JPS63162848A - Production of ceramic coated copper foil - Google Patents

Production of ceramic coated copper foil

Info

Publication number
JPS63162848A
JPS63162848A JP31155986A JP31155986A JPS63162848A JP S63162848 A JPS63162848 A JP S63162848A JP 31155986 A JP31155986 A JP 31155986A JP 31155986 A JP31155986 A JP 31155986A JP S63162848 A JPS63162848 A JP S63162848A
Authority
JP
Japan
Prior art keywords
copper foil
ceramic
foil
copper
adhesion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP31155986A
Other languages
Japanese (ja)
Inventor
Hiroshi Hasegawa
寛士 長谷川
Mitsuhiro Inoue
光弘 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP31155986A priority Critical patent/JPS63162848A/en
Publication of JPS63162848A publication Critical patent/JPS63162848A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0306Inorganic insulating substrates, e.g. ceramic, glass
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/02Apparatus or processes for manufacturing printed circuits in which the conductive material is applied to the surface of the insulating support and is thereafter removed from such areas of the surface which are not intended for current conducting or shielding
    • H05K3/022Processes for manufacturing precursors of printed circuits, i.e. copper-clad substrates
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/38Improvement of the adhesion between the insulating substrate and the metal
    • H05K3/382Improvement of the adhesion between the insulating substrate and the metal by special treatment of the metal

Abstract

PURPOSE:To improve the adhesion of a ceramic coat to electrolytic copper foil, by electrodepositing fine particles on the roughened surface of the foil to make the surface finely uneven and by plasma-spraying ceramics on the uneven surface. CONSTITUTION:The surface of electrolytic copper foil is roughened and fine particles of copper, a copper compd. or a copper alloy are electrodeposited on the roughened surface to make the surface finely uneven. A ceramic layer is then formed on the uneven surface by plasma-spraying ceramics such as alumina. Thus, ceramic coated copper foil whose ceramic coat has superior adhesion to the base copper foil is obtd. The ceramic coated copper foil can be used as a material for a printed circuit board or the like.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明はセラミックの@層性にすぐnたセラミック被覆
銅箔の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Field of Application) The present invention relates to a method for manufacturing a ceramic-coated copper foil that has the layered properties of ceramic.

(従来の技術) 近年、セラミックはニエーセラミックスの出現により構
造材料をはじめとして、電子材料等で機能性材料として
盛んに用いらnるようになってきている。このような中
でセラミックコーティングは金属、プラスチック等の表
面にセラミック層を設けて金属、プラスチック等の表面
にセラミック層を設けて金属、プラスチック等の表面を
改質するのに有用な技術である。セラミックコーティン
グにより、セラミックのもつ耐磨耗性、表面li!度、
耐熱性、電気絶縁性、断熱性などの特長を基材に容易に
付与することができ、しかもセラミック単独の欠点であ
るもろい、加工性が悪い等の点を補うことができるので
ある。
(Prior Art) In recent years, with the advent of new ceramics, ceramics have come to be actively used as functional materials, including structural materials, electronic materials, and the like. Under these circumstances, ceramic coating is a useful technique for modifying the surface of metal, plastic, etc. by providing a ceramic layer on the surface of metal, plastic, etc. Ceramic coating improves the abrasion resistance and surface li! Every time,
Features such as heat resistance, electrical insulation, and heat insulation can be easily imparted to the base material, and the disadvantages of ceramic alone, such as brittleness and poor workability, can be compensated for.

