JPS63162646A - Production of monochloroacetone - Google Patents

Production of monochloroacetone

Info

Publication number
JPS63162646A
JPS63162646A JP30987286A JP30987286A JPS63162646A JP S63162646 A JPS63162646 A JP S63162646A JP 30987286 A JP30987286 A JP 30987286A JP 30987286 A JP30987286 A JP 30987286A JP S63162646 A JPS63162646 A JP S63162646A
Authority
JP
Japan
Prior art keywords
acetone
chlorine
column
hydrogen chloride
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP30987286A
Other languages
Japanese (ja)
Other versions
JPH0749383B2 (en
Inventor
Hiroaki Kaminakai
上中居 弘明
Fuminori Nishiwaki
西脇 文宣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daicel Corp
Original Assignee
Daicel Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daicel Chemical Industries Ltd filed Critical Daicel Chemical Industries Ltd
Priority to JP30987286A priority Critical patent/JPH0749383B2/en
Publication of JPS63162646A publication Critical patent/JPS63162646A/en
Publication of JPH0749383B2 publication Critical patent/JPH0749383B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To obtain the aimed compound in high purity in producing the titled compound from acetone and chlorine by reaction distillation method, by refluxing an organic solvent having a lower boiling point than acetone, inert to chlorine and hydrogen chloride, to the top of a column to suppress formation of mesityl oxide as a by-product. CONSTITUTION:In producing the titled compound useful as a raw material for dye, etc., by reaction between acetone and chlorine, a device equipped with a distillation column B, a condenser A and a reflux return piping D is used, an organic solvent having a lower boiling point than acetone, inert to chlorine and hydrogen chloride, is added to the device, the organic solvent is refluxed at the upper plate of the distillation column B, chlorine is continuously fed to the middle plate in the column B wherein acetone is refluxed and reacted with acetone. Further hydrogen chloride prepared as a by-product is removed out of the top of the column, the formed aimed compound is introduced in the bottom of the distillation column B while separating unreacted acetone by distillation, formation of by-products such as polychloroacetone, mesityl oxide, etc., is suppressed and the aimed high-purity compound is obtained industrially and efficiently.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、アセトンの塩素化によってモノクロルアセト
ンを製造する方法において多クロルアセトン及びメシチ
ルオキシド含有量の少ない高純度モノクロルアセトンを
工業的に有利に製造する方法に関するものである。
Detailed Description of the Invention [Industrial Field of Application] The present invention provides an industrially advantageous method for producing monochloroacetone by chlorinating acetone, which produces high-purity monochloroacetone with a low content of polychloroacetone and mesityl oxide. The present invention relates to a method for manufacturing the same.

〔従来の技術およびその問題点〕[Conventional technology and its problems]

モノクロルアセトンは染料、顔料、農薬、殺虫剤等の合
成原料として有用な化合物であり、古くからアセトンに
塩素を反応させることによって得られることが知られて
いる。
Monochloroacetone is a compound useful as a synthetic raw material for dyes, pigments, agricultural chemicals, insecticides, etc., and has long been known to be obtained by reacting acetone with chlorine.

液状アセトン中に塩素ガスを導入する古くから知られて
いる方法では副反応、特にモノクロルアセトンと分離困
難な1.1−ジクロルアセトン及びメシチルオキシドの
生成が起こりやすく高純度モノクロルアセトンを効率的
に得ることは困難であった。
The long-known method of introducing chlorine gas into liquid acetone tends to cause side reactions, especially the production of 1,1-dichloroacetone and mesityl oxide, which are difficult to separate from monochloroacetone, making it difficult to efficiently produce high-purity monochloroacetone. It was difficult to get to.

このような問題を解決する方法として特開昭55−26
47号公報には反応装置として蒸留塔を備えた容器を用
い、アセトンを還流させた塔の上部に塩素を導入してア
セトンとの反応を行い、副生する塩化水素は塔頂から除
去し、生成するモノクロルアセトンは未反応アセトンと
蒸留分離して塔の下部へ導くという方法が記載されてい
る。
As a method to solve such problems, Japanese Patent Laid-Open No. 55-26
Publication No. 47 uses a container equipped with a distillation column as a reaction device, introduces chlorine into the upper part of the column where acetone is refluxed, performs a reaction with acetone, and removes by-product hydrogen chloride from the top of the column. A method is described in which monochloroacetone produced is separated by distillation from unreacted acetone and led to the lower part of the column.

