Sbはそのまま加算器10に出力され加算演算
の後、指示・記録計に出力される。
When there is no pump trip signal for both the A system and the B system, the flow rate signals Sa and Sb are output as they are to the adder 10, and after an addition operation, are output to the indicator/recorder.

ポンプトリップ信号がある場合、流量信号はポンプ回転
数判定回路12a、12bに出力される。
If there is a pump trip signal, the flow rate signal is output to the pump rotation speed determination circuits 12a, 12b.

ポンプ回転数判定回路では、原子炉圧力容器内で発生す
る自然対流の圧力相当のポンプ回転数を設定値Xr、p
、mとして、あらかじめセットしておく。
In the pump rotation speed determination circuit, the pump rotation speed corresponding to the pressure of natural convection generated in the reactor pressure vessel is set to a set value Xr, p.
, m in advance.

ポンプ回転数設定値又と、連続して入力するA系、B系
のポンプ回転数Ra、Rbの比較を行い、(ポンプ回転
数設定値X≧ポンプ回転数Ra(Rb))の条件が成立
した場合は、流量信号は加算器に出力され加算演算の後
、指示・記録計に出力される。(ポンプ回転数設定値x
くポンプ回転数Ra (Rh))の条件が成立した場合
は、流量信号は乗算回路13a、13bに出力され、流
量信号に(−1)を乗算した後、加算器に出力される。
Compare the pump rotation speed setting value and the continuously input pump rotation speeds Ra and Rb of the A system and B system, and the condition (pump rotation speed setting value X ≧ pump rotation speed Ra (Rb)) is satisfied. In this case, the flow rate signal is output to an adder, and after addition calculation, is output to an indicator/recorder. (Pump rotation speed setting value x
When the condition of pump rotation speed Ra (Rh) is satisfied, the flow rate signal is output to the multiplication circuits 13a and 13b, and after multiplying the flow rate signal by (-1), it is output to the adder.

加算器では前記のものと同様、加算演算の後、指示・記
録計の出力される。
The adder performs the addition operation and then outputs the indicator/recorder as in the case described above.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、ニループの冷却材再循環ループの内−
ループのポンプがトリップし、かつ、健全側ループのポ
ンプ回転数を下げた場合にも、正確な炉心流量信号を得
ることができる。
According to the invention, within the coolant recirculation loop of the Niloop,
Accurate core flow rate signals can be obtained even when the loop pump trips and the pump rotation speed of the healthy loop is reduced.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の冷却材再循環ループの概略
図、第2図は炉心流量計測装置図、第3図はポンプトリ
ップ時の他ポンプ低出力運転によるトリップ側ループの
流れ方向を示す図である。 1・・・原子炉圧力容器、2・・・シュラウド、3・・
再循環ポンプ、4・・・ジェットポンプ、5a、b・・
・流量検出器。
Fig. 1 is a schematic diagram of a coolant recirculation loop according to an embodiment of the present invention, Fig. 2 is a diagram of a core flow rate measuring device, and Fig. 3 is a flow direction in the trip side loop during pump trip and other pumps operating at low output. FIG. 1...Reactor pressure vessel, 2...Shroud, 3...
Recirculation pump, 4... Jet pump, 5a, b...
・Flow rate detector.

Claims (1)

【特許請求の範囲】 1、独立した複数の冷却材再循環ループをもつ原子力発
電プラントにおいて、 自然対流の圧力に相当するポンプ回転数を検出する手段
と、前記ポンプ回転数に対応した炉心流量演算方式を用
いて炉心流量を計測する回路とからなることを特徴とす
る炉心流量計測装置。
[Claims] 1. In a nuclear power plant having a plurality of independent coolant recirculation loops, means for detecting a pump rotation speed corresponding to the pressure of natural convection, and core flow rate calculation corresponding to the pump rotation speed. 1. A reactor core flow rate measuring device comprising: a circuit for measuring a reactor core flow rate using a method.
JP61308495A 1986-12-26 1986-12-26 Core flow measuring device Pending JPS63163297A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61308495A JPS63163297A (en) 1986-12-26 1986-12-26 Core flow measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61308495A JPS63163297A (en) 1986-12-26 1986-12-26 Core flow measuring device

Publications (1)

Publication Number Publication Date
JPS63163297A true JPS63163297A (en) 1988-07-06

Family

ID=17981698

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61308495A Pending JPS63163297A (en) 1986-12-26 1986-12-26 Core flow measuring device

Country Status (1)

Country Link
JP (1) JPS63163297A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5118461A (en) * 1989-02-17 1992-06-02 Kabushiki Kaisha Toshiba Flow rate measuring apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5118461A (en) * 1989-02-17 1992-06-02 Kabushiki Kaisha Toshiba Flow rate measuring apparatus

Similar Documents

Publication Publication Date Title
KR960000540B1 (en) Apparatus for the regeneration of channel-clock information in synchronous data transmission and data-recovery circuit arrangement comprising such apparatus
JPS63163297A (en) Core flow measuring device
JPS6373196A (en) Recirculating flow measuring device
JPS5537654A (en) Information processor
JPS63196897A (en) Nuclear-reactor protective device for boiling water type reactor
JPS6319599A (en) Core flow measuring device
JP3108487B2 (en) Reactor operating area monitoring device
CN113434803B (en) Thermal power calculation method, device, medium and equipment of thermal power conversion system
JPS5910889A (en) Device of monitoring jet pump of bwr type reactor
JPH0226252A (en) Protective device of motor
JPS59104593A (en) Water level measuring device in pressure vessel of bwr type reactor
JPH07244189A (en) Correction method for reactivity measurement value with reactivity meter
SU1638559A1 (en) Flow meter diagnostic device
JPS5937455B2 (en) Flow rate difference detection system
CN115900850A (en) Detection method of electromagnetic flowmeter and electromagnetic flowmeter
JPS5940197A (en) Device for monitoring and protecting cavitation in jet pump
JPS6129798A (en) Controller for flow rate at core for nuclear power plant
JPS59164987A (en) Reactivity monitoring device of fast reactor
JP3044972B2 (en) Flowmeter
CN116130131A (en) Primary circuit pressure boundary leakage radiation monitoring device and monitoring method thereof
CN115456133A (en) Ball-passing counting method and device for ball-bed type high-temperature reactor and electronic equipment
JPS62171413A (en) Motor protection method
JPS6194428A (en) Error detecting circuit
JPS6275720A (en) Plant operation supporting system
JPH0124012B2 (en)