セラミックコーティングの方法としてはCVD法、PV
D法、ゾルゲル法、溶射法等、徨々の方法があり、そn
ぞrL!il!用化さnているが、こnらの中で溶射法
は他の方法に比べて成膜速度が大きく、コーティングす
る基材の形状、面積に対する制約が少ないため量産性に
すぐnる、さらに被溶射材の温度はCVD法、PVD法
などのような数百℃の高温にさらす必要がないため耐熱
性に乏しい材料にも溶料可能であるという長所がある。
Ceramic coating methods include CVD method and PV
There are many methods such as D method, sol-gel method, thermal spray method, etc.
ZorL! Il! Among these methods, thermal spraying has a faster film formation rate than other methods, and there are fewer restrictions on the shape and area of the substrate to be coated, so it can be easily mass-produced. Since the temperature of the material to be thermally sprayed does not need to be exposed to a high temperature of several hundred degrees Celsius as in the case of CVD, PVD, etc., it has the advantage that it can be used as a solvent even for materials with poor heat resistance.

そこで溶g4fF:ヲ利用して金m4体にセラミック層
を形成して複合化をはかることが考えらγLる。その中
で銅箔にセラミックを溶射してセラミック層を形成した
材料は、プリント配MA板の表面改質に非常に有用であ
る。すなわち、このようなセラミック被覆銅箔を従来の
ガラス/エポキシ、紙/フェノール等の有機質基鈑と一
体化することにより、こnら有a!質基依の低熱伝導等
、耐熱性、熱膨張係数などの緒特性を改讐しうる。一方
、セラミック被覆銅箔をアルミニウム板などの金属叛と
一体にすnば従来のメタルベース、メタルコア基機では
絶縁層が樹脂からなるために熱伝導率が低いが、セラミ
ック被覆flW3を用い几ば回路となる銅箔の真下は熱
伝導性、耐熱性にすぐ7’Lにセラミック層であるため
さらに熱伝導性を向上することができる。
Therefore, it is considered to form a ceramic layer on the gold m4 body using molten g4fF: to form a composite. Among these materials, a material in which a ceramic layer is formed by thermally spraying ceramic on copper foil is very useful for surface modification of printed MA boards. That is, by integrating such ceramic-coated copper foil with conventional organic substrates such as glass/epoxy, paper/phenol, etc. It is possible to improve the basic characteristics such as low thermal conductivity, heat resistance, and coefficient of thermal expansion. On the other hand, if ceramic-coated copper foil is integrated with a metal layer such as an aluminum plate, the thermal conductivity of conventional metal base or metal core base machines is low because the insulating layer is made of resin, but if ceramic-coated copper foil is used Immediately below the copper foil that forms the circuit is a ceramic layer at 7'L that has high thermal conductivity and heat resistance, so the thermal conductivity can be further improved.

(発明が解決しようとする問題点) しかしながら従来の方法により銅箔にセラミックを沼躬
した場合、銅箔とセラミック層との密着性に非常に小さ
く、実用には耐えないものである。
(Problems to be Solved by the Invention) However, when ceramic is applied to copper foil using the conventional method, the adhesion between the copper foil and the ceramic layer is very low and cannot be put to practical use.

この原因の第一は、セラミック溶射において被溶射材料
の種類により密着性には大きな差があり、その中でも特
に鋼、あるいは鋼合金系林料は密着性が非常に悪いとい
わnている。ただし、その理由はまだ明らかにはさrし
ていない。
The first reason for this is that in ceramic thermal spraying, there is a large difference in adhesion depending on the type of material to be thermally sprayed, and among these, it is said that the adhesion of steel or steel alloy materials is particularly poor. However, the reason for this has not yet been clearly determined.