しかしながら、この方法では1,1−ジクロルアセトン
の副生は少なくできるが、蒸留塔の凝縮器の形式によっ
てはメシチルオキシドの副生が多くなるという欠点があ
ることがわかった。
However, although this method can reduce the amount of 1,1-dichloroacetone as a by-product, it has been found that depending on the type of condenser in the distillation column, it has the drawback of increasing the amount of mesityl oxide as a by-product.

即ち、図2に示す凝縮器の形式ではメシチルオキシドの
副生は少ないが、図1に示すような塔頂ガスを濃縮器(
A)の上部に導き凝縮液を凝縮器の下部から還流戻り配
管(0)を通じて蒸留塔(B)へ戻す形式では、還流戻
り配管(D)中で、アセトンが、溶解している塩化水素
の触媒作用で反応してメシチルオキシドが生成し、これ
が蒸発容器(C)に蓄積するという問題があることがわ
かった。工業的規模では図2の凝縮器の形式は冷却効率
が悪い為に一般的に用いられず、通常は図1の形式であ
るので特開昭55−2647号公報に記載されている方
法を工業的に実施するのは困難である。
In other words, the type of condenser shown in Fig. 2 produces a small amount of mesityl oxide as a by-product;
In the case where the condensate is led to the upper part of the condenser and returned to the distillation column (B) from the lower part of the condenser through the reflux return pipe (0), the acetone is removed from the dissolved hydrogen chloride in the reflux return pipe (D). It has been found that there is a problem in that a catalytic reaction produces mesityl oxide, which accumulates in the evaporation vessel (C). On an industrial scale, the type of condenser shown in Fig. 2 is not generally used due to poor cooling efficiency, and since the type shown in Fig. 1 is usually used, the method described in JP-A No. 55-2647 is not used industrially. It is difficult to implement it in a practical manner.

〔問題点を解決するための手段〕 本発明者らはこの問題を改善すべく鋭意検討を重ねた結
果、図1に示すような反応装置でアセトンと塩素を反応
させることにより、モノクロルアセトンを製造するに際
し、アセトンより低沸点で、且つ塩素、塩化水素に対し
て不活性な有機溶剤を添加して、蒸留塔の上段で該有機
溶剤を還流させ、アセトンを還流させた塔内の中段に塩
素を連続的に導入してアセトンとの反応を行G)、副生
ずる塩化水素を塔頂から連続的に除去し、生成するモノ
クロルアセトンを未反応アセトンと蒸留分離しながら蒸
留塔の下部に導くことにより、多クロルアセトン、メシ
チルオキシド等の不純物が少ない高純度モノクロルアセ
トンが効率的に得られることを見い出し本発明に到達し
た。
[Means for solving the problem] As a result of intensive studies to improve this problem, the present inventors have succeeded in producing monochloroacetone by reacting acetone and chlorine in a reaction apparatus as shown in Figure 1. In this process, an organic solvent with a lower boiling point than acetone and inert to chlorine and hydrogen chloride is added, and the organic solvent is refluxed in the upper stage of the distillation column, and chlorine is added to the middle stage of the column where the acetone is refluxed. (G), continuously introducing hydrogen chloride as a by-product from the top of the column, and guiding the produced monochloroacetone to the bottom of the distillation column while separating it from unreacted acetone by distillation. It was discovered that high purity monochloroacetone containing few impurities such as polychloroacetone and mesityl oxide can be efficiently obtained by this method, and the present invention was achieved.

図1に示す蒸留塔を備えた反応装置でアセトンと塩素を
反応させると、副生ずる塩化水素は極めて揮発性が大き
いので蒸留塔の外へ直ちに追い出されるが、′a縮器(
A)でアセトンが凝縮する際、アセトンに多量に溶解し
く塩化水素のアセトンへの溶解度は20℃で約25%で
ある。)、還流戻り配管(D)中で滞留している間に溶
解している塩化水素が触媒となってメシチルオキシドが
副生ずるという事実に着目し、アセトンより低沸点の第
三成分を添加して、アセトンのかわりに塔頂で還流させ
、アセトンと塩化水素の接触時間を短くした。その結果
、図1に示すような装置でもメシチルオキシドの少ない
高純度モノクロルアセトンを得ることが可能になった。
When acetone and chlorine are reacted in the reaction apparatus equipped with the distillation column shown in Figure 1, hydrogen chloride produced as a by-product is extremely volatile and is immediately expelled from the distillation column.
When acetone is condensed in A), a large amount of hydrogen chloride is dissolved in acetone, and the solubility of hydrogen chloride in acetone is about 25% at 20°C. ), focusing on the fact that hydrogen chloride dissolved while remaining in the reflux return pipe (D) acts as a catalyst and mesityl oxide is produced as a by-product, and a third component with a lower boiling point than acetone is added. Therefore, instead of acetone, reflux was used at the top of the column to shorten the contact time between acetone and hydrogen chloride. As a result, it has become possible to obtain highly purified monochloroacetone with less mesityl oxide even with the apparatus shown in FIG.

本発明で使用する第三成分、即ちアセトンより低沸点で
且つ反応条件下で塩素、塩化水素に対して不活性な有機
溶剤としては、塩化メチレン、塩化イソプロピル等の炭
素数1〜3の飽和ハロゲン化炭化水素及びブタン、ペン
タン、シクロベンクン等の炭素数4〜5の飽和炭化水素
が挙げられる。有機溶剤の沸点が低い場合はアセトンと
の蒸留分離が容易であるが、凝縮器の冷却を強化する必
要がある。又、アセトンの沸点に近い沸点をもつ有機溶
剤の場合は蒸留塔の段数を大きくとる必要があるので実
用上塩化メチレン、塩化イソプロピルの使用が望ましい
The third component used in the present invention, that is, an organic solvent that has a lower boiling point than acetone and is inert to chlorine and hydrogen chloride under the reaction conditions, is a saturated halogen having 1 to 3 carbon atoms such as methylene chloride and isopropyl chloride. Examples include carbonated hydrocarbons and saturated hydrocarbons having 4 to 5 carbon atoms such as butane, pentane, and cyclobencune. When the organic solvent has a low boiling point, it is easy to separate it from acetone by distillation, but it is necessary to strengthen the cooling of the condenser. Furthermore, in the case of an organic solvent having a boiling point close to that of acetone, it is necessary to increase the number of plates in the distillation column, so it is practically preferable to use methylene chloride or isopropyl chloride.

本発明で使用する蒸留塔はアセトンより低沸点の有機溶
剤とアセトン及びアセトンとモノクロルアセトンを蒸留
分離する能力をもつものであれば良い。
The distillation column used in the present invention may be any column capable of distilling and separating acetone from an organic solvent having a boiling point lower than that of acetone, and from acetone and monochloroacetone.

本発明における反応は連続式、回分式のいずれでも実施
可能であるが、回分式で実施する態様について説明する
Although the reaction in the present invention can be carried out either continuously or batchwise, an embodiment in which it is carried out batchwise will be described.

図1に示す反応装置の蒸発容器(C)にアセトンを仕込
んで加熱し、全還流させる0次にアセトンより低沸点の
第三成分を塔頂温度が第三成分の沸点付近に下がるまで
仕込む、但し、仕込みすぎると、塩素仕込み段付近のア
セトン濃度が低くなってうまく反応できなくなる。
Acetone is charged into the evaporation vessel (C) of the reactor shown in FIG. 1, heated, and completely refluxed. A third component having a lower boiling point than acetone is charged until the top temperature falls to around the boiling point of the third component. However, if too much is charged, the acetone concentration near the chlorine charging stage will become low and the reaction will not proceed properly.

塩素は中段から連続的に導入する。塩素の仕込み速度は
塩素の仕込み段付近で還流しているアセトンが塩素に対
して過剰になるように調節する。
Chlorine is introduced continuously from the middle stage. The chlorine charging rate is adjusted so that the acetone refluxing near the chlorine charging stage is in excess of chlorine.