第二はプラスト処理による粗面化処理が難かしいことが
ある。一般の両射法では被溶射材の被溶射面を粗面化し
、アンカー効果により溶射の密着性を向上させる定めに
プラスト処理が行わnる。このプラスト処理を工被浴射
面に凹凸面を形成させる作用の他に、被溶射面の汚rl
、j除去し、新生面を形成して活性化させる作用もある
。このプラスト処理とをエアルミナ、ガラスピーズなど
の硬質物をエアー圧によって高速で処理面に吹きつけて
粗面化する方法である。ところが、銅の場合、Mは非常
に軟かいためにプラスト時に最初に形成さrした凹凸面
が次のプラスト材の衝突により容易に平坦化されアンカ
ー効果をもたらすような微細な凹凸面が形成さnにくい
。さらに@箔のような4体の場合、プラスト材の高速で
の衝突により打痕、破n等の欠陥を発生しやす(、吹き
付は圧力も弱くしなけnばならずさらに微細な凹凸を形
成することが困難なのである。
Second, surface roughening treatment by blast treatment may be difficult. In the general double-spraying method, a blast treatment is performed to roughen the sprayed surface of the material to be sprayed and improve the adhesion of the spraying due to the anchor effect. In addition to the effect of forming an uneven surface on the sprayed surface, this blast treatment also has the effect of forming an uneven surface on the sprayed surface.
, j, and has the effect of forming and activating a new surface. This blast treatment is a method of roughening the treated surface by blowing a hard material such as alumina or glass beads onto the treated surface at high speed using air pressure. However, in the case of copper, M is very soft, so the uneven surface initially formed during blasting is easily flattened by the subsequent collision with the plastic material, forming a fine uneven surface that produces an anchor effect. It's hard. Furthermore, in the case of 4 pieces like @ foil, defects such as dents and breaks are likely to occur due to the high-speed collision of the plastic material. It is difficult to form.

こnらの原因の定めに、従来の技術により銅箔にセラミ
ック全溶射した場合、セラミックと銅箔の密着性は極め
て低く、ひどいときは溶射中にセラミック粉が銅箔上に
たい槓せず、はじいたり、あるいはにとえ、たい積した
としても容易にひび割れ、剥離を起こしやす(、実用に
耐えるものは得らrLない。
To determine these causes, when ceramic is completely sprayed onto copper foil using conventional technology, the adhesion between the ceramic and copper foil is extremely low, and in severe cases, the ceramic powder does not drip onto the copper foil during thermal spraying. Even if it is flicked or piled up, it easily cracks and peels (I cannot find anything that can withstand practical use).

本発明を工こnらの欠点を改良し、セラミックと銅箔の
密着性にすぐ八たセラミック被榎銅箔を溶躬法により得
る方法全提供するものである。
The present invention aims to improve the above-mentioned drawbacks and provide a method for obtaining a ceramic coated copper foil by a melting process, which improves the adhesion between the ceramic and the copper foil.

(問題点を解決するための手段) すなわち、本発明はセラミック被羨@箔の装造において
銅箔として!解銅箔を用り、その粗化面にさらに銅、f
たは銅を言む化合物あるいは合金の微細粒子を電着して
微細な凹凸を形成し、その微細凹凸面にセラミックを治
躬してセラミック層を形成すること全特徴とするもので
ある。
(Means for Solving the Problems) In other words, the present invention can be used as copper foil in the decoration of ceramic foil! Using decopper foil, further copper, f is applied to the roughened surface.
The main feature is that fine particles of a compound or alloy such as copper or copper are electrodeposited to form fine irregularities, and a ceramic layer is formed by applying ceramic to the fine irregular surface.

本発明において銅箔として電解銅箔上用いるのは、粗化
面が容易に得ろ八るためである。銅箔にはその製造性に
より電解銅箔と圧延@箔の二種類に大別さnろ。
The reason for using electrolytic copper foil as the copper foil in the present invention is that a roughened surface can be easily obtained. Copper foil is roughly divided into two types depending on its manufacturability: electrolytic copper foil and rolled @ foil.

電解銅箔とは、銅原料を硫酸調水溶液中に溶解、イオン
化させ、回転ドラムを陰極として電気分解反応で連続的
に銅をt*させると共に、連続的にドラムから剥離して
巻取りロールに巻きとることによりて得るものである。
Electrolytic copper foil is produced by dissolving copper raw material in a sulfuric acid aqueous solution and ionizing it, then continuously subjecting the copper to T* through an electrolysis reaction using a rotating drum as a cathode, and continuously peeling it off from the drum and rolling it onto a winding roll. It is obtained by winding it up.

ドラムから剥離さ−rした面はドラム面を転与するため
平滑な面となるが、逆の面は’x着面そのままの粗化面
となる。すなわち、粗化面は一工程で得らnる。
The surface peeled off from the drum becomes a smooth surface because it transfers the drum surface, but the opposite surface becomes a roughened surface just like the 'x-attached surface. That is, a roughened surface can be obtained in one step.

圧延銅箔とは、電気鋼を溶融、凝固してインゴットを作
製して圧延機により圧延して箔とする。そのままでは銅
箔の両面とも平?l#面になるため、粗化面を得るには
さらに粗化工種が必要である。
Rolled copper foil is produced by melting and solidifying electrical steel to form an ingot, which is then rolled using a rolling mill to form a foil. Are both sides of the copper foil flat as is? Since it becomes an l# surface, further roughening is required to obtain a roughened surface.

次にこのようにして得らnrs電解銅箔の粗化面にさら
に鋼、または鋼を含む化せ物あるいは合金の微細粒子を
電着して微細な凹凸を形成するのは、微細な凹凸面全形
成することによって溶射時のアンカー効果を得るためで
ある。を解銅箔の第一工程で得らnろ粗化面では凹凸が
不十分でアンカー効果が少なく、セラミックと銅箔の十
分な密着性は得らnない。そこでこの粗化面にさらに微
細な粒子を付着させることによってさらに凹凸も微細に
することが必要なのである。
Next, on the roughened surface of the NRS electrolytic copper foil obtained in this way, fine particles of steel, or a compound or alloy containing steel are further electrodeposited to form fine irregularities. This is to obtain an anchor effect during thermal spraying by forming the entire surface. The roughened surface obtained in the first step of decoppering foil has insufficient unevenness, has little anchoring effect, and does not provide sufficient adhesion between the ceramic and copper foil. Therefore, it is necessary to make the irregularities even finer by attaching finer particles to this roughened surface.

微細な凹凸の形成法として電着法を通用するのは工程の
簡素化のためである。すなわち、電解@箔を製造する第
一工程に引き続いて第二工程として粗化面への微細粒子
の電着を連続で行うことができる。また、電着によnば
銅箔と微細粒子との密着力も大きいものが得らnる。電
着により形成する微細粒子としては鋼、酸化鋼、亜酸化
鋼、鋼−ニッケル付会、鋼−亜鉛付会、銅−クロム合金
など鋼を含むものが@陥との密着性の点から好適である
The reason why the electrodeposition method is commonly used as a method for forming fine irregularities is to simplify the process. That is, following the first step of manufacturing electrolytic foil, electrodeposition of fine particles onto the roughened surface can be performed continuously as a second step. Further, by electrodeposition, it is possible to obtain a product with high adhesion between the copper foil and the fine particles. As fine particles formed by electrodeposition, those containing steel such as steel, oxidized steel, sub-oxidized steel, steel-nickel attached, steel-zinc attached, copper-chromium alloy, etc. are preferable from the viewpoint of adhesion to cavities. It is.

セラミックの溶射法としては、ガス溶射法、プラズマ溶
射法、減圧プラズマ溶射法、水プラズマ溶射法などが溝
相でき、l@射するセラミック材料としてはアルミナを
にじめチタニア、ジルコニア、シリカ、スピネル、ムラ
イト、チタン酸バリウムなど、一般に溶射可能なセラミ
ック材料が全て用いることができる。
Ceramic spraying methods include gas spraying, plasma spraying, low-pressure plasma spraying, and water plasma spraying, and the ceramic materials to be sprayed include alumina, titania, zirconia, silica, and spinel. , mullite, barium titanate, and the like can all be used.