副生ずる塩化水素は揮発性が大きい為に直ちに塔頂へ導
かれ、第三成分に溶解する分を除いて系外へ追い出され
る。系外へ追い出される塩化水素に同伴して蒸気正分に
相当する第三成分が系外へ逃げるので、反応中はこれに
見合う量の第三成分を塔頂へ連続的に追加仕込みする。
Hydrogen chloride, which is a by-product, is highly volatile and is therefore immediately led to the top of the column, where it is expelled from the system except for that which dissolves in the third component. Since the third component corresponding to the vapor fraction escapes from the system together with the hydrogen chloride that is expelled from the system, a corresponding amount of the third component is continuously added to the top of the column during the reaction.

塩化水素と第三成分を含むオフガスは水を循環させた吸
収塔に導き第三成分を回収する。塩化メチレン、塩化イ
ソプロピル等は水又は塩酸水に対する溶解度が小さいの
で、塩化水素の水への吸収熱を除去できる熱交換器を吸
収塔に備えておけば吸収液をデカンタ−で分液するだけ
で大部分が回収できる。蒸発容器(C)に所望のモノク
ロルアセトンが蓄積されたら塩素の仕込みを止め、反応
を終了する。
The off-gas containing hydrogen chloride and the third component is led to an absorption tower in which water is circulated to recover the third component. Methylene chloride, isopropyl chloride, etc. have low solubility in water or hydrochloric acid water, so if the absorption tower is equipped with a heat exchanger that can remove the heat of absorption of hydrogen chloride into water, the absorbed liquid can be simply separated using a decanter. Most of it can be recovered. When the desired monochloroacetone is accumulated in the evaporation container (C), the supply of chlorine is stopped and the reaction is completed.

塩素仕込み停止後もしばらく加熱を続け、窒素を導入し
て系内の塩化水素を追い出してから加熱を停止する0次
に蒸留を行い第三成分、未反応アセトン及び1,3−ジ
クロルアセトン等の高沸成分を分離すると1.1−ジク
ロルアセトン、メシチルオキシドの少ない高純度モノク
ロルアセトンが得られる。
After stopping the chlorine preparation, heating is continued for a while, nitrogen is introduced to drive out hydrogen chloride in the system, and then heating is stopped. Distillation is carried out in the 0th stage to remove the third component, unreacted acetone, 1,3-dichloroacetone, etc. By separating the high boiling components, 1,1-dichloroacetone and high purity monochloroacetone containing less mesityl oxide can be obtained.

〔発明の効果〕〔Effect of the invention〕

反応蒸留方式でアセトンと塩素を反応してモノクロルア
セトンを製造するに際し、アセトンより低沸点で且つ塩
素、塩化水素に対して不活性な有機溶剤を添加して塔頂
でアセトンのがわりに反応させることによりメシチルオ
キシドの副生が押さえられ高純度モノクロルアセトンが
得られる。
When producing monochloroacetone by reacting acetone and chlorine using the reactive distillation method, an organic solvent that has a lower boiling point than acetone and is inert to chlorine and hydrogen chloride is added and reacted at the top of the column instead of acetone. By this, the by-product of mesityl oxide is suppressed and high purity monochloroacetone is obtained.

〔実施例〕〔Example〕

以下、実施例を挙げて本発明の詳細な説明する0本発明
はこれらの実施例に限定されるものではない。
Hereinafter, the present invention will be described in detail with reference to Examples, but the present invention is not limited to these Examples.

実施例−1 径35+e+wノ10段オルダーシッー蒸留塔(B) 
、500−の蒸発容器(C)、及び凝縮器(A)を図2
の如く組み合わせた装置で反応を行った。先ず、蒸発容
器にアセトン300gを仕込み、加熱して常圧でアセト
ンを全還流させた。次に塩化メチレンを塔頂より仕込ん
で塔頂温度が42℃になったところで、5段目から塩素
をL5Nl/Hrの速度で仕込み始めた0反応中、塔頂
温度が40〜42℃に保てるように塩化メチレンを塔頂
から仕込み続けた。6時間後、反応を停止した。その時
の蒸発容器中の反応液組成はアセトン15.6%、塩化
メチレン0.5%、モノクロルアセトン81.5%、1
.1−ジクロルアセトン1.6%、1.3−ジクロルア
セトン0.8%でメシチルオキシドは痕跡程度認められ
るに過ぎなかった。
Example-1 10-stage older distillation column (B) with a diameter of 35+e+w
, 500- evaporation vessel (C) and condenser (A) are shown in Figure 2.
The reaction was carried out using the following combination of devices. First, 300 g of acetone was charged into an evaporation container and heated to completely reflux the acetone at normal pressure. Next, methylene chloride was charged from the top of the column and when the temperature at the top reached 42℃, chlorine was started to be charged from the fifth stage at a rate of L5Nl/Hr.During the zero reaction, the temperature at the top of the column was maintained at 40-42℃. Methylene chloride was continuously charged from the top of the tower. After 6 hours, the reaction was stopped. The reaction liquid composition in the evaporation container at that time was 15.6% acetone, 0.5% methylene chloride, 81.5% monochloroacetone, 1
.. Only traces of mesityl oxide were observed at 1.6% of 1-dichloroacetone and 0.8% of 1,3-dichloroacetone.