なお、銅箔の厚みは10μm以上250μm以下は好適
である。銅箔の厚みが10μm未満では薄いために溶射
時に熱などにまり銅箔が変形したり、あるいは破nたつ
しやすい。また、250μmを超えると箔として厚さが
厚いため、たとえばプリント配線叛としてはエツチング
工程でエツチングが不可能で用途が大きく制約されてし
まうためである。
Note that the thickness of the copper foil is preferably 10 μm or more and 250 μm or less. If the thickness of the copper foil is less than 10 μm, the copper foil is likely to be deformed or broken due to heat absorption during thermal spraying. Moreover, if the thickness exceeds 250 μm, the foil is too thick and cannot be etched in the etching process, for example, as a printed wiring layer, which greatly limits its uses.

(作用) 本廃明のよ5に@箔にセラミック會溶刺してセラミック
被覆銅箔を得るのに、銅箔として電解銅箔を用い、その
粗化面にさらに微細粒子を電着して微細な凹凸を設け、
その面にセラミックを溶射することにより従来技術では
得らnなかつた密着性にすぐ7−したセラミック被覆銅
箔が得らnる。
(Function) In order to obtain a ceramic-coated copper foil by pricking a ceramic foil with a ceramic coating, electrolytic copper foil is used as the copper foil, and further fine particles are electrodeposited on the roughened surface of the foil to obtain a ceramic-coated copper foil. Create unevenness,
By thermally spraying ceramic onto that surface, a ceramic-coated copper foil can be obtained which has excellent adhesion that could not be obtained with the prior art.

従来の方法では、セラミックを溶射する際には、被ff
#躬材の被溶射面はプラスト処理を施して凹凸を設ける
方法が行わnているが、銅箔の場曾は、銅箔が軟かく、
しかも薄いために変形しやすく、十分なプラスト処理が
行えず、密着性を向上できろような凹凸を形成すること
ができない。また、銅はセラミック浴刺では最も密着性
の乏しい材料であることもあい1って実用に耐えるよう
な密着性を有するセラミック被覆銅箔は得らnない。
In conventional methods, when spraying ceramics,
# The surface to be thermally sprayed of the material is treated with a plasto to create unevenness, but in the case of copper foil, the copper foil is soft,
Moreover, since it is thin, it is easily deformed, and a sufficient blast treatment cannot be performed, making it impossible to form irregularities that would improve adhesion. Furthermore, since copper is the material with the poorest adhesion in ceramic baths, it is impossible to obtain a ceramic-coated copper foil with adhesion that can withstand practical use.

ところが、本発明のように銅箔の粗化面に電着により鋼
を生成分とする微細粒子を付着することによりプラスト
処理では得らnない微細な凹凸面が得らnる。このよう
な微細な凹凸面は、セラミックをこの面に溶射したとき
、セラミック浴射材料が微細な凹凸面内に入り込むこと
によっていわゆるアンカー効果が得らnる。そrLによ
って従来のプラスト処理でB得らrLない大きな!I!
!着性が得らγ(る。
However, as in the present invention, by electrodepositing fine particles made of steel on the roughened surface of copper foil, it is possible to obtain a finely uneven surface that cannot be obtained by plasting. When ceramic is thermally sprayed onto such a finely uneven surface, a so-called anchor effect is obtained by the ceramic spraying material penetrating into the finely uneven surface. B can't be obtained with conventional plastic processing due to the rL, which is large! I!
! Adhesiveness is obtained.

また、セラミック/I#を形成する手段として溶射法を
通用することによって大面積の銅箔へのセラミック被a
を大きな成膜速度で量産することができるのである。
In addition, by using the thermal spraying method as a means of forming ceramic/I#, it is possible to coat a large area of copper foil with ceramic.
can be mass-produced at a high deposition rate.

以下、実施例を挙げて本発明?!−説明する。The present invention will be described below with examples. ! -Explain.

(実施例) 電解法によって得らrした厚さ65μnlの″IlL贋
銅箔の粗化面([解銅箔製造時の陰極となる回転ドラム
からの剥離面の裏側)に′v17!rにより酸化銅の微
a粒子(粒径的a5μm〜2μm )を付着させ、微細
な凹凸面をもっr、銅箔を得た。
(Example) The roughened surface ([the back side of the peeled surface from the rotating drum which becomes the cathode during the production of the decopper foil] of the ``IIL counterfeit copper foil with a thickness of 65 μnl obtained by the electrolytic method'' was coated with ``v17!r''). Fine particles of copper oxide (particle size: 5 μm to 2 μm) were deposited to obtain a copper foil having a finely uneven surface.