反応と同じ装置で得られた反応液を蒸留してモノクロル
アセトン98.1%、1.1−ジクロルアセトン1.9
%の製品が得られた。
The reaction solution obtained in the same equipment as the reaction was distilled to yield 98.1% monochloroacetone and 1.9% 1.1-dichloroacetone.
% product was obtained.

実施例−2 実施例−1と同様の方法で反応を開始し、反応開始後5
時間後から蒸留塔の5段目ヘアセトンを60g/Hrの
速度で仕込むと同時に蒸発容器から反応液を液面が一定
になるような速度で抜き出した。蒸発容器から抜き出し
た反応液20時間分をまとめて組成を分析したところア
セトン26.0%、塩化メチレン0.6%、モノクロル
アセトン72.3%、1.1−ジクロルアセトン1.3
%、1.3−ジクロルアセトン0.7%でメシチルオキ
シドは痕跡程度認められるに過ぎなかった。
Example-2 The reaction was started in the same manner as in Example-1, and 5 minutes after the start of the reaction.
After some time, haircetone was charged into the fifth stage of the distillation column at a rate of 60 g/Hr, and at the same time, the reaction liquid was withdrawn from the evaporation vessel at a rate such that the liquid level remained constant. Analysis of the composition of 20 hours worth of reaction liquid taken out from the evaporation container revealed that it was 26.0% acetone, 0.6% methylene chloride, 72.3% monochloroacetone, and 1.3% 1.1-dichloroacetone.
%, 1.3-dichloroacetone at 0.7%, only traces of mesityl oxide were observed.

比較例 塩化メチレンを仕込まないこと以外は実施例−1と同様
の方法で反応を行った。
Comparative Example A reaction was carried out in the same manner as in Example 1 except that methylene chloride was not charged.

6時間反応後の反応液組成はアセトン12.3%、モノ
クロルアセトン81.3%、1.1−ジクロルアセトン
1.7%、1.3−ジクロルアセトン0.8%、メシチ
ルオキシド3.6%であった。反応液を蒸留したがモノ
クロルアセトン93.9%、1.1−ジクロルアセトン
2.0%、メシチルオキシド4.0%の製品が得られた
に過ぎなかった。
The reaction solution composition after 6 hours of reaction was 12.3% acetone, 81.3% monochloroacetone, 1.7% 1.1-dichloroacetone, 0.8% 1.3-dichloroacetone, and 3% mesityl oxide. It was .6%. Although the reaction solution was distilled, only a product containing 93.9% monochloroacetone, 2.0% 1,1-dichloroacetone, and 4.0% mesityl oxide was obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

図1は本発明に用いられる反応装置の模式図、図2は還
流戻り配管のない反応装置の模式図である。 A 凝縮器 B 蒸留塔 C蒸発容器 D 還流戻り配管 E 気液分離器
FIG. 1 is a schematic diagram of a reaction apparatus used in the present invention, and FIG. 2 is a schematic diagram of a reaction apparatus without reflux return piping. A Condenser B Distillation column C Evaporation container D Reflux return pipe E Gas-liquid separator

Claims (1)