このようにして得らrLに@箔の9細な凹凸をもつ面に
、プラズマ溶射法によりアルミナを溶射して厚さ約10
0μmのアルミナ層を形成したO このようにして得らnたアルミナaamiのアルミナと
j11箔の密着性は引張弛度1.2靭/dであった。
Alumina was sprayed onto the thus obtained surface of the foil with 9 fine irregularities using a plasma spraying method to a thickness of approximately 10 mm.
The adhesion between the alumina of the alumina aami obtained in this way and the J11 foil was a tensile sag of 1.2 toughness/d.

なお、第1図は本発明の実施例を示す、アルミナ被覆銅
箔の断面模式図である。
Note that FIG. 1 is a schematic cross-sectional view of an alumina-coated copper foil showing an example of the present invention.

(比較例1) 銅箔として電解銅箔の磁化面にそのまま、微細粒子を付
着させることなく、プラズマm側法によりアルミナ被覆
銅箔してアルミナ層を形成した。このときのアルミナと
銅箔の密層性は引張強度でcL2kg/wであった。
(Comparative Example 1) An alumina layer was formed by coating an alumina-coated copper foil on the magnetized surface of an electrolytic copper foil by a plasma m-side method without depositing fine particles as it was on the magnetized surface of an electrolytic copper foil. At this time, the tensile strength of the alumina and copper foil was cL2kg/w.

(比較例2) 比較例1で用いた銅箔の粗化面上アルミナグリッドを用
いてプラスト処理し、その恢、アルミナをプラズマ溶射
法により1@刺した。このときのアルミナと銅箔の密着
性は引張強度で0.25kg/mII+であり、プラス
ト処理の効果はほとんど認めらnなかった。
(Comparative Example 2) The roughened surface of the copper foil used in Comparative Example 1 was subjected to a blast treatment using an alumina grid, and then alumina was applied by plasma spraying. At this time, the adhesion between the alumina and the copper foil was 0.25 kg/mII+ in terms of tensile strength, and almost no effect of the blast treatment was observed.

(発明の効果λ 本発明のごと(、セラミック被4!l1j11陥を得る
に際して、電解銅箔の粗化面に微細程子を電着させて微
細な凹凸を形成し、その面にプラスト処理を施さずにセ
ラミックを溶射する方法により、従来の方法では得らn
ないセラミックと銅箔の密着性九すぐrしたセラミック
被覆鋼w3t?得ることができる。
(Effects of the Invention λ According to the present invention, in order to obtain a ceramic coating, fine grains are electrodeposited on the roughened surface of the electrolytic copper foil to form fine irregularities, and then the surface is subjected to a blast treatment. The method of thermal spraying ceramic without any
Ceramic coated steel W3T with excellent adhesion between ceramic and copper foil? Obtainable.

かかるセラミック被覆銅箔はプリント配#砲用材料をは
じめ、壇々の分野で応用が考えろn、非常に有用なもの
である。
Such ceramic-coated copper foil is extremely useful in a variety of fields, including materials for printed guns.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例を示すアルミナ被覆銅箔の断面
模式図である。 符号の説明 1 電解銅w321!化鋼の微細粒子層3 アルミナ沼
躬層 一1□− 代理人弁理士 廣 瀬  軍・1.゛)V”’+−,=
FIG. 1 is a schematic cross-sectional view of an alumina-coated copper foil showing an example of the present invention. Code explanation 1 Electrolytic copper w321! Fine particle layer of chemical steel 3 Alumina Numagi layer 1 □- Representative patent attorney Gun Hirose・1.゛)V'''+-,=

Claims (1)