【特許請求の範囲】[Claims] アセトンと塩素の反応によりモノクロルアセトンを製造
する方法において、蒸留塔、凝縮器及び還流戻り配管を
備えた装置を用い、アセトンより低沸点で且つ塩素、塩
化水素に対して不活性な有機溶剤を添加して、蒸留塔の
上段で該有機溶剤を還流させ、アセトンを還流させた塔
内の中段に、塩素を連続的に導入してアセトンとの反応
を行い、副生する塩化水素を塔頂から連続的に除去し、
生成するモノクロルアセトンを未反応アセトンと蒸留分
離しながら蒸留塔の下部に導くことを特徴とするモノク
ロルアセトンの製造方法。
In a method for producing monochloroacetone through the reaction of acetone and chlorine, an organic solvent that has a boiling point lower than that of acetone and is inert to chlorine and hydrogen chloride is added using a device equipped with a distillation column, a condenser, and a reflux return pipe. Then, the organic solvent is refluxed in the upper stage of the distillation column, and chlorine is continuously introduced into the middle stage of the column where acetone is refluxed to react with acetone, and hydrogen chloride as a by-product is refluxed from the top of the column. continuously remove,
A method for producing monochloroacetone, which comprises guiding the produced monochloroacetone to the lower part of a distillation column while separating it from unreacted acetone by distillation.
JP30987286A 1986-12-26 1986-12-26 Method for producing monochloroacetone Expired - Lifetime JPH0749383B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30987286A JPH0749383B2 (en) 1986-12-26 1986-12-26 Method for producing monochloroacetone

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30987286A JPH0749383B2 (en) 1986-12-26 1986-12-26 Method for producing monochloroacetone

Publications (2)

Publication Number Publication Date
JPS63162646A true JPS63162646A (en) 1988-07-06
JPH0749383B2 JPH0749383B2 (en) 1995-05-31

Family

ID=17998314

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30987286A Expired - Lifetime JPH0749383B2 (en) 1986-12-26 1986-12-26 Method for producing monochloroacetone

Country Status (1)

Country Link
JP (1) JPH0749383B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101774872A (en) * 2009-12-25 2010-07-14 盐城七善化工科技有限公司 Preparation method of methyl chloride compounds and special device thereof
CN103933899A (en) * 2014-04-04 2014-07-23 江阴市利港第二化工有限公司 Device and method for preparing monochloroacetone by multi-tower reaction

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101774872A (en) * 2009-12-25 2010-07-14 盐城七善化工科技有限公司 Preparation method of methyl chloride compounds and special device thereof
CN103933899A (en) * 2014-04-04 2014-07-23 江阴市利港第二化工有限公司 Device and method for preparing monochloroacetone by multi-tower reaction

Also Published As

Publication number Publication date
JPH0749383B2 (en) 1995-05-31

Similar Documents

Publication Publication Date Title
JP7062686B2 (en) Methods and systems for recovering methanesulphonic acid in purified form
JP6873997B2 (en) Method for producing hydrogenbis (fluorosulfonyl) imide
US2526676A (en) Process for producing acrylonitrile
US3174262A (en) Chemical process and apparatus for recovery of ethylene oxide
IL23892A (en) Process for producing iodine pentafluoride
JPH0333718B2 (en)
JP4134777B2 (en) Nitrite ester production method
JPS63162646A (en) Production of monochloroacetone
JPH0819014B2 (en) Method for producing ethane dichloride
US2286559A (en) Oxidation of alicyclic ketones
EP0501374A1 (en) Process for purifying dimethyl carbonate
US3544274A (en) Halogen production
JPH0378856B2 (en)
KR100340211B1 (en) Continuous process for preparing perfluoroethyliodide using liquid catalyst
US2842584A (en) Production of succinonitrile
JPH06157448A (en) Continuous production of methyl isocyanate
US1081959A (en) Manufacture of acetic acid.
JPS59204146A (en) Method for purifying fluorine-containing organic compound
JPH0358355B2 (en)
US3969423A (en) Continuous preparation of 2,4,4,4-tetrachlorobutanol
JPH0219104B2 (en)
JP2000219673A (en) Production of methyl mercaptan and/or dimethyl sulfide
US5210299A (en) Method for production of n-(2-chloroethyl) methanesulfonamide
JPS58177923A (en) Preparation of 1,2-dichloroethane
JPH03127754A (en) Preparation of dichloro- or trichloro- acetylchloride