【特許請求の範囲】[Claims] 1、電解銅箔の粗化面に銅、または銅を含む化合物ある
いは合金の微細粒子を電着して微細な凹凸を形成し、該
微細凹凸面にセラミックを溶射してセラミック層を形成
するセラミック被覆銅箔の製造方法。
1. Ceramic in which fine particles of copper or a compound or alloy containing copper are electrodeposited on the roughened surface of electrolytic copper foil to form fine irregularities, and ceramic is sprayed onto the fine roughened surface to form a ceramic layer. A method for producing coated copper foil.
JP31155986A 1986-12-25 1986-12-25 Production of ceramic coated copper foil Pending JPS63162848A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31155986A JPS63162848A (en) 1986-12-25 1986-12-25 Production of ceramic coated copper foil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31155986A JPS63162848A (en) 1986-12-25 1986-12-25 Production of ceramic coated copper foil

Publications (1)

Publication Number Publication Date
JPS63162848A true JPS63162848A (en) 1988-07-06

Family

ID=18018687

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31155986A Pending JPS63162848A (en) 1986-12-25 1986-12-25 Production of ceramic coated copper foil

Country Status (1)

Country Link
JP (1) JPS63162848A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6888259B2 (en) * 2001-06-07 2005-05-03 Denso Corporation Potted hybrid integrated circuit
JP2014172184A (en) * 2013-03-06 2014-09-22 Jx Nippon Mining & Metals Corp Carrier-fitted copper foil, printed wiring board, printed circuit board, copper-clad laminate sheet, and method for manufacturing printed wiring board

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6888259B2 (en) * 2001-06-07 2005-05-03 Denso Corporation Potted hybrid integrated circuit
JP2014172184A (en) * 2013-03-06 2014-09-22 Jx Nippon Mining & Metals Corp Carrier-fitted copper foil, printed wiring board, printed circuit board, copper-clad laminate sheet, and method for manufacturing printed wiring board

Similar Documents

Publication Publication Date Title
US4357395A (en) Transfer lamination of vapor deposited foils, method and product
US5308463A (en) Preparation of a firm bond between copper layers and aluminum oxide ceramic without use of coupling agents
EP0352973B1 (en) Process for producing a composite article comprising a copper element
JP2001277424A (en) Metallized polyimide film and method for manufacturing the same
JP2008255462A (en) Copper foil with carrier sheet, manufacturing method of copper foil with carrier sheet, surface-treated copper foil with carrier sheet, and copper laminated plate using the surface-treated copper foil with carrier sheet
JP2007307767A (en) Copper foil with carrier foil, its manufacturing method, surface-treated copper foil with carrier foil and copper clad laminated sheet using it
JP3850277B2 (en) Method for manufacturing plasma resistant member
JPH0382750A (en) Alteration of at least one facet of polyimide base
TW201247046A (en) Method of manufacturing multi-layer printed wiring board and multi-layer printed wiring board obtained by the manufacturing method
KR100639115B1 (en) Local electrical conductive method on anodized parts
JPH10341066A (en) Copper foil for printed circuit and copper foil with resin adhesive for printed circuit and copper-clad lamination board for printed circuit using it
EP1218113B1 (en) Nanostructure coatings
JPS63162848A (en) Production of ceramic coated copper foil
JPH02166294A (en) Plated base material
Kupfer et al. Ecologically important metallization processes for high-performance polymers
US4452664A (en) Method for predetermining peel strength at copper/aluminum interface
CN111867259A (en) Preparation method of ceramic copper-clad plate
JPS63199878A (en) Production of ceramic coated copper foil
JPS63199856A (en) Manufacture of ceramic-coated copper foil
JPS58120394A (en) Production of speaker diaphragm
JPS6156637B2 (en)
CN102812786A (en) Copper foil for printed wiring board and layered body using same
JP2002205356A (en) Manufacturing method for copper leaf with resin
US4842899A (en) Process for forming metallic film on inorganic material
CN1253251C (en) Producingm ethod for sheet aluminium